- Home
- A-Z Publications
- Annual Review of Phytopathology
- Previous Issues
- Volume 59, 2021
Annual Review of Phytopathology - Volume 59, 2021
Volume 59, 2021
-
-
Research Advances in Potyviruses: From the Laboratory Bench to the Field
Xiuling Yang, Yinzi Li, and Aiming WangVol. 59 (2021), pp. 1–29More LessPotyviruses (viruses in the genus Potyvirus, family Potyviridae) constitute the largest group of known plant-infecting RNA viruses and include many agriculturally important viruses that cause devastating epidemics and significant yield losses in many crops worldwide. Several potyviruses are recognized as the most economically important viral pathogens. Therefore, potyviruses are more studied than other groups of plant viruses. In the past decade, a large amount of knowledge has been generated to better understand potyviruses and their infection process. In this review, we list the top 10 economically important potyviruses and present a brief profile of each. We highlight recent exciting findings on the novel genome expression strategy and the biological functions of potyviral proteins and discuss recent advances in molecular plant–potyvirus interactions, particularly regarding the coevolutionary arms race. Finally, we summarize current disease control strategies, with a focus on biotechnology-based genetic resistance, and point out future research directions.
-
-
-
Key Insights and Research Prospects at the Dawn of the Population Genomics Era for Verticillium dahliae
Vol. 59 (2021), pp. 31–51More LessThe genomics era has ushered in exciting possibilities to examine the genetic bases that undergird the characteristic features of Verticillium dahliae and other plant pathogens. In this review, we provide historical perspectives on some of the salient biological characteristics of V. dahliae, including its morphology, microsclerotia formation, host range, disease symptoms, vascular niche, reproduction, and population structure. The kaleidoscopic population structure of this pathogen is summarized, including different races of the pathogen, defoliating and nondefoliating phenotypes, vegetative compatibility groupings, and clonal populations. Where possible, we place the characteristic differences in the context of comparative and functional genomics analyses that have offered insights into population divergence within V. dahliae and the related species.Current challenges are highlighted along with some suggested future population genomics studies that will contribute to advancing our understanding of the population divergence in V. dahliae.
-
-
-
Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives
Kiwamu Tanaka, and Martin HeilVol. 59 (2021), pp. 53–75More LessDanger signals trigger immune responses upon perception by a complex surveillance system. Such signals can originate from the infectious nonself or the damaged self, the latter termed damage-associated molecular patterns (DAMPs). Here, we apply Matzinger's danger model to plant innate immunity to discuss the adaptive advantages of DAMPs and their integration into preexisting signaling pathways. Constitutive DAMPs (cDAMPs), e.g., extracellular ATP, histones, and self-DNA, fulfill primary, conserved functions and adopt a signaling role only when cellular damage causes their fragmentation or localization to aberrant compartments. By contrast, immunomodulatory peptides (also known as phytocytokines) exclusively function as signals and, upon damage, are activated as inducible DAMPs (iDAMPs). Dynamic coevolutionary processes between the signals and their emerging receptors and shared co-receptors have likely linked danger recognition to preexisting, conserved downstream pathways.
-
-
-
Characterization of Effector–Target Interactions in Necrotrophic Pathosystems Reveals Trends and Variation in Host Manipulation
Vol. 59 (2021), pp. 77–98More LessGreat strides have been made in defining the details of the plant defense response involving biotrophic fungal and bacterial pathogens. The groundwork for the current model was laid by H.H. Flor and others who defined the gene-for-gene hypothesis, which is now known to involve effector-triggered immunity (ETI). PAMP-triggered immunity (PTI) is also a highly effective response to most pathogens because of the recognition of common pathogen molecules by pattern recognition receptors. In this article, we consider the three pathogens that make up the foliar disease complex of wheat, Zymoseptoria tritici, Pyrenophora tritici-repentis, and Parastagonospora nodorum, to review the means by which necrotrophic pathogens circumvent, or outright hijack, the ETI and PTI pathways to cause disease.
-
-
-
Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria
Vol. 59 (2021), pp. 99–124More LessPosttranslational modifications (PTMs) play crucial roles in regulating protein function and thereby control many cellular processes and biological phenotypes in both eukaryotes and prokaryotes. Several recent studies illustrate how plant fungal and bacterial pathogens use these PTMs to facilitate development, stress response, and host infection. In this review, we discuss PTMs that have key roles in the biological and infection processes of plant-pathogenic fungi and bacteria. The emerging roles of PTMs during pathogen–plant interactions are highlighted. We also summarize traditional tools and emerging proteomics approaches for PTM research. These discoveries open new avenues for investigating the fundamental infection mechanisms of plant pathogens and the discovery of novel strategies for plant disease control.
-
-
-
Models of Plant Resistance Deployment
Vol. 59 (2021), pp. 125–152More LessOwing to their evolutionary potential, plant pathogens are able to rapidly adapt to genetically controlled plant resistance, often resulting in resistance breakdown and major epidemics in agricultural crops. Various deployment strategies have been proposed to improve resistance management. Globally, these rely on careful selection of resistance sources and their combination at various spatiotemporal scales (e.g., via gene pyramiding, crop rotations and mixtures, landscape mosaics). However, testing and optimizing these strategies using controlled experiments at large spatiotemporal scales are logistically challenging. Mathematical models provide an alternative investigative tool, and many have been developed to explore resistance deployment strategies under various contexts. This review analyzes 69 modeling studies in light of specific model structures (e.g., demographic or demogenetic, spatial or not), underlying assumptions (e.g., whether preadapted pathogens are present before resistance deployment), and evaluation criteria (e.g., resistance durability, disease control, cost-effectiveness). It highlights major research findings and discusses challenges for future modeling efforts.
-
-
-
Interkingdom Signaling Interference: The Effect of Plant-Derived Small Molecules on Quorum Sensing in Plant-Pathogenic Bacteria
Vol. 59 (2021), pp. 153–190More LessIn the battle between bacteria and plants, bacteria often use a population density–dependent regulatory system known as quorum sensing (QS) to coordinate virulence gene expression. In response, plants use innate and induced defense mechanisms that include low-molecular-weight compounds, some of which serve as antivirulence agents by interfering with the QS machinery. The best-characterized QS system is driven by the autoinducer N-acyl-homoserine lactone (AHL), which is produced by AHL synthases (LuxI homologs) and perceived by response regulators (LuxR homologs). Several plant compounds have been shown to directly inhibit LuxI or LuxR. Gaining atomic-level insight into their mode of action and how they interfere with QS enzymes supports the identification and design of novel QS inhibitors.Such information can be gained by combining experimental work with molecular modeling and docking simulations. The summary of these findings shows that plant-derived compounds act as interkingdom cues and that these allomones specifically target bacterial communication systems.
-
-
-
Genetic Dissection of the Erwinia amylovora Disease Cycle
Vol. 59 (2021), pp. 191–212More LessFire blight, caused by the bacterial phytopathogen Erwinia amylovora, is an economically important and mechanistically complex disease that affects apple and pear production in most geographic production hubs worldwide. We compile, assess, and present a genetic outlook on the progression of an E. amylovora infection in the host. We discuss the key aspects of type III secretion–mediated infection and systemic movement, biofilm formation in xylem, and pathogen dispersal via ooze droplets, a concentrated suspension of bacteria and exopolysaccharide components. We present an overall outlook on the genetic elements contributing to E. amylovora pathogenesis, including an exploration of the impact of floral microbiomes on E. amylovora colonization, and summarize the current knowledge of host responses to an incursion and how this response stimulates further infection and systemic spread. We hope to facilitate the identification of new, unexplored areas of research in this pathosystem that can help identify evolutionarily susceptible genetic targets to ultimately aid in the design of sustainable strategies for fire blight disease mitigation.
-
-
-
One Hundred Years of Hybrid Necrosis: Hybrid Autoimmunity as a Window into the Mechanisms and Evolution of Plant–Pathogen Interactions
Lei Li, and Detlef WeigelVol. 59 (2021), pp. 213–237More LessHybrid necrosis in plants refers to a genetic autoimmunity syndrome in the progeny of interspecific or intraspecific crosses. Although the phenomenon was first documented in 1920, it has been unequivocally linked to autoimmunity only recently, with the discovery of the underlying genetic and biochemical mechanisms. The most common causal loci encode immune receptors, which are known to differ within and between species. One mechanism can be explained by the guard hypothesis, in which a guard protein, often a nucleotide-binding site–leucine-rich repeat protein, is activated by interaction with a plant protein that mimics standard guardees modified by pathogen effector proteins. Another surprising mechanism is the formation of inappropriately active immune receptor complexes. In this review, we summarize our current knowledge of hybrid necrosis and discuss how its study is not only informing the understanding of immune gene evolution but also revealing new aspects of plant immune signaling.
-
-
-
Regulation of Cell Death and Signaling by Pore-Forming Resistosomes
Guozhi Bi, and Jian-Min ZhouVol. 59 (2021), pp. 239–263More LessNucleotide-binding leucine-rich repeat receptors (NLRs) are the largest class of immune receptors in plants. They play a key role in the plant surveillance system by monitoring pathogen effectors that are delivered into the plant cell. Recent structural biology and biochemical analyses have uncovered how NLRs are activated to form oligomeric resistosomes upon the recognition of pathogen effectors. In the resistosome, the signaling domain of the NLR is brought to the center of a ringed structure to initiate immune signaling and regulated cell death (RCD). The N terminus of the coiled-coil (CC) domain of the NLR protein HOPZ-ACTIVATED RESISTANCE 1 likely forms a pore in the plasma membrane to trigger RCD in a way analogous to animal pore-forming proteins that trigger necroptosis or pyroptosis. NLRs that carry TOLL-INTERLEUKIN1-RECEPTOR as a signaling domain may also employ pore-forming resistosomes for RCD execution. In addition, increasing evidence supports intimate connections between NLRs and surface receptors in immune signaling. These new findings are rapidly advancing our understanding of the plant immune system.
-
-
-
Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens
Yongli Qiao, Rui Xia, Jixian Zhai, Yingnan Hou, Li Feng, Yi Zhai, and Wenbo MaVol. 59 (2021), pp. 265–288More LessGene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host–pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host–pathogen interface are discussed.
-
-
-
Harnessing Eco-Evolutionary Dynamics of Xanthomonads on Tomato and Pepper to Tackle New Problems of an Old Disease
Vol. 59 (2021), pp. 289–310More LessBacterial spot is an endemic seedborne disease responsible for recurring outbreaks on tomato and pepper around the world. The disease is caused by four diverse species, Xanthomonas gardneri, Xanthomonas euvesicatoria, Xanthomonas perforans, and Xanthomonas vesicatoria. There are no commercially available disease-resistant tomato varieties, and the disease is managed by chemical/biological control options, although these have not reduced the incidence of outbreaks. The disease on peppers is managed by disease-resistant cultivars that are effective against X. euvesicatoria but not X. gardneri. A significant shift in composition and prevalence of different species and races of the pathogen has occurred over the past century. Here, I attempt to review ecological and evolutionary processes associated with the population dynamics leading to disease emergence and spread. The goal of this review is to integrate the knowledge on population genomics and molecular plant–microbe interactions for this pathosystem to tailor disease management strategies.
-
-
-
Genomic Approaches to Plant-Pathogen Epidemiology and Diagnostics
Vol. 59 (2021), pp. 311–332More LessDiseases have a significant cost to agriculture. Findings from analyses of whole-genome sequences show great promise for informing strategies to mitigate risks from diseases caused by phytopathogens. Genomic approaches can be used to dramatically shorten response times to outbreaks and inform disease management in novel ways. However, the use of these approaches requires expertise in working with big, complex data sets and an understanding of their pitfalls and limitations to infer well-supported conclusions. We suggest using an evolutionary framework to guide the use of genomic approaches in epidemiology and diagnostics of plant pathogens. We also describe steps that are necessary for realizing these as standard approaches in disease surveillance.
-
-
-
Everything Is Faster: How Do Land-Grant University–Based Plant Diagnostic Laboratories Keep Up with a Rapidly Changing World?
Vol. 59 (2021), pp. 333–349More LessPlant diagnostic laboratories (PDLs) are at the heart of land-grant universities (LGUs) and their extension mission to connect citizens with research-based information. Although research and technological advances have led to many modern methods and technologies in plant pathology diagnostics, the pace of adopting those methods into services at PDLs has many complexities we aim to explore in this review. We seek to identify current challenges in plant disease diagnostics, as well as diagnosticians' and administrators'perceptions of PDLs' many roles. Surveys of diagnosticians and administrators were conducted to understand the current climate on these topics. We hope this article reaches researchers developing diagnostic methods with modern and new technologies to foster a better understanding of PDL diagnosticians’ perspective on method implementation. Ultimately, increasing researchers’ awareness of the factors influencing method adoption by PDLs encourages support, collaboration, and partnerships to advance plant diagnostics.
-
-
-
Rice stripe virus: Exploring Molecular Weapons in the Arsenal of a Negative-Sense RNA Virus
Yi Xu, Shuai Fu, Xiaorong Tao, and Xueping ZhouVol. 59 (2021), pp. 351–371More LessRice stripe disease caused by Rice stripe virus (RSV) is one of the most devastating plant viruses of rice and causes enormous losses in production. RSV is transmitted from plant to plant by the small brown planthopper (Laodelphax striatellus) in a circulative–propagative manner. The recent reemergence of this pathogen in East Asia since 2000 has made RSV one of the most studied plant viruses over the past two decades. Extensive studies of RSV have resulted in substantial advances regarding fundamental aspects of the virus infection. Here, we compile and analyze recent information on RSV with a special emphasis on the strategies that RSV has adopted to establish infections. These advances include RSV replication and movement in host plants and the small brown planthopper vector, innate immunity defenses against RSV infection, epidemiology, and recent advances in the management of rice stripe disease. Understanding these issues will facilitate the design of novel antiviral therapies for management and contribute to a more detailed understanding of negative-sense virus–host interactions at the molecular level.
-
-
-
Mycotoxin Production in Fusarium According to Contemporary Species Concepts
Vol. 59 (2021), pp. 373–402More LessFusarium is one of the most important genera of plant-pathogenic fungi in the world and arguably the world's most important mycotoxin-producing genus. Fusarium species produce a staggering array of toxic metabolites that contribute to plant disease and mycotoxicoses in humans and other animals. A thorough understanding of the mycotoxin potential of individual species is crucial for assessing the toxicological risks associated with Fusarium diseases. There are thousands of reports of mycotoxin production by various species, and there have been numerous attempts to summarize them. These efforts have been complicated by competing classification systems based on morphology, sexual compatibility, and phylogenetic relationships. The current depth of knowledge of Fusarium genomes and mycotoxin biosynthetic pathways provides insights into how mycotoxin production is distributedamong species and multispecies lineages (species complexes) in the genus as well as opportunities to clarify and predict mycotoxin risks connected with known and newly described species. Here, we summarize mycotoxin production in the genus Fusarium and how mycotoxin risk aligns with current phylogenetic species concepts.
-
-
-
Host Adaptation and Virulence in Heteroecious Rust Fungi
Vol. 59 (2021), pp. 403–422More LessRust fungi (Pucciniales, Basidiomycota) are obligate biotrophic pathogens that cause rust diseases in plants, inflicting severe damage to agricultural crops. Pucciniales possess the most complex life cycles known in fungi. These include an alternation of generations, the development of up to five different sporulating stages, and, for many species, the requirement of infecting two unrelated host plants during different parts of their life cycle, termed heteroecism. These fungi have been extensively studied in the past century through microscopy and inoculation studies, providing precise descriptions of their infection processes, although the molecular mechanisms underlying their unique biology are poorly understood. In this review, we cover recent genomic and life cycle transcriptomic studies in several heteroecious rust species, which provide insights into the genetic tool kits associated with host adaptation and virulence, opening new avenues for unraveling their unique evolution.
-
-
-
An Emerging Role for Chloroplasts in Disease and Defense
Vol. 59 (2021), pp. 423–445More LessChloroplasts are key players in plant immune signaling, contributing to not only de novo synthesis of defensive phytohormones but also the generation of reactive oxygen and nitrogen species following activation of pattern recognition receptors or resistance (R) proteins. The local hypersensitive response (HR) elicited by R proteins is underpinned by chloroplast-generated reactive oxygen species. HR-induced lipid peroxidation generates important chloroplast-derived signaling lipids essential to the establishment of systemic immunity. As a consequence of this pivotal role in immunity, pathogens deploy effector complements that directly or indirectly target chloroplasts to attenuate chloroplast immunity (CI). Our review summarizes the current knowledge of CI signaling and highlights common pathogen chloroplast targets and virulence strategies. We address emerging insights into chloroplast retrograde signaling in immune responses and gaps in our knowledge, including the importance of understanding chloroplast heterogeneity and chloroplast involvement in intraorganellular interactions in host immunity.
-
Previous Volumes
-
Volume 62 (2024)
-
Volume 61 (2023)
-
Volume 60 (2022)
-
Volume 59 (2021)
-
Volume 58 (2020)
-
Volume 57 (2019)
-
Volume 56 (2018)
-
Volume 55 (2017)
-
Volume 54 (2016)
-
Volume 53 (2015)
-
Volume 52 (2014)
-
Volume 51 (2013)
-
Volume 50 (2012)
-
Volume 49 (2011)
-
Volume 48 (2010)
-
Volume 47 (2009)
-
Volume 46 (2008)
-
Volume 45 (2007)
-
Volume 44 (2006)
-
Volume 43 (2005)
-
Volume 42 (2004)
-
Volume 41 (2003)
-
Volume 40 (2002)
-
Volume 39 (2001)
-
Volume 38 (2000)
-
Volume 37 (1999)
-
Volume 36 (1998)
-
Volume 35 (1997)
-
Volume 34 (1996)
-
Volume 33 (1995)
-
Volume 32 (1994)
-
Volume 31 (1993)
-
Volume 30 (1992)
-
Volume 29 (1991)
-
Volume 28 (1990)
-
Volume 27 (1989)
-
Volume 26 (1988)
-
Volume 25 (1987)
-
Volume 24 (1986)
-
Volume 23 (1985)
-
Volume 22 (1984)
-
Volume 21 (1983)
-
Volume 20 (1982)
-
Volume 19 (1981)
-
Volume 18 (1980)
-
Volume 17 (1979)
-
Volume 16 (1978)
-
Volume 15 (1977)
-
Volume 14 (1976)
-
Volume 13 (1975)
-
Volume 12 (1974)
-
Volume 11 (1973)
-
Volume 10 (1972)
-
Volume 9 (1971)
-
Volume 8 (1970)
-
Volume 7 (1969)
-
Volume 6 (1968)
-
Volume 5 (1967)
-
Volume 4 (1966)
-
Volume 3 (1965)
-
Volume 2 (1964)
-
Volume 1 (1963)
-
Volume 0 (1932)