1932

Abstract

Diseases have a significant cost to agriculture. Findings from analyses of whole-genome sequences show great promise for informing strategies to mitigate risks from diseases caused by phytopathogens. Genomic approaches can be used to dramatically shorten response times to outbreaks and inform disease management in novel ways. However, the use of these approaches requires expertise in working with big, complex data sets and an understanding of their pitfalls and limitations to infer well-supported conclusions. We suggest using an evolutionary framework to guide the use of genomic approaches in epidemiology and diagnostics of plant pathogens. We also describe steps that are necessary for realizing these as standard approaches in disease surveillance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-020620-121736
2021-08-25
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/phyto/59/1/annurev-phyto-020620-121736.html?itemId=/content/journals/10.1146/annurev-phyto-020620-121736&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abrahamian P, Timilsina S, Minsavage GV, Potnis N, Jones JB et al. 2019. Molecular epidemiology of Xanthomonas perforans outbreaks in tomato plants from transplant to field as determined by single-nucleotide polymorphism analysis. Appl. Environ. Microbiol 85:18e01220–19
    [Google Scholar]
  2. 2. 
    Acman M, van Dorp L, Santini JM, Balloux F 2020. Large-scale network analysis captures biological features of bacterial plasmids. Nat. Commun 11:12452
    [Google Scholar]
  3. 3. 
    Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q, A 2020. Opportunities and challenges in long-read sequencing data analysis. Genome Biol 21:130
    [Google Scholar]
  4. 4. 
    Argimón S, Masim MAL, Gayeta JM, Lagrada ML, Macaranas PKV et al. 2020. Integrating whole-genome sequencing within the National Antimicrobial Resistance Surveillance Program in the Philippines. Nat. Commun 11:12719
    [Google Scholar]
  5. 5. 
    Baker S, Thomson N, Weill F-X, Holt KE 2018. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science 360:6390733–38
    [Google Scholar]
  6. 6. 
    Baltrus DA 2016. Divorcing strain classification from species names. Trends Microbiol 24:6431–39
    [Google Scholar]
  7. 7. 
    Bostock R, Thomas C, Hoenisch R, Golino D, Vidalakis G 2014. A Plant health: how diagnostic networks and interagency partnerships protect plant systems from pests and pathogens. Calif. Agric 68:4117–24
    [Google Scholar]
  8. 8. 
    Carvajal-Yepes M, Cardwell K, Nelson A, Garrett KA, Giovani B et al. 2019. A global surveillance system for crop diseases. Science 364:64471237–39
    [Google Scholar]
  9. 9. 
    Cha JS, Cooksey DA 1993. Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Appl. Environ. Microbiol 59:51671–74
    [Google Scholar]
  10. 10. 
    Chen S, Zhou Y, Chen Y, Gu J 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:17i884–90
    [Google Scholar]
  11. 11. 
    Cheng L, Connor TR, Sirén J, Aanensen DM, Corander J 2013. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol 30:51224–28
    [Google Scholar]
  12. 12. 
    Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. 2018. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int. J. Syst. Evol. Microbiol 68:72386–92
    [Google Scholar]
  13. 13. 
    Colquhoun RM, Hall MB, Lima L, Roberts LW, Malone KM et al. 2020. Nucleotide-resolution bacterial pan-genomics with reference graphs. bioRxiv 380378. https://doi.org/10.1101/2020.11.12.380378
    [Crossref]
  14. 14. 
    Conlan S, Lau AF, Deming C, Spalding CD, Lee-Lin S et al. A 2019. Plasmid dissemination and selection of a multidrug-resistant Klebsiella pneumoniae strain during transplant-associated antibiotic therapy. mBio 10:5e00652–19
    [Google Scholar]
  15. 15. 
    Contreras-Moreira B, Vinuesa P 2013. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol 79:247696–701
    [Google Scholar]
  16. 16. 
    Costello M, Fleharty M, Abreu J, Farjoun Y, Ferriera S et al. A 2018. Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms. BMC Genom 19:1332
    [Google Scholar]
  17. 17. 
    Creason AL, Vandeputte OM, Savory EA, Davis EW II, Putnam ML et al. 2014. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci. PLOS ONE 9:7e101996
    [Google Scholar]
  18. 18. 
    Dale AL, Feau N, Everhart SE, Dhillon B, Wong B et al. 2019. Mitotic recombination and rapid genome evolution in the invasive forest pathogen Phytophthora ramorum. mBio 10:2e02452–18
    [Google Scholar]
  19. 19. 
    Davis EW II, Weisberg AJ, Tabima JF, Grunwald NJ, Chang JH. 2016. Gall-ID: tools for genotyping gall-causing phytopathogenic bacteria. PeerJ 4:e2222
    [Google Scholar]
  20. 20. 
    De Cleene M, De Ley J. 1976. The host range of crown gall. Bot. Rev. 42:4389–466
    [Google Scholar]
  21. 21. 
    Deng X, den Bakker HC, Hendriksen RS. 2016. Genomic epidemiology: whole-genome-sequencing-powered surveillance and outbreak investigation of foodborne bacterial pathogens. Annu. Rev. Food Sci. Technol. 7:353–74
    [Google Scholar]
  22. 22. 
    Deng X, Gu W, Federman S, du Plessis L, Pybus OG et al. 2020. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California. Science 369:6503582–87
    [Google Scholar]
  23. 23. 
    DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR et al. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43:5491–98
    [Google Scholar]
  24. 24. 
    Dolja VV, Krupovic M, Koonin EV. 2020. Deep roots and splendid boughs of the global plant virome. Annu. Rev. Phytopathol. 58:23–53
    [Google Scholar]
  25. 25. 
    Eggertsson HP, Jonsson H, Kristmundsdottir S, Hjartarson E, Kehr B et al. 2017. Graphtyper enables population-scale genotyping using pangenome graphs. Nat. Genet. 49:111654–60
    [Google Scholar]
  26. 26. 
    Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLOS ONE 6:5e19379
    [Google Scholar]
  27. 27. 
    Fuller SL, Savory EA, Weisberg AJ, Buser JZ, Gordon MI et al. 2017. Isothermal amplification and lateral-flow assay for detecting crown-gall-causing Agrobacterium spp. Phytopathology 107:91062–68
    [Google Scholar]
  28. 28. 
    Gardy JL, Loman NJ. 2018. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 19:19–20
    [Google Scholar]
  29. 29. 
    Gladieux P, Ravel S, Rieux A, Cros-Arteil S, Adreit H et al. 2018. Coexistence of multiple endemic and pandemic lineages of the rice blast pathogen. mBio 9:2e01806–17
    [Google Scholar]
  30. 30. 
    Glaeser SP, Kämpfer P. 2015. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst. Appl. Microbiol. 38:4237–45
    [Google Scholar]
  31. 31. 
    Goodwin SB, M'Barek SB, Dhillon B, Wittenberg AHJ, Crane CF et al. 2011. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLOS Genet 7:6e1002070
    [Google Scholar]
  32. 32. 
    Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57:181–91
    [Google Scholar]
  33. 33. 
    Goss EM, Tabima JF, Cooke DEL, Restrepo S, Fry WE et al. 2014. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. PNAS 111:248791–96
    [Google Scholar]
  34. 34. 
    Gröschel MI, Meehan CJ, Barilar I, Diricks M, Gonzaga A et al. 2020. The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia. Nat. Commun. 11:12044
    [Google Scholar]
  35. 35. 
    Haas JH, Moore LW, Ream W, Manulis S. 1995. Universal PCR primers for detection of phytopathogenic Agrobacterium strains. Appl. Environ. Microbiol. 61:82879–84
    [Google Scholar]
  36. 36. 
    Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q et al. 2018. Genome-based evolutionary history of Pseudomonas spp. Environ. Microbiol. 20:62142–59
    [Google Scholar]
  37. 37. 
    Hickey G, Heller D, Monlong J, Sibbesen JA, Sirén J et al. 2020. Genotyping structural variants in pangenome graphs using the vg toolkit. Genome Biol 21:135
    [Google Scholar]
  38. 38. 
    Hu Y, Green GS, Milgate AW, Stone EA, Rathjen JP, Schwessinger B. 2019. Pathogen detection and microbiome analysis of infected wheat using a portable DNA sequencer. Phytobiomes J 3:292–101
    [Google Scholar]
  39. 39. 
    Ingle DJ, Nair S, Hartman H, Ashton PM, Dyson ZA et al. 2019. Informal genomic surveillance of regional distribution of Salmonella Typhi genotypes and antimicrobial resistance via returning travellers. PLOS Negl. Trop. Dis. 13:9e0007620
    [Google Scholar]
  40. 40. 
    IPPC 2021. International plant protection convention: list of countries. FAO http://www.ippc.int/en/countries/all/list-countries/
    [Google Scholar]
  41. 41. 
    Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A et al. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 14:184
    [Google Scholar]
  42. 42. 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9:15114
    [Google Scholar]
  43. 43. 
    Janda JM, Abbott SL. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45:92761–64
    [Google Scholar]
  44. 44. 
    Jombart T, Devillard S, Balloux F. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:194
    [Google Scholar]
  45. 45. 
    Jones D, Kerr A. 1989. Agrobacterium radiobacter strain K1026, a genetically engineered derivative of strain K84, for biological control of crown gall. Plant Dis 73:115–18
    [Google Scholar]
  46. 46. 
    Kamoun S, Talbot NJ, Islam MT. 2019. Plant health emergencies demand open science: tackling a cereal killer on the run. PLOS Biol 17:6e3000302
    [Google Scholar]
  47. 47. 
    Kamvar ZN, Brooks JC, Grünwald NJ. 2015. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6:208
    [Google Scholar]
  48. 48. 
    Kamvar ZN, Tabima JF, Grünwald NJ. 2014. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281
    [Google Scholar]
  49. 49. 
    Kennemann L, Didelot X, Aebischer T, Kuhn S, Drescher B et al. 2011. Helicobacter pylori genome evolution during human infection. PNAS 108:125033–38
    [Google Scholar]
  50. 50. 
    Kerr A, Tate ME. 1984. Agrocins and the biological control of crown gall. Microbiol. Sci. 1:11–4
    [Google Scholar]
  51. 51. 
    Knaus BJ, Tabima JF, Shakya SK, Judelson HS, Grünwald NJ. 2020. Genome-wide increased copy number is associated with emergence of dominant clones of the Irish potato famine pathogen Phytophthora infestans. mBio 11:3e00326–20
    [Google Scholar]
  52. 52. 
    Konstantinidis KT, Tiedje JM 2005. Genomic insights that advance the species definition for prokaryotes. PNAS 102:72567–72
    [Google Scholar]
  53. 53. 
    Kwong JC, Mercoulia K, Tomita T, Easton M, Li HY et al. 2016. Prospective whole-genome sequencing enhances national surveillance of Listeria monocytogenes. J. Clin. Microbiol. 54:2333–42
    [Google Scholar]
  54. 54. 
    Lam MMC, Wick RR, Wyres KL, Holt KE. 2020. Genomic surveillance framework and global population structure for Klebsiella pneumoniae. bioRxiv 422303. https://doi.org/10.1101/2020.12.14.422303
    [Crossref]
  55. 55. 
    Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:4357–59
    [Google Scholar]
  56. 56. 
    Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997
  57. 57. 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:162078–79
    [Google Scholar]
  58. 58. 
    Marakeby H, Badr E, Torkey H, Song Y, Leman S et al. 2014. A system to automatically classify and name any individual genome-sequenced organism independently of current biological classification and nomenclature. PLOS ONE 9:2e89142
    [Google Scholar]
  59. 59. 
    McCann HC, Li L, Liu Y, Li D, Pan H et al. 2017. Origin and evolution of the kiwifruit canker pandemic. Genome Biol. Evol. 9:4932–44
    [Google Scholar]
  60. 60. 
    McDonald BA, Stukenbrock EH. 2016. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philos. Trans. R. Soc. B 371:170920160026
    [Google Scholar]
  61. 61. 
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:91297–303
    [Google Scholar]
  62. 62. 
    Mechan Llontop ME, Sharma P, Aguilera Flores M, Yang S, Pollok J et al. 2019. Strain-level identification of bacterial tomato pathogens directly from metagenomic sequences. Phytopathology 110:4768–79
    [Google Scholar]
  63. 63. 
    Meehan CJ, Goig GA, Kohl TA, Verboven L, Dippenaar A et al. 2019. Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat. Rev. Microbiol. 17:9533–45
    [Google Scholar]
  64. 64. 
    Meehan CJ, Moris P, Kohl TA, Pečerska J, Akter S et al. 2018. The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology. EBioMedicine 37:410–16
    [Google Scholar]
  65. 65. 
    Meletzus D, Bermphol A, Dreier J, Eichenlaub R. 1993. Evidence for plasmid-encoded virulence factors in the phytopathogenic bacterium Clavibacter michiganensis subsp. michiganensis NCPPB382. J. Bacteriol. 175:72131–36
    [Google Scholar]
  66. 66. 
    Menardo F, Duchêne S, Brites D, Gagneux S. 2019. The molecular clock of Mycobacterium tuberculosis. PLOS Pathog 15:9e1008067
    [Google Scholar]
  67. 67. 
    Miller SA, Beed FD, Harmon CL. 2009. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 47:15–38
    [Google Scholar]
  68. 68. 
    Möller M, Habig M, Freitag M, Stukenbrock EH. 2018. Extraordinary genome instability and widespread chromosome rearrangements during vegetative growth. Genetics 210:2517–29
    [Google Scholar]
  69. 69. 
    Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH et al. 2011. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477:7365462–65
    [Google Scholar]
  70. 70. 
    Nester EW. 2015. Agrobacterium: nature's genetic engineer. Front. Plant Sci. 5:730
    [Google Scholar]
  71. 71. 
    Olson ND, Lund SP, Colman RE, Foster JT, Sahl JW et al. 2015. Best practices for evaluating single nucleotide variant calling methods for microbial genomics. Front. Genet. 6:235
    [Google Scholar]
  72. 72. 
    Pupo GM, Lan R, Reeves PR 2000. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. PNAS 97:1910567–72
    [Google Scholar]
  73. 73. 
    Putnam ML, Miller ML. 2007. Rhodococcus fascians in herbaceous perennials. Plant Dis 91:91064–76
    [Google Scholar]
  74. 74. 
    Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. 2014. A proposed genus boundary for the prokaryotes based on genomic insights. J. Bacteriol. 196:122210–15
    [Google Scholar]
  75. 75. 
    Raj A, Stephens M, Pritchard JK. 2014. FastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:2573–89
    [Google Scholar]
  76. 76. 
    Redondo-Salvo S, Fernández-López R, Ruiz R, Vielva L, de Toro M et al. 2020. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 11:13602
    [Google Scholar]
  77. 77. 
    Richter M, Rosselló-Móra R 2009. Shifting the genomic gold standard for the prokaryotic species definition. PNAS 106:4519126–31
    [Google Scholar]
  78. 78. 
    Roman-Reyna V, Truchon A, Sharma P, Hand FP, Mazloom R et al. 2021. Genome resource: Ralstonia solanacearum phylotype II sequevar 1 (race 3 biovar 2) strain UW848 from the 2020 U.S. geranium introduction. Plant Dis 105:1207–8
    [Google Scholar]
  79. 79. 
    Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A 2019. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3:3430–39
    [Google Scholar]
  80. 80. 
    Savory EA, Fuller SL, Weisberg AJ, Thomas WJ, Gordon MI et al. 2017. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 6:e30925
    [Google Scholar]
  81. 81. 
    Savory EA, Weisberg AJ, Stevens DM, Creason AL, Fuller SL et al. 2020. Phytopathogenic Rhodococcus have diverse plasmids with few conserved virulence functions. Front. Microbiol. 11:1022
    [Google Scholar]
  82. 82. 
    Schürch AC, Arredondo-Alonso S, Willems RJL, Goering RV. 2018. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin. Microbiol. Infect. 24:4350–54
    [Google Scholar]
  83. 83. 
    Scortichini M, Marcelletti S, Ferrante P, Petriccione M, Firrao G. 2012. Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen. Mol. Plant Pathol. 13:7631–40
    [Google Scholar]
  84. 84. 
    Stack JP, Bostock RM, Hammerschmidt R, Jones JB, Luke E 2014. The National Plant Diagnostic Network: partnering to protect plant systems. Plant Dis 98:6708–15
    [Google Scholar]
  85. 85. 
    Stamler RA, Heerema R, Randall JJ. 2015. First report of phytopathogenic Rhodococcus isolates on pistachio bushy top syndrome ‘UCB-1’ rootstock in New Mexico. Plant Dis 99:121854
    [Google Scholar]
  86. 86. 
    Stamler RA, Vereecke D, Zhang Y, Schilkey F, Devitt N, Randall JJ. 2016. Complete genome and plasmid sequences for Rhodococcus fascians D188 and draft sequences for Rhodococcus isolates PBTS 1 and PBTS 2. Genome Announc 4:3e00495-16
    [Google Scholar]
  87. 87. 
    Stimson J, Gardy J, Mathema B, Crudu V, Cohen T, Colijn C. 2019. Beyond the SNP threshold: identifying outbreak clusters using inferred transmissions. Mol. Biol. Evol. 36:3587–603
    [Google Scholar]
  88. 88. 
    Straub C, Colombi E, Li L, Huang H, Templeton MD et al. 2018. The ecological genetics of Pseudomonas syringae from kiwifruit leaves. Environ. Microbiol. 20:62066–84
    [Google Scholar]
  89. 89. 
    Tabima JF, Gonen L, Gómez-Gallego M, Panda P, Grünwald NJ et al. 2021. Molecular phylogenomics and population structure of Phytophthora pluvialis. Phytopathology 111:1108–15
    [Google Scholar]
  90. 90. 
    Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome. .” PNAS 102:3913950–55
    [Google Scholar]
  91. 91. 
    Tian L, Huang C, Mazloom R, Heath LS, Vinatzer BA. 2020. LINbase: a web server for genome-based identification of prokaryotes as members of crowdsourced taxa. Nucleic Acids Res 48:W1W529–37
    [Google Scholar]
  92. 92. 
    Timme RE, Strain E, Baugher JD, Davis S, Gonzalez-Escalona N et al. 2019. Phylogenomic pipeline validation for foodborne pathogen disease surveillance. J. Clin. Microbiol. 57:5e01816–18
    [Google Scholar]
  93. 93. 
    Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. 2018. RhierBAPS: an R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res 3:93
    [Google Scholar]
  94. 94. 
    Vandelannoote K, Meehan CJ, Eddyani M, Affolabi D, Phanzu DM et al. 2017. Multiple introductions and recent spread of the emerging human pathogen Mycobacterium ulcerans across Africa. Genome Biol. Evol. 9:3414–26
    [Google Scholar]
  95. 95. 
    Vandelannoote K, Phanzu DM, Kibadi K, Eddyani M, Meehan CJ et al. 2019. Mycobacterium ulcerans population genomics to inform on the spread of buruli ulcer across Central Africa. mSphere 4:1e00472–18
    [Google Scholar]
  96. 96. 
    Vereecke D, Zhang Y, Francis IM, Lambert PQ, Venneman J et al. 2020. Functional genomics insights into the pathogenicity, habitat fitness, and mechanisms modifying plant development of Rhodococcus sp. PBTS1 and PBTS2. Front. Microbiol. 11:14
    [Google Scholar]
  97. 97. 
    Vinuesa P, Ochoa-Sánchez LE, Contreras-Moreira B. 2018. GET_PHYLOMARKERS, a software package to select optimal orthologous clusters for phylogenomics and inferring pan-genome phylogenies, used for a critical geno-taxonomic revision of the genus Stenotrophomonas. Front. Microbiol. 9:771
    [Google Scholar]
  98. 98. 
    Vivian A, Murillo J, Jackson RW. 2001. The roles of plasmids in phytopathogenic bacteria: mobile arsenals?. Microbiology 147:4763–80
    [Google Scholar]
  99. 99. 
    Wegrzyn JL, Staton MA, Street NR, Main D, Grau E et al. 2019. Cyberinfrastructure to improve forest health and productivity: the role of tree databases in connecting genomes, phenomes, and the environment. Front. Plant Sci. 10:813
    [Google Scholar]
  100. 100. 
    Weingarten RA, Johnson RC, Conlan S, Ramsburg AM, Dekker JP et al. 2018. Genomic analysis of hospital plumbing reveals diverse reservoir of bacterial plasmids conferring carbapenem resistance. mBio 9:1e02011–17
    [Google Scholar]
  101. 101. 
    Weisberg AJ, Davis EW, Tabima J, Belcher MS, Miller M et al. 2020. Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science 368:6495eaba5256
    [Google Scholar]
  102. 102. 
    Zhang Y, Bignell DRD, Zuo R, Fan Q, Huguet-Tapia JC et al. 2016. Promiscuous pathogenicity islands and phylogeny of pathogenic Streptomyces spp. Mol. Plant-Microbe Interact. 29:8640–50
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-020620-121736
Loading
/content/journals/10.1146/annurev-phyto-020620-121736
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error