1932

Abstract

Fire blight, caused by the bacterial phytopathogen , is an economically important and mechanistically complex disease that affects apple and pear production in most geographic production hubs worldwide. We compile, assess, and present a genetic outlook on the progression of an infection in the host. We discuss the key aspects of type III secretion–mediated infection and systemic movement, biofilm formation in xylem, and pathogen dispersal via ooze droplets, a concentrated suspension of bacteria and exopolysaccharide components. We present an overall outlook on the genetic elements contributing to pathogenesis, including an exploration of the impact of floral microbiomes on colonization, and summarize the current knowledge of host responses to an incursion and how this response stimulates further infection and systemic spread. We hope to facilitate the identification of new, unexplored areas of research in this pathosystem that can help identify evolutionarily susceptible genetic targets to ultimately aid in the design of sustainable strategies for fire blight disease mitigation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-020620-095540
2021-08-25
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/phyto/59/1/annurev-phyto-020620-095540.html?itemId=/content/journals/10.1146/annurev-phyto-020620-095540&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aldridge P, Metzger M, Geider K. 1997. Genetics of sorbitol metabolism in Erwinia amylovora and its influence on bacterial virulence. Mol. Gen. Genet. 256:6611–19
    [Google Scholar]
  2. 2. 
    Ancona V, Lee JH, Chatnaparat T, Oh J, Hong JI, Zhao Y. 2015. The bacterial alarmone (p)ppGpp activates the type III secretion system in Erwinia amylovora. J. Bacteriol. 197:81433–43
    [Google Scholar]
  3. 3. 
    Ancona V, Lee JH, Zhao Y. 2016. The RNA-binding protein CsrA plays a central role in positively regulating virulence factors in Erwinia amylovora. Sci. Rep. 6:37195
    [Google Scholar]
  4. 4. 
    Ancona V, Li W, Zhao Y. 2014. Alternative sigma factor RpoN and its modulation protein YhbH are indispensable for Erwinia amylovora virulence. Mol. Plant Pathol. 15:158–66
    [Google Scholar]
  5. 5. 
    Asselin JE, Bonasera JM, Kim JF, Oh C-S, Beer SV. 2011. Eop1 from a Rubus strain of Erwinia amylovora functions as a host-range limiting factor. Phytopathology 101:935–44
    [Google Scholar]
  6. 6. 
    Bak G, Lee J, Suk S, Kim D, Lee JY et al. 2015. Identification of novel sRNAs involved in biofilm formation, motility and fimbriae formation in Escherichia coli. Sci. Rep. 5:15287
    [Google Scholar]
  7. 7. 
    Bardill JP, Zhao X, Hammer BK. 2011. The Vibrio cholerae quorum sensing response is mediated by Hfq-dependent sRNA/mRNA base pairing interactions. Mol. Microbiol. 80:1381–94
    [Google Scholar]
  8. 8. 
    Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ et al. 2008. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ. Microbiol. 10:2331–43
    [Google Scholar]
  9. 9. 
    Bayot RG, Ries SM. 1986. Role of motility in apple blossom infection by Erwinia amylovora and studies of fire blight control with attractant and repellent compounds. Phytopathology 76:4441–45
    [Google Scholar]
  10. 10. 
    Beer SV, Norelli JL. 1977. Fire blight epidemiology: factors affecting release of Erwinia amylovora by cankers. Phytopathology 67:111119–25
    [Google Scholar]
  11. 11. 
    Bellemann P, Geider K. 1992. Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization. Microbiology 138:5931–40
    [Google Scholar]
  12. 12. 
    Bennett AR, Billing E. 1978. Capsulation and virulence in Erwinia amylovora. Ann. Appl. Biol. 89:41–45
    [Google Scholar]
  13. 13. 
    Bennett AR, Billing E. 1979. Origin of the polysaccharide component of ooze from plants infected with Erwinia amylovora. J. Gen. Microbiol. 116:341–49
    [Google Scholar]
  14. 14. 
    Bernhard F, Coplin DL, Geider K. 1993. A gene cluster for amylovoran synthesis in Erwinia amylovora: characterization and relationship to cps genes in Erwinia stewartii. Mol. Gen. Genet. 239:158–68
    [Google Scholar]
  15. 15. 
    Billing E. 1974. The effect of temperature on the growth of the fireblight pathogen Erwinia amylovora. J. Appl. Bacteriol. 37:643–48
    [Google Scholar]
  16. 16. 
    Billing E. 2011. Fire blight. Why do views on host invasion by Erwinia amylovora differ?. Plant Pathol 60:2178–89
    [Google Scholar]
  17. 17. 
    Bogdanove AJ, Bauer DW, Beer SV. 1998. Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the Hrp (type III secretion) pathway. J. Bacteriol. 180:2244–47
    [Google Scholar]
  18. 18. 
    Bogdanove AJ, Wei ZM, Zhao L, Beer SV. 1996. Erwinia amylovora secretes harpin via a type III pathway and contains a homolog of yopN of Yersinia spp. J. Bacteriol. 178:1720–30
    [Google Scholar]
  19. 19. 
    Bogs J, Bruchmüller I, Erbar C, Geider K. 1998. Colonization of host plants by the fire blight pathogen Erwinia amylovora marked with genes for bioluminescence and fluorescence. Phytopathology 88:5416–21
    [Google Scholar]
  20. 20. 
    Bogs J, Geider K. 2000. Molecular analysis of sucrose metabolism of Erwiniaamylovora and influence on bacterial virulence. J. Bacteriol. 182:195351–58
    [Google Scholar]
  21. 21. 
    Bonasera JM, Kim JF, Beer SV. 2006. PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biol 6:23
    [Google Scholar]
  22. 22. 
    Boureau T, El Maarouf-Bouteau H, Garnier A, Brisset M-N, Perino C et al. 2006. DspA/E, a type III effector essential for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants. Mol. Plant-Microbe Interact. 19:116–24
    [Google Scholar]
  23. 23. 
    Boureau T, Siamer S, Perino C, Gaubert S, Patrit O et al. 2011. The HrpN effector of Erwinia amylovora, which is involved in type III translocation, contributes directly or indirectly to callose elicitation on apple leaves. Mol. Plant-Microbe Interact. 24:5577–84
    [Google Scholar]
  24. 24. 
    Brisset M-N, Cesbron S, Thomson SV, Paulin J-P. 2000. Acibenzolar-S-methyl induces the accumulation of defense-related enzymes in apple and protects from fire blight. Eur. J. Plant Pathol. 106:529–36
    [Google Scholar]
  25. 25. 
    Bugert P, Geider K. 1995. Molecular analysis of the ams operon required for exopolysaccharide synthesis of Erwinia amylovora. Mol. Microbiol. 15:5917–33
    [Google Scholar]
  26. 26. 
    Castiblanco LF, Sundin GW. 2016. New insights on molecular regulation of biofilm formation in plant-associated bacteria. J. Integr. Plant Biol. 58:4362–72
    [Google Scholar]
  27. 27. 
    Castiblanco LF, Sundin GW. 2018. Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189. Mol. Plant Pathol. 19:90–103
    [Google Scholar]
  28. 28. 
    Cesbron S, Paulin JP, Tharaud M, Barny MA, Brisset MN. 2006. The alternative σ factor HrpL negatively modulates the flagellar system in the phytopathogenic bacterium Erwinia amylovora under hrp-inducing conditions. FEMS Microbiol. Lett. 257:2221–27
    [Google Scholar]
  29. 29. 
    Chambers JR, Sauer K. 2013. Small RNAs and their role in biofilm formation. Trends Microbiol 21:39–49
    [Google Scholar]
  30. 30. 
    Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI. 2010. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328:59831295–97
    [Google Scholar]
  31. 31. 
    Chua SL, Liu Y, Yam JK, Chen Y, Vejborg RM et al. 2014. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat. Commun. 5:4462
    [Google Scholar]
  32. 32. 
    Crosse JE, Goodman RN, Shaffer WH Jr. 1972. Leaf damage as a predisposing factor in infection of apple shoots by Erwinia amylovora. Phytopathology 62:1176–82
    [Google Scholar]
  33. 33. 
    Cui Z, Huntley RB, Schultes NP, Kakar KU, Zeng Q. 2020. Expression of the type III secretion system genes in epiphytic Erwinia amylovora cells on apple stigmas benefits endophytic infection at the hypanthium. BioRxiv 218156: https://doi.org/10.1101/2020.07.23.218156
    [Crossref] [Google Scholar]
  34. 34. 
    Cui Z, Huntley RB, Schultes N, Steven B, Zeng Q. 2021. Inoculation of stigma-colonizing microbes to apple stigmas alters microbiome structure and reduces the occurrence of fire blight disease. Phytobiomes J. In press. https://apsjournals.apsnet.org/doi/abs/10.1094/PBIOMES-04-20-0035-R
    [Google Scholar]
  35. 35. 
    Cui Z, Huntley RB, Zeng Q, Steven B. 2021. Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora. ISME J 15:318–29
    [Google Scholar]
  36. 36. 
    De Bernonville TD, Gaucher M, Flors V, Gaillard S, Paulin JP et al. 2012. T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistant genotypes of Malus spp. challenged with Erwinia amylovora. Plant Sci. 188–89:1–9
    [Google Scholar]
  37. 37. 
    DebRoy S, Thilmony R, Kwack YB, Nomura K, He SY. 2004. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. PNAS 101:269927–32
    [Google Scholar]
  38. 38. 
    Degrave A, Fagard M, Perino C, Brisset M-N, Gaubert S et al. 2008. Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:1076–86
    [Google Scholar]
  39. 39. 
    Dellagi A, Brisset MN, Paulin JP, Expert D. 1998. Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Mol. Plant-Microbe Interact. 11:734–42
    [Google Scholar]
  40. 40. 
    Edmunds AC, Castiblanco LF, Sundin GW, Waters CM. 2013. Cyclic di-GMP modulates the disease progression of Erwinia amylovora. J. Bacteriol. 195:2155–65
    [Google Scholar]
  41. 41. 
    Eschen-Lippold L, Jiang X, Elmore JM, Mackey D, Shan L et al. 2016. Bacterial AvrRpt2-like cysteine proteases block activation of the Arabidopsis mitogen-activated protein kinases, MPK4 and MPK11. Plant Physiol 171:2223–38
    [Google Scholar]
  42. 42. 
    Gaudriault S, Malandrin L, Paulin JP, Barny MA. 1997. DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol. Microbiol. 26:51057–69
    [Google Scholar]
  43. 43. 
    Geider K. 2006. Twenty years of molecular genetics with Erwinia amylovora: answers and new questions about EPS-synthesis and other virulence factors. Acta Hortic 704:397–402
    [Google Scholar]
  44. 44. 
    Geier G, Geider K. 1993. Characterization and influence on virulence of the levansucrase gene from the fire blight pathogen Erwinia amylovora. Physiol. Mol. Plant Pathol. 42:387–404
    [Google Scholar]
  45. 45. 
    Goodman RN, White JA. 1981. Xylem parenchyma plasmolysis and vessel wall disorientation caused by Erwinia amylovora. Phytopathology 71:8844–52
    [Google Scholar]
  46. 46. 
    Griffith CS, Sutton TB, Peterson PD. 2003. Fire Blight: The Foundation of Phytobacteriology St. Paul, MN: APS Press
    [Google Scholar]
  47. 47. 
    Gross M, Geier G, Rudolph K, Geider K. 1992. Levan and levansucrase synthesized by the fire blight pathogen Erwinia amylovora. Physiol. Mol. Plant Pathol. 40:371–81
    [Google Scholar]
  48. 48. 
    Ham JH, Majerczak DR, Arroyo-Rodriguez AS, Mackey DM, Coplin DL. 2006. WtsE, an AvrE-family effector protein from Pantoea stewartii subsp. stewartii, causes disease-associated cell death in corn and requires a chaperone protein for stability. Mol. Plant-Microbe Interact. 19:101092–102
    [Google Scholar]
  49. 49. 
    Hasler T, Mamming L. 2001. Population dynamics of Erwinia amylovora on different blossom elements of pear and apple. Acta Hortic 590:181–84
    [Google Scholar]
  50. 50. 
    Holtappels M, Noben JP, Van Dijck P, Valcke R. 2018. Fire blight host-pathogen interaction: proteome profiles of Erwinia amylovora infecting apple rootstocks. Sci. Rep. 8:11689
    [Google Scholar]
  51. 51. 
    Hossain MM, Tsuyumu S. 2006. Flagella-mediated motility is required for biofilm formation by Erwinia carotovora subsp. carotovora. J. Gen. Plant Pathol. 72:34–39
    [Google Scholar]
  52. 52. 
    Ivanoff SS, Keitt GW. 1941. Relations of nectar concentration to growth of Erwinia amylovora and fire blight infection of apple and pear blossoms. J. Agric. Res. 62:733–43
    [Google Scholar]
  53. 53. 
    Jenal U, Reinders A, Lori C. 2017. Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. 15:271–84
    [Google Scholar]
  54. 54. 
    Johnson KB, Sawyer TL, Stockwell VO, Temple TN 2009. Implications of pathogenesis by Erwinia amylovora on rosaceous stigmas to biological control of fire blight. Phytopathology 99:2128–38
    [Google Scholar]
  55. 55. 
    Karam GN. 2005. Biomechanical model of the xylem vessels in vascular plants. Ann. Bot. 95:1179–86
    [Google Scholar]
  56. 56. 
    Keil HL, van der Zwet T. 1972. Recovery of Erwinia amylovora from symptomless stems and shoots of Jonathan apple and Bartlett pear trees. Phytopathology 62:139–42
    [Google Scholar]
  57. 57. 
    Kharadi RR, Castiblanco LF, Waters CM, Sundin GW. 2019. Phosphodiesterase genes regulate amylovoran production, biofilm formation, and virulence in Erwinia amylovora. Appl. Environ. Microbiol. 85:1e02233–18
    [Google Scholar]
  58. 58. 
    Kharadi RR, Selbmann K, Sundin GW. 2021. The cyclic di-GMP network is a global regulator of phase-transition and attachment-dependent host colonization in Erwinia amylovora. bioRxiv doi: 10.1101/2021.02.01.429191
  59. 59. 
    Kharadi RR, Sundin GW. 2019. Physiological and microscopic characterization of cyclic-di-GMP-mediated autoaggregation in Erwinia amylovora. Front. Microbiol. 10:468
    [Google Scholar]
  60. 60. 
    Kharadi RR, Sundin GW. 2020. Cyclic-di-GMP regulates autoaggregation through the putative peptidoglycan hydrolase, EagA, and regulates transcription of the znuABC zinc uptake gene cluster in Erwinia amylovora. Front. Microbiol. 11:2931
    [Google Scholar]
  61. 61. 
    Kharadi RR, Sundin GW. 2020. Dissecting the process of xylem colonization through biofilm formation in Erwinia amylovora. J. Plant Pathol. In press . https://doi.org/10.1007/s42161-020-00635-x
    [Crossref] [Google Scholar]
  62. 62. 
    Kim JF, Beer SV. 1998. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J. Bacteriol. 180:5203–10
    [Google Scholar]
  63. 63. 
    Klee SM, Sinn JP, Finley M, Allman EL, Smith PB et al. 2019. Erwinia amylovora auxotrophic mutant exometabolomics and virulence on apples. Appl. Environ. Microbiol. 85:15e00935–19
    [Google Scholar]
  64. 64. 
    Koczan JM, Lenneman BR, McGrath MJ, Sundin GW. 2011. Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora. Appl. Environ. Microbiol. 77:197031–39
    [Google Scholar]
  65. 65. 
    Koczan JM, McGrath MJ, Zhao Y, Sundin GW. 2009. Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology 99:111237–44
    [Google Scholar]
  66. 66. 
    Kvitko BH, Ramos AR, Morello JE, Oh HS, Collmer A. 2007. Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J. Bacteriol. 189:8059–72
    [Google Scholar]
  67. 67. 
    Lee JH, Ancona V, Chatnaparat T, HW Yang, Zhao Y. 2019. The RNA-binding protein CsrA controls virulence in Erwinia amylovora by regulating RelA, RcsB, and FlhD at the posttranscriptional level. Mol. Plant-Microbe Interact. 32:101448–59
    [Google Scholar]
  68. 68. 
    Lee JH, Ancona V, Zhao Y. 2018. Lon protease modulates virulence traits in Erwinia amylovora by direct monitoring of major regulators and indirectly through the Rcs and Gac-Csr regulatory systems. Mol. Plant Pathol. 19:4827–40
    [Google Scholar]
  69. 69. 
    Lee JH, Zhao Y. 2016. Integration host factor is required for RpoN-dependent hrpL gene expression and controls motility by positively regulating rsmB sRNA in Erwinia amylovora. Phytopathology 106:129–36
    [Google Scholar]
  70. 70. 
    Lee JH, Zhao Y. 2017. ClpXP-dependent RpoS degradation enables full activation of type III secretion system, amylovoran production, and motility in Erwinia amylovora. Phytopathology 107:111346–52
    [Google Scholar]
  71. 71. 
    Lee JH, Zhao Y. 2018. Integration of multiple stimuli-sensing systems to regulate HrpS and type III secretion system in Erwinia amylovora. Mol. Gen. Genom. 293:1187–96
    [Google Scholar]
  72. 72. 
    Li W, Ancona V, Zhao Y. 2014. Co-regulation of polysaccharide production, motility, and expression of type III secretion genes by EnvZ/OmpR and GrrS/GrrA systems in Erwinia amylovora. Mol. Genet. Genom. 289:163–75
    [Google Scholar]
  73. 73. 
    Liu Y, Cui Y, Mukherjee A, Chatterjee AK. 1997. Activation of the Erwinia carotovora subsp. carotovora pectin lyase structural gene pnIA: a role for RdgB. Microbiology 143:3705–12
    [Google Scholar]
  74. 74. 
    Lowe-Power TM, Khokhani D, Allen C 2018. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends Microbiol 26:11929–42
    [Google Scholar]
  75. 75. 
    Ma K-W, Ma W 2016. YopJ family effectors promote bacterial infection through a unique acetyltransferase activity. Microbiol. . Mol. Biol. Rev. 80:4111–27
    [Google Scholar]
  76. 76. 
    Malnoy M, Jin Q, Borejsza-Wysocka EE, He S-Y, Aldwinckle HS. 2007. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Mol. Plant-Microbe Interact. 20:1568–80
    [Google Scholar]
  77. 77. 
    Malnoy M, Martens S, Norelli JL, Barny MA, Sundin GW et al. 2012. Fire blight: applied genomic insights of the pathogen and host. Annu. Rev. Phytopathol. 50:475–94
    [Google Scholar]
  78. 78. 
    McManus PS, Jones AL. 1994. Role of wind-driven rain, aerosols, and contaminated budwood in incidence and spatial pattern of fire blight in an apple nursery. Plant Dis 78:111059–66
    [Google Scholar]
  79. 79. 
    McNally RR, Toth IK, Cock PJ, Pritchard L, Hedley PE et al. 2012. Genetic characterization of the HrpL regulon of the fire blight pathogen Erwinia amylovora reveals novel virulence factors. Mol. Plant Pathol. 13:2160–73
    [Google Scholar]
  80. 80. 
    Meng X, Bonasera JM, Kim JF, Nissinen RM, Beer SV. 2006. Apple proteins that interact with DspA/E, a pathogenicity effector of Erwinia amylovora, the fire blight pathogen. Mol. Plant-Microbe Interact. 19:153–61
    [Google Scholar]
  81. 81. 
    Meng Y, Li Y, Galvani CD, Hao G, Turner JN et al. 2005. Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J. Bacteriol. 87:165560–67
    [Google Scholar]
  82. 82. 
    Momol MT, Norelli JL, Piccioni DE, Momol EA, Gustafson HL et al. 1998. Internal movement of Erwinia amylovora through symptomless apple scion tissues into the rootstock. Plant Dis 82:6646–50
    [Google Scholar]
  83. 83. 
    Monds RD, O'Toole GA. 2009. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87
    [Google Scholar]
  84. 84. 
    Nissinen RM, Ytterberg AJ, Bogdanove AJ, Van Wijk KJ, Beer SV. 2007. Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol. Plant Pathol. 8:55–67
    [Google Scholar]
  85. 85. 
    Norelli JL, Jones AL, Aldwinckle HS. 2003. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis 87:756–65
    [Google Scholar]
  86. 86. 
    Oh CS, Beer SV. 2005. Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol. Lett. 253:2185–92
    [Google Scholar]
  87. 87. 
    Oh CS, Kim JF, Beer SV. 2005. The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infection. Mol. Plant Pathol. 6:2125–38
    [Google Scholar]
  88. 88. 
    O'Neill EM, Mucyn TS, Patteson JB, Finkel OM, Chung E-H et al. 2018. Phevamine A, a small molecule that suppresses plant immune responses. PNAS 115:E9514–22
    [Google Scholar]
  89. 89. 
    Orr MW, Donaldson GP, Severin GB, Wang J, Sintim HO, Waters CM, Lee VT. 2015. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. PNAS 112:365048–57
    [Google Scholar]
  90. 90. 
    Peng J, Schachterle JK, Sundin GW. 2021. Orchestration of virulence factor expression and modulation of biofilm dispersal in Erwinia amylovora through activation of the Hfq-dependent small RNA RprA. Mol. Plant Pathol. 22:2255–70
    [Google Scholar]
  91. 91. 
    Pester D, Milčevičová R, Schaffer J, Wilhelm E, Blümel S 2012. Erwinia amylovora expresses fast and simultaneously hrp/dsp virulence genes during flower infection on apple trees. PLOS ONE 7:332583
    [Google Scholar]
  92. 92. 
    Potrykus K, Cashel M. 2008. (p)ppGpp: still magical?. Annu. Rev. Microbiol. 62:35–51
    [Google Scholar]
  93. 93. 
    Puławska J, Kałużna M, Warabieda W, Mikiciński A. 2017. Comparative transcriptome analysis of a lowly virulent strain of Erwinia amylovora in shoots of two apple cultivars—susceptible and resistant to fire blight. BMC Genom 8:1868
    [Google Scholar]
  94. 94. 
    Pusey PL. 2000. The role of water in epiphytic colonization and infection of pomaceous flowers by Erwinia amylovora. Phytopathology 90:121352–57
    [Google Scholar]
  95. 95. 
    Pusey PL, Curry EA. 2004. Temperature and pomaceous flower age related to colonization by Erwinia amylovora and antagonists. Phytopathology 94:8901–11
    [Google Scholar]
  96. 96. 
    Pusey PL, Rudell DR, Curry EA, Mattheis JP. 2008. Characterization of stigma exudates in aqueous extracts from apple and pear flowers. HortScience 43:1471–78
    [Google Scholar]
  97. 97. 
    Raymundo AK, Ries SM. 1980. Chemotaxis of Erwinia amylovora. Phytopathology 70:101066–69
    [Google Scholar]
  98. 98. 
    Rosen HR. 1936. Mode of penetration and progressive invasion of fire blight bacteria into apple and pear blossoms Agric. Exp. Stn. Bull. 331 Univ. Ark. Coll. Agric. Fayetteville:
    [Google Scholar]
  99. 99. 
    Rumbaugh KP, Sauer K. 2020. Biofilm dispersion. Nat. Rev. Microbiol. 18:571–86
    [Google Scholar]
  100. 100. 
    Santander RD, Figàs-Segura À, Biosca EG. 2018. Erwinia amylovora catalases KatA and KatG are virulence factors and delay the starvation-induced viable but non-culturable (VBNC) response. Mol. Plant Pathol. 19:4922–34
    [Google Scholar]
  101. 101. 
    Santander RD, Meredith CL, Aćimović SG. 2019. Development of a viability digital PCR protocol for the selective detection and quantification of live Erwinia amylovora cells in cankers. Sci. Rep. 9:11530
    [Google Scholar]
  102. 102. 
    Schachterle JK, Onsay DM, Sundin GW. 2019. Small RNA ArcZ regulates oxidative stress response genes and regulons in Erwinia amylovora. Front. Microbiol. 10:2775
    [Google Scholar]
  103. 103. 
    Schachterle JK, Sundin GW. 2019. The leucine-responsive regulatory protein Lrp participates in virulence regulation downstream of small RNA ArcZ in Erwinia amylovora. mBio 10:300757-19
    [Google Scholar]
  104. 104. 
    Schachterle JK, Zeng Q, Sundin GW. 2019. Three Hfq-dependent small RNAs regulate flagellar motility in the fire blight pathogen Erwinia amylovora. Mol. Microbiol. 111:61476–92
    [Google Scholar]
  105. 105. 
    Schouten HJ. 1988. Notes on the role of water potential in the pathogenesis of fire blight, caused by Erwinia amylovora. Neth. J. Plant Pathol. 94:213–20
    [Google Scholar]
  106. 106. 
    Schouten HJ. 1989. A possible role in pathogenesis for the swelling of extracellular slime of Erwinia amylovora at increasing water potential. Neth. J. Plant Pathol. 95:169–74
    [Google Scholar]
  107. 107. 
    Schouten HJ. 1991. Simulation of potential caused by multiplication and swelling of Erwinia amylovora in intercellular space of host tissue. Neth. J. Plant Pathol. 97:139–41
    [Google Scholar]
  108. 108. 
    Schröpfer S, Böttcher C, Wöhner T, Richter K, Norelli J et al. 2018. A single effector protein, AvrRpt2EA, from Erwinia amylovora can cause fire blight disease symptoms and induces a salicylic acid–dependent defense response. Mol. Plant-Microbe Interact. 31:111179–91
    [Google Scholar]
  109. 109. 
    Shanker S, Schaefer GK, Barnhart BK, Wallace-Kneale VL, Chang D et al. 2017. The virulence-associated protein HsvA from the fire blight pathogen Erwinia amylovora is a polyamine amidinotransferase. J. Biol. Chem. 292:5221366–80
    [Google Scholar]
  110. 110. 
    Shidore T, Zeng Q, Triplett LR. 2019. Survey of toxin–antitoxin systems in Erwinia amylovora reveals insights into diversity and functional specificity. Toxins 11:4206
    [Google Scholar]
  111. 111. 
    Slack SM, Zeng Q, Outwater CA, Sundin GW. 2017. Microbiological examination of Erwinia amylovora exopolysaccharide ooze. Phytopathology 107:4403–11
    [Google Scholar]
  112. 112. 
    Smits T, Duffy B, Sundin G, Zhao Y, Rezzonico F. 2017. Erwinia amylovora in the genomics era: from genomes to pathogen virulence, regulation, and disease control strategies. J. Plant Pathol. 99:7–23
    [Google Scholar]
  113. 113. 
    Smits THM, Rezzonico F, Kamber T, Blom J, Goesmann A et al. 2010. Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison with the other Erwinia spp. Mol. Plant-Microbe Interact. 23:384–93
    [Google Scholar]
  114. 114. 
    Steven B, Huntley RB, Zeng Q. 2018. The influence of flower anatomy and apple cultivar on the apple flower phytobiome. Phytobiomes J 2:171–79
    [Google Scholar]
  115. 115. 
    Suhayda CG. 1981. Infection courts and systemic movement of 32P-labeled Erwinia amylovora in apple petioles and stems. Phytopathology 71:6656–60
    [Google Scholar]
  116. 116. 
    Suhayda CG, Goodman RN. 1981. Early proliferation and migration and subsequent xylem occlusion by Erwinia amylovora and the fate of its extracellular polysaccharide (EPS) in apple shoots. Phytopathology 71:7697–707
    [Google Scholar]
  117. 117. 
    Taylor RK, Hale CN, Henshall WR, Armstrong JL, Marshall JW. 2003. Effect of inoculum dose on infection of apple (Malus domestica) flowers by Erwinia amylovora. N. Z. J. Crop Hort. 31:4325–33
    [Google Scholar]
  118. 118. 
    Tegtmeier R, Pompili V, Singh J, Micheletti D, Silva KJ et al. 2020. Candidate gene mapping identifies genomic variations in the fire blight susceptibility genes HIPM and DIPM across the Malus germplasm. Sci. Rep. 10:16317
    [Google Scholar]
  119. 119. 
    Thomson SV. 1986. The role of the stigma in fire blight infections. Phytopathology 76:5476–82
    [Google Scholar]
  120. 120. 
    Thomson SV 2000. Epidemiology of fire blight. . In Fire Blight: The Disease and its Causative Agent, Erwinia amylovora JL Vanneste 9–37 Wallingford, UK: CABI
    [Google Scholar]
  121. 121. 
    Thomson SV, Gouk SC. 2003. Influence of age of apple flowers on growth of Erwinia amylovora and biological control agents. Plant Dis 87:5502–9
    [Google Scholar]
  122. 122. 
    van der Zwet TB, Beer SV. 1995. Fire blight—its nature, prevention, and control: a practical guide to integrated disease management Agric. Inf. Bull. 613 Agric. Res. Serv. Ithaca, NY:
    [Google Scholar]
  123. 123. 
    Venisse JS, Barny MA, Paulin JP, Brisset MN. 2003. Involvement of three pathogenicity factors of Erwinia amylovora in the oxidative stress associated with compatible interaction in pear. FEBS Lett 537:1–3198–202
    [Google Scholar]
  124. 124. 
    Venisse JS, Gullner G, Brisset MN. 2001. Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiol 125:42164–72
    [Google Scholar]
  125. 125. 
    Venisse JS, Malnoy M, Faize M, Paulin JP, Brisset MN. 2002. Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora. . Mol. Plant-Microbe Interact. 15:121204–12
    [Google Scholar]
  126. 126. 
    Vogel J, Luisi BF. 2011. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 9:578–89
    [Google Scholar]
  127. 127. 
    Vogt I, Wöhner T, Richter K, Flachowsky H, Sundin GW et al. 2013. Gene-for-gene relationship in the host-pathogen system Malus x robusta 5–Erwinia amylovora. New Phytol 197:1262–75
    [Google Scholar]
  128. 128. 
    Vogt T. 2010. Phenylpropanoid biosynthesis. Mol. Plant 3:12–20
    [Google Scholar]
  129. 129. 
    Wang D, Korban SS, Pusey PL, Zhao Y. 2011. Characterization of the RcsC sensor kinase from Erwinia amylovora and other enterobacteria. Phytopathology 101:6710–17
    [Google Scholar]
  130. 130. 
    Wang D, Korban SS, Pusey PL, Zhao Y. 2012. AmyR is a novel negative regulator of amylovoran production in Erwinia amylovora. PLOS ONE 7:9e45038
    [Google Scholar]
  131. 131. 
    Wang D, Korban SS, Zhao Y. 2009. The Rcs phosphorelay system is essential for pathogenicity in Erwinia amylovora. Mol. Plant Pathol. 10:2277–90
    [Google Scholar]
  132. 132. 
    Wang D, Qi M, Calla B, Korban SS, Clough SJ et al. 2012. Genome-wide identification of genes regulated by the Rcs phosphorelay system in Erwinia amylovora. Mol. Plant-Microbe Interact. 25:16–17
    [Google Scholar]
  133. 133. 
    Wei ZM, Beer SV. 1995. hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J. Bacteriol. 177:216201–10
    [Google Scholar]
  134. 134. 
    Wei ZM, Kim JF, Beer SV. 2000. Regulation of hrp genes and type III protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two-component system, and HrpS. Mol. Plant-Microbe Interact. 13:111251–62
    [Google Scholar]
  135. 135. 
    Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY et al. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88
    [Google Scholar]
  136. 136. 
    Wilson M, Epton HA, Sigee DC. 1989. Erwinia amylovora infection of hawthorn blossom. 2. The stigma. J. Phytopathol. 127:15–28
    [Google Scholar]
  137. 137. 
    Wöhner T, Richter K, Sundin GW, Zhao Y, Stockwell VO et al. 2018. Inoculation of Malus genotypes with a set of Erwinia amylovora strains indicates a gene-for-gene relationship between the effector gene eop1 and both Malus floribunda 821 and Malus ‘Evereste. .’ Plant Pathol 67:938–47
    [Google Scholar]
  138. 138. 
    Yang HW, Yu M, Lee JH, Chatnaparat T, Zhao Y. 2020. The stringent response regulator (p)ppGpp mediates virulence gene expression and survival in Erwinia amylovora. BMC Genom 21:261
    [Google Scholar]
  139. 139. 
    Yu X, Feng B, He P, Shan L. 2017. From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 55:109–37
    [Google Scholar]
  140. 140. 
    Yuan X, Hulin MT, Sundin GW. 2020. Effectors, chaperones, and harpins of the Type III secretion system in the fire blight pathogen Erwinia amylovora: a review. J. Plant Pathol. In press . https://doi.org/10.1007/s42161-020-00623-1
    [Crossref] [Google Scholar]
  141. 141. 
    Zamski E, Shitenberg D, Blachinsky D. 2006. The role of ooze exudation in the migration of Erwinia amylovora cells in pear trees infected by fire blight. Isr. J. Plant Sci. 54:301–7
    [Google Scholar]
  142. 142. 
    Zeng Q, McNally RR, Sundin GW. 2013. Global small RNA chaperone Hfq and regulatory small RNAs are important virulence regulators in Erwinia amylovora. J. Bacteriol. 195:81706–17
    [Google Scholar]
  143. 143. 
    Zeng Q, Puławska J, Schachterle J. 2020. Early events in fire blight infection and pathogenesis of Erwinia amylovora. J. Plant Pathol. In press . https://doi.org/10.1007/s42161-020-00675-3
    [Crossref] [Google Scholar]
  144. 144. 
    Zeng Q, Sundin GW. 2014. Genome-wide identification of Hfq-regulated small RNAs in the fire blight pathogen Erwinia amylovora discovered small RNAs with virulence regulatory function. BMC Genom 15:1414
    [Google Scholar]
  145. 145. 
    Zhao Y, Blumer SE, Sundin GW. 2005. Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J. Bacteriol. 187:8088–103
    [Google Scholar]
  146. 146. 
    Zhao Y, He SY, Sundin GW. 2006. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Mol. Plant-Microbe Interact. 19:6644–54
    [Google Scholar]
  147. 147. 
    Zhao Y, Sundin GW, Wang D. 2009. Construction and analysis of pathogenicity island deletion mutants of Erwinia amylovora. Can. J. Microbiol. 55:4457–64
    [Google Scholar]
  148. 148. 
    Zhao Y, Wang D, Nakka S, Sundin GW, Korban SS. 2009. Systems level analysis of two-component signal transduction systems in Erwinia amylovora: role in virulence, regulation of amylovoran biosynthesis and swarming motility. BMC Genom 10:245
    [Google Scholar]
  149. 149. 
    Zhao YF, Qi MS, Wang DP. 2010. Evolution and function of flagellar and non-flagellar type III secretion systems in Erwinia amylovora. Acta Hortic 896:177–84
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-020620-095540
Loading
/content/journals/10.1146/annurev-phyto-020620-095540
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error