1932

Abstract

In the battle between bacteria and plants, bacteria often use a population density–dependent regulatory system known as quorum sensing (QS) to coordinate virulence gene expression. In response, plants use innate and induced defense mechanisms that include low-molecular-weight compounds, some of which serve as antivirulence agents by interfering with the QS machinery. The best-characterized QS system is driven by the autoinducer -acyl-homoserine lactone (AHL), which is produced by AHL synthases (LuxI homologs) and perceived by response regulators (LuxR homologs). Several plant compounds have been shown to directly inhibit LuxI or LuxR. Gaining atomic-level insight into their mode of action and how they interfere with QS enzymes supports the identification and design of novel QS inhibitors.Such information can be gained by combining experimental work with molecular modeling and docking simulations. The summary of these findings shows that plant-derived compounds act as interkingdom cues and that these allomones specifically target bacterial communication systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-020620-095740
2021-08-25
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/phyto/59/1/annurev-phyto-020620-095740.html?itemId=/content/journals/10.1146/annurev-phyto-020620-095740&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahmed GA. 2016. Evaluation the efficacy of some phenolic compounds in controlling bacterial spot disease and biochemical changes associated in pepper plants under greenhouse conditions. J. Plant Prot. Pathol. 7:10655–62
    [Google Scholar]
  2. 2. 
    Andersson RA, Eriksson AR, Heikinheimo R, Mae A, Pirhonen M et al. 2000. Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR (Ecc). Mol. Plant-Microbe Interact. 13:4384–93
    [Google Scholar]
  3. 3. 
    Antunes LC, Ferreira RB, Buckner MM, Finlay BB. 2010. Quorum sensing in bacterial virulence. Microbiology 156:82271–82
    [Google Scholar]
  4. 4. 
    Asfour HZ. 2018. Anti-quorum sensing natural compounds. J. Microsc. Ultrastruct. 6:11–10
    [Google Scholar]
  5. 5. 
    Bakkiyaraj D, Nandhini JR, Malathy B, Pandian SK. 2013. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling 29:8929–37
    [Google Scholar]
  6. 6. 
    Bleves S, Soscia C, Nogueira-Orlandi P, Lazdunski A, Filloux A. 2005. Quorum sensing negatively controls type III secretion regulon expression in Pseudomonas aeruginosa PAO1. J. Bacteriol. 187:113898–902
    [Google Scholar]
  7. 7. 
    Borges A, Abreu AC, Malherio J, Saavedra MJ, Simoes M. 2013. Biofilm prevention and control by dietary phytochemicals. Microbial Pathogens and Strategies for Combatting Them: Science, Technology and Education A Méndez-Vilas 32–41 Norristown, PA: Formatex Res. Cent.
    [Google Scholar]
  8. 8. 
    Borges A, Serra S, Abreu AC, Saavedra MJ, Salgado A, Simoes M 2014. Evaluation of the effects of selected phytochemicals on quorum sensing inhibition and in vitro cytotoxicity. Biofouling 30:2183–95
    [Google Scholar]
  9. 9. 
    Bosgelmez-Tinaz G, Ulusoy S, Ugur A, Ceylan O. 2007. Inhibition of quorum sensing-regulated behaviors by Scorzonera sandrasica. Curr. Microbiol. 55:2114–18
    [Google Scholar]
  10. 10. 
    Brackman G, Hillaert U, Van Calenbergh S, Nelis HJ, Coenye T. 2009. Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia. Res. Microbiol. 160:2144–51
    [Google Scholar]
  11. 11. 
    Burt SA, Ojo-Fakunle VTA, Woertman J, Veldhuizen EJA. 2014. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLOS ONE 9:4e93414
    [Google Scholar]
  12. 12. 
    Chan K-G, Liu Y-C, Chang C-Y. 2015. Inhibiting N-acyl-homoserine lactone synthesis and quenching Pseudomonas quinolone quorum sensing to attenuate virulence. Front. Microbiol. 6:1173
    [Google Scholar]
  13. 13. 
    Chang C-Y, Krishnan T, Wang H, Chen Y, Yin W-F et al. 2014. Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target. Sci. Rep. 4:7245
    [Google Scholar]
  14. 14. 
    Chatterjee A, Cui Y, Hasegawa H, Leigh N, Dixit V, Chatterjee AK. 2005. Comparative analysis of two classes of quorum-sensing signaling systems that control production of extracellular proteins and secondary metabolites in Erwinia carotovora subspecies. J. Bacteriol. 187:238026–38
    [Google Scholar]
  15. 15. 
    Cho HS, Lee JH, Ryu SY, Joo SW, Cho MH, Lee J. 2013. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite epsilon-viniferin. J. Agric. Food Chem. 61:297120–26
    [Google Scholar]
  16. 16. 
    Choo JH, Rukayadi Y, Hwang JK. 2006. Inhibition of bacterial quorum sensing by vanilla extract. Lett. Appl. Microbiol. 42:6637–41
    [Google Scholar]
  17. 17. 
    Chung J, Goo E, Yu S, Choi O, Lee J et al. 2011. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. PNAS 108:2912089–94
    [Google Scholar]
  18. 18. 
    Churchill MEA, Chen L. 2011. Structural basis of acyl-homoserine lactone-dependent signaling. Chem. Rev. 111:168–85
    [Google Scholar]
  19. 19. 
    Corral-Lugo A, Daddaoua A, Ortega A, Espinosa-Urgel M, Krell T. 2016. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci. Signal. 9:409 ra1
    [Google Scholar]
  20. 20. 
    Coughlan LM, Cotter PD, Hill C, Alvarez-Ordonez A. 2016. New weapons to fight old enemies: novel strategies for the (bio)control of bacterial biofilms in the food industry. Front. Microbiol. 7:1641
    [Google Scholar]
  21. 21. 
    Cowan MM. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12:4564–82
    [Google Scholar]
  22. 22. 
    Cui Y, Chatterjee A, Hasegawa H, Chatterjee AK. 2006. Erwinia carotovora subspecies produce duplicate variants of ExpR, LuxR homologs that activate rsmA transcription but differ in their interactions with N-acylhomoserine lactone signals. J. Bacteriol. 188:134715–26
    [Google Scholar]
  23. 23. 
    Cui Y, Chatterjee A, Hasegawa H, Dixit V, Leigh N, Chatterjee AK. 2005. ExpR, a LuxR homolog of Erwinia carotovora subsp. carotovora, activates transcription of rsmA, which specifies a global regulatory RNA-binding protein. J. Bacteriol. 187:144792–803
    [Google Scholar]
  24. 24. 
    Cui Y, Chatterjee A, Liu Y, Dumenyo CK, Chatterjee AK. 1995. Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-l-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp. J. Bacteriol. 177:175108–15
    [Google Scholar]
  25. 25. 
    Czajkowski R, Jafra S. 2009. Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim. Pol. 56:11–16
    [Google Scholar]
  26. 26. 
    Czajkowski R, van der Wolf JM, Krolicka A, Ozymko Z, Narajczyk M et al. 2015. Salicylic acid can reduce infection symptoms caused by Dickeya solani in tissue culture grown potato (Solanum tuberosum L.) plants. Eur. J. Plant Pathol. 141:3545–58
    [Google Scholar]
  27. 27. 
    Daglia M. 2012. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 23:2174–81
    [Google Scholar]
  28. 28. 
    Dai J, Mumper RJ. 2010. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:107313–52
    [Google Scholar]
  29. 29. 
    David S, Mandabi A, Uzi S, Aharoni A, Meijler MM. 2018. Mining plants for bacterial quorum sensing modulators. ACS Chem. Biol. 13:1247–52
    [Google Scholar]
  30. 30. 
    de Kievit TR, Iglewski BH. 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68:94839–49
    [Google Scholar]
  31. 31. 
    Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K et al. 1994. A central role of salicylic acid in plant disease resistance. Science 266:51881247–50
    [Google Scholar]
  32. 32. 
    Dixon RA. 2001. Natural products and plant disease resistance. Nature 411:6839843–47
    [Google Scholar]
  33. 33. 
    Dong Y-H, Wang L-H, Zhang L-H. 2007. Quorum-quenching microbial infections: mechanisms and implications. Philos. Trans. R. Soc. Lond. B 362: 1483.1201–11
    [Google Scholar]
  34. 34. 
    Fan S, Tian F, Li J, Hutchins W, Chen H et al. 2016. Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system. Mol. Plant Pathol. 18:4555–68
    [Google Scholar]
  35. 35. 
    Fuqua C, Parsek MR, Greenberg EP. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35:439–68
    [Google Scholar]
  36. 36. 
    Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176:2269–75
    [Google Scholar]
  37. 37. 
    Gelencser Z, Choudhary KS, Coutinho BG, Hudaiberdiev S, Galbats B et al. 2012. Classifying the topology of AHL-driven quorum sensing circuits in proteobacterial genomes. Sensors 12:55432–44
    [Google Scholar]
  38. 38. 
    Green ER, Mecsas J. 2016. Bacterial secretion systems: an overview. Microbiol. Spectr. 4:1VMBF–0012-2015
    [Google Scholar]
  39. 39. 
    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59:3307–21
    [Google Scholar]
  40. 40. 
    Gutiérrez-Pacheco MM, Bernal-Mercado AT, Vázquez-Armenta FJ, Martínez-Tellez MA, González-Aguilar GA et al. 2019. Quorum sensing interruption as a tool to control virulence of plant pathogenic bacteria. Physiol. Mol. Plant Pathol. 106:281–91
    [Google Scholar]
  41. 41. 
    Helman Y, Chernin L. 2015. Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol. Plant Pathol. 16:3316–29
    [Google Scholar]
  42. 42. 
    Henke JM, Bassler BL. 2004. Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J. Bacteriol. 186:123794–805
    [Google Scholar]
  43. 43. 
    Heurlier K, Denervaud V, Haenni M, Guy L, Krishnapillai V, Haas D. 2005. Quorum-sensing-negative (lasR) mutants of Pseudomonas aeruginosa avoid cell lysis and death. J. Bacteriol. 187:144875–83
    [Google Scholar]
  44. 44. 
    Hossain MA, Lee S-J, Park N-H, Mechesso AF, Birhanu BT et al. 2017. Impact of phenolic compounds in the acyl homoserine lactone-mediated quorum sensing regulatory pathways. Sci. Rep. 7:110618
    [Google Scholar]
  45. 45. 
    Huber B, Eberl L, Feucht W, Polster J. 2003. Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Z. Naturforsch. C. 58:11–12879–84
    [Google Scholar]
  46. 46. 
    Ibrahim MH, Jaafar HZE, Rahmat A, Rahman ZA. 2011. The relationship between phenolics and flavonoids production with total non structural carbohydrate and photosynthetic rate in Labisia pumila Benth. under high CO2 and nitrogen fertilization. Molecules 16:1162–74
    [Google Scholar]
  47. 47. 
    Jagani S, Chelikani R, Kim D-S. 2009. Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling 25:4321–24
    [Google Scholar]
  48. 48. 
    Jakobsen TH, Bragason SK, Phipps RK, Christensen LD, van Gennip M et al. 2012. Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 78:72410–21
    [Google Scholar]
  49. 49. 
    Joshi JR, Burdman S, Lipsky A, Yariv S, Yedidia I. 2016. Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum ssp. brasiliense via quorum sensing regulation. Mol. Plant Pathol. 17:4487–500
    [Google Scholar]
  50. 50. 
    Joshi JR, Burdman S, Lipsky A, Yedidia I. 2015. Effects of plant antimicrobial phenolic compounds on virulence of the genus Pectobacterium. Res. Microbiol. 166:6535–45
    [Google Scholar]
  51. 51. 
    Joshi JR, Khazanov N, Khadka N, Charkowski AO, Burdman S et al. 2020. Direct binding of salicylic acid to Pectobacterium N–acyl–homoserine lactone synthase. ACS Chem. Biol. 15:71883–91
    [Google Scholar]
  52. 52. 
    Joshi JR, Khazanov N, Senderowitz H, Burdman S, Lipsky A, Yedidia I. 2016. Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins. Sci. Rep. 6:38126
    [Google Scholar]
  53. 53. 
    Joshi JR, Linxing Y, Charkowski AO, Heuberger A. 2021. Metabolites from wild potato inhibit virulence factors of the soft rot and black leg pathogen Pectobacterium brasiliense. Mol. Plant-Microbe Interact. 34:100–9
    [Google Scholar]
  54. 54. 
    Joshi JR, Yedidia I. 2017. Breeding for resistance to soft rot disease in Ornithogalum. Acta Hortic 1171:279–84
    [Google Scholar]
  55. 55. 
    Katebian L, Gomez E, Skillman L, Li D, Ho G, Jiang SC. 2016. Inhibiting quorum sensing pathways to mitigate seawater desalination RO membrane biofouling. Desalination 393:135–43
    [Google Scholar]
  56. 56. 
    Khameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS 2019. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob. Resist. Infect. Control 8:1118
    [Google Scholar]
  57. 57. 
    Khokhani D, Zhang C, Li Y, Wang Q, Zeng Q et al. 2013. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora. Appl. Environ. Microbiol. 79:185424–36
    [Google Scholar]
  58. 58. 
    Kim H-S, Park H-D. 2013. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLOS ONE 8:9e76106
    [Google Scholar]
  59. 59. 
    Kim S, Song M, Roh BD, Park SH, Park JW. 2013. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid. Restor. Dent. Endod. 38:265–72
    [Google Scholar]
  60. 60. 
    Koh C-L, Sam C-K, Yin W-F, Tan LY, Krishnan T et al. 2013. Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors 13:56217–28
    [Google Scholar]
  61. 61. 
    Koiv V, Mae A 2001. Quorum sensing controls the synthesis of virulence factors by modulating rsmA gene expression in Erwinia carotovora subsp. carotovora. Mol. Genet. Genom. 265:2287–92
    [Google Scholar]
  62. 62. 
    Laekeman GM, van Hoof L, Haemers A, Berghe DAV, Herman AG, Vlietinck AJ. 1990. Eugenol a valuable compound for in vitro experimental research and worthwhile for further in vivo investigation. Phytother. Res. 4:390–96
    [Google Scholar]
  63. 63. 
    Lagonenko L, Lagonenko A, Evtushenkov A. 2013. Impact of salicylic acid on biofilm formation by plant pathogenic bacteria. J. Biol. Earth Sci. 3:2B176–81
    [Google Scholar]
  64. 64. 
    LaSarre B, Federle MJ. 2013. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. . Mol. Biol. Rev. 77:73–111
    [Google Scholar]
  65. 65. 
    Lee JH, Cho HS, Joo SW, Chandra Regmi S, Kim JA et al. 2013. Diverse plant extracts and trans-resveratrol inhibit biofilm formation and swarming of Escherichia coli O157:H7. Biofouling 29:101189–203
    [Google Scholar]
  66. 66. 
    Lee JH, Regmi SC, Kim JA, Cho MH, Yun H et al. 2011. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect. Immun. 79:124819–27
    [Google Scholar]
  67. 67. 
    Lerat E, Moran NA. 2004. The evolutionary history of quorum-sensing systems in bacteria. Mol. Biol. Evol. 21:5903–13
    [Google Scholar]
  68. 68. 
    Lewis K, Ausubel FM. 2006. Prospects for plant-derived antibacterials. Nat. Biotechnol. 24:121504–7
    [Google Scholar]
  69. 69. 
    Li Y, Hutchins W, Wu X, Liang C, Zhang C et al. 2015. Derivative of plant phenolic compound inhibits the type III secretion system of Dickeya dadantii via HrpX/HrpY two-component signal transduction and Rsm systems. Mol. Plant Pathol. 16:2150–63
    [Google Scholar]
  70. 70. 
    Li Y, Peng Q, Selimi D, Wang Q, Charkowski AO et al. 2009. The plant phenolic compound p-coumaric acid represses gene expression in the Dickeya dadantii type III secretion system. Appl. Environ. Microbiol. 75:51223–28
    [Google Scholar]
  71. 71. 
    Lihua L, Jianhuit W, Jialini Y, Yayin L, Guanxin L. 2013. Effects of allicin on the formation of Pseudomonas aeruginosa biofilm and the production of quorum-sensing controlled virulence factors. Pol. J. Microbiol. 62:3243–51
    [Google Scholar]
  72. 72. 
    Liu H, Coulthurst SJ, Pritchard L, Hedley PE, Ravensdale M et al. 2008. Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLOS Pathog 4:6e1000093
    [Google Scholar]
  73. 73. 
    Loh J, Pierson EA, Pierson LS III, Stacey G, Chatterjee A. 2002. Quorum sensing in plant-associated bacteria. Curr. Opin. Plant Biol. 5:4285–90
    [Google Scholar]
  74. 74. 
    Ma B, Hibbing ME, Kim H-S, Reedy RM, Yedidia I et al. 2007. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97:91150–63
    [Google Scholar]
  75. 75. 
    Maffei ME, Gertsch J, Appendino G. 2011. Plant volatiles: production, function, and pharmacology. Nat. Prod. Rep. 28:81359–80
    [Google Scholar]
  76. 76. 
    Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M et al. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:6614–29
    [Google Scholar]
  77. 77. 
    McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. 2012. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10:139–50
    [Google Scholar]
  78. 78. 
    Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–99
    [Google Scholar]
  79. 79. 
    Minogue TD, Carlier AL, Koutsoudis MD, Von Bodman SB 2005. The cell density-dependent expression of stewartan exopolysaccharide in Pantoea stewartii ssp. stewartii is a function of EsaR-mediated repression of the rcsA gene. Mol. Microbiol. 56:1189–203
    [Google Scholar]
  80. 80. 
    Nagy MM. 2010. Quorum sensing inhibitory activities of various folk-medicinal plants and the thyme-tetracycline effect. PhD Thesis Georgia State Univ. Atlanta, GA:
    [Google Scholar]
  81. 81. 
    Nazzaro F, Fratianni F, Coppola R. 2013. Quorum sensing and phytochemicals. Int. J. Mol. Sci. 14:612607–19
    [Google Scholar]
  82. 82. 
    Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:121451–74
    [Google Scholar]
  83. 83. 
    Niu C, Afre S, Gilbert ES. 2006. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett. Appl. Microbiol. 43:5489–94
    [Google Scholar]
  84. 84. 
    Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA et al. 2007. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 56:4519–23
    [Google Scholar]
  85. 85. 
    Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G et al. 1995. The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol. Gen. Genet. 248:4446–58
    [Google Scholar]
  86. 86. 
    Ouyang J, Sun F, Feng W, Sun Y, Qiu X et al. 2016. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J. Appl. Microbiol. 120:4966–74
    [Google Scholar]
  87. 87. 
    Packiavathy IASV, Agilandeswari P, Musthafa KS, Pandian SK, Ravi AV. 2012. Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res. Int. 45:185–92
    [Google Scholar]
  88. 88. 
    Packiavathy IASV, Priya S, Pandian SK, Ravi AV. 2014. Inhibition of biofilm development of uropathogens by curcumin: an anti-quorum sensing agent from Curcuma longa. Food Chem 148:453–60
    [Google Scholar]
  89. 89. 
    Packiavathy IASV, Sasikumar P, Pandian SK, Ravi AV. 2013. Prevention of quorum-sensing-mediated biofilm development and virulence factors production in Vibrio spp. by curcumin. Appl. Microbiol. Biotechnol. 97:10177–87
    [Google Scholar]
  90. 90. 
    Pandey KB, Rizvi SI. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2:5270–78
    [Google Scholar]
  91. 91. 
    Papenfort K, Bassler BL. 2016. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14:9576–88
    [Google Scholar]
  92. 92. 
    Parsek MR, Val DL, Hanzelka BL, Cronan JE Jr., Greenberg EP. 1999. Acyl homoserine-lactone quorum-sensing signal generation. PNAS 96:84360–65
    [Google Scholar]
  93. 93. 
    Pauli A, Kubeczka KH. 2010. Antimicrobial properties of volatile phenylpropanes. Nat. Prod. Commun. 5:91387–94
    [Google Scholar]
  94. 94. 
    Pejin B, Ciric A, Glamoclija J, Nikolic M, Sokovic M. 2015. In vitro anti-quorum sensing activity of phytol. Nat. Prod. Res. 29:4374–77
    [Google Scholar]
  95. 95. 
    Pirhonen M, Saarilahti H, Karlsson M-B, Palva ET. 1991. Identification of pathogenicity determinants of Erwinia carotovora subsp. carotovora by transposon mutagenesis. Mol. Plant-Microbe Interact. 4:276–83
    [Google Scholar]
  96. 96. 
    Plyuta V, Zaitseva J, Lobakova E, Zagoskina N, Kuznetsov A, Khmel I. 2013. Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. . APMIS 121:111073–81
    [Google Scholar]
  97. 97. 
    Pollumaa L, Alamae T, Mae A 2012. Quorum sensing and expression of virulence in pectobacteria. Sensors 12:33327–49
    [Google Scholar]
  98. 98. 
    Prithiviraj B, Bais HP, Weir T, Suresh B, Najarro EH et al. 2005. Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans. Infect. Immun. 73:95319–28
    [Google Scholar]
  99. 99. 
    Rasmussen TB, Givskov M. 2006. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol. 296:Pt. 4149–61
    [Google Scholar]
  100. 100. 
    Rasmussen TB, Givskov M. 2006. Quorum sensing inhibitors: a bargain of effects. Microbiology 152:2–3895–904
    [Google Scholar]
  101. 101. 
    Ren D, Zuo R, Gonzalez Barrios AF, Bedzyk LA, Eldridge GR et al. 2005. Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl. Environ. Microbiol. 71:74022–34
    [Google Scholar]
  102. 102. 
    Rudrappa T, Bais HP. 2008. Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J. Agric. Food Chem. 56:61955–62
    [Google Scholar]
  103. 103. 
    Rutherford ST, Bassler BL. 2012. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. . Perspect. Med. 2:11a012427
    [Google Scholar]
  104. 104. 
    Ruwandeepika HA, Karunasagar I, Bossier P, Defoirdt T. 2015. Expression and quorum sensing regulation of type III secretion system genes of Vibrio harveyi during infection of gnotobiotic brine shrimp. PLOS ONE 10:12e0143935
    [Google Scholar]
  105. 105. 
    Sarabhai S, Sharma P, Capalash N. 2013. Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLOS ONE 8:1e53441
    [Google Scholar]
  106. 106. 
    Seed PC, Passador L, Iglewski BH. 1995. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J. Bacteriol. 177:3654–59
    [Google Scholar]
  107. 107. 
    Sibanda S, Moleleki LN, Shyntum DY, Coutinho TA 2018. Quorum sensing in Gram-negative plant pathogenic bacteria. Advances in Plant Pathology JN Kimatu London: IntechOpen
    [Google Scholar]
  108. 108. 
    Simunovic K, Sahin O, Kovac J, Shen Z, Klancnik A et al. 2020. (−)-α-Pinene reduces quorum sensing and Campylobacter jejuni colonization in broiler chickens. PLOS ONE 15:4e0230423
    [Google Scholar]
  109. 109. 
    Sivasankar C, Jha NK, Ghosh R, Shetty PH. 2020. Anti-quorum sensing and anti-virulence activity of tannic acid and it's potential to breach resistance in Salmonella enterica Typhi/Paratyphi A clinical isolates. Microb. Pathog. 138:103813
    [Google Scholar]
  110. 110. 
    Sjöblom S, Brader G, Koch G, Palva ET. 2006. Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora. Mol. Microbiol. 60:61474–89
    [Google Scholar]
  111. 111. 
    Smith KM, Bu Y, Suga H. 2003. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem. Biol. 10:181–89
    [Google Scholar]
  112. 112. 
    Snoussi M, Noumi E, Punchappady-Devasya R, Trabelsi N, Kanekar S et al. 2018. Antioxidant properties and anti-quorum sensing potential of Carum copticum essential oil and phenolics against Chromobacterium violaceum. J. Food Sci. Technol. 55:82824–32
    [Google Scholar]
  113. 113. 
    Stasiuk M, Kozubek A. 2008. Membrane perturbing properties of natural phenolic and resorcinolic lipids. FEBS Lett 582:253607–13
    [Google Scholar]
  114. 114. 
    Tan SY-Y, Liu Y, Chua SL, Vejborg RM, Jakobsen TH et al. 2014. Comparative systems biology analysis to study the mode of action of the isothiocyanate compound Iberin on Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 58:116648–59
    [Google Scholar]
  115. 115. 
    Teplitski M, Robinson JB, Bauer WD. 2000. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant-Microbe Interact. 13:6637–48
    [Google Scholar]
  116. 116. 
    Truchado P, Larrosa M, Castro-Ibanez I, Allende A 2015. Plant food extracts and phytochemicals: their role as quorum sensing inhibitors. Trends Food Sci. Technol. 43:2189–204
    [Google Scholar]
  117. 117. 
    Tsai C-S, Winans SC. 2010. LuxR-type quorum-sensing regulators that are detached from common scents. Mol. Microbiol. 77:51072–82
    [Google Scholar]
  118. 118. 
    Ugurlu A, Karahasan Yagci A, Ulusoy S, Aksu B, Bosgelmez-Tinaz G 2016. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pac. J. Trop. Biomed. 6:8698–701
    [Google Scholar]
  119. 119. 
    Upadhyay A, Mooyottu S, Yin H, Nair SM, Bhattaram V, Venkitanarayanan K. 2015. Inhibiting microbial toxins using plant-derived compounds and plant extracts. Medicines 2:3186–211
    [Google Scholar]
  120. 120. 
    Vandeputte OM, Kiendrebeogo M, Rajaonson S, Diallo B, Mol A et al. 2010. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 76:1243–53
    [Google Scholar]
  121. 121. 
    Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stévigny C, Duez P et al. 2011. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 157:Pt. 72120–32
    [Google Scholar]
  122. 122. 
    Vázquez-Martínez J, Buitemea-Cantúa GV, Gutierrez-Villagomez JM, García-González JP, Ramírez-Chávez E, Molina-Torres J. 2020. Bioautography and GC-MS based identification of piperine and trichostachine as the active quorum quenching compounds in black pepper. Heliyon 6:1e03137
    [Google Scholar]
  123. 123. 
    Venturi V, Fuqua C. 2013. Chemical signaling between plants and plant-pathogenic bacteria. Annu. Rev. Phytopathol. 51:17–37
    [Google Scholar]
  124. 124. 
    Vikram A, Jesudhasan PR, Jayaprakasha GK, Pillai SD, Patil BS. 2011. Citrus limonoids interfere with Vibrio harveyi cell-cell signalling and biofilm formation by modulating the response regulator LuxO. Microbiology 157:Pt. 799–110
    [Google Scholar]
  125. 125. 
    Visick KL, Foster J, Doino J, McFall-Ngai M, Ruby EG. 2000. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182:164578–86
    [Google Scholar]
  126. 126. 
    Von Bodman SB, Bauer WD, Coplin DL. 2003. Quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 41:455–82
    [Google Scholar]
  127. 127. 
    Walsh DJ, Livinghouse T, Goeres DM, Mettler M, Stewart PS. 2019. Antimicrobial activity of naturally occurring phenols and derivatives against biofilm and planktonic bacteria. Front. Chem. 7:653
    [Google Scholar]
  128. 128. 
    Wang R, Vega P, Xu Y, Chen CY, Irudayaraj J. 2018. Exploring the anti-quorum sensing activity of a d-limonene nano emulsion for Escherichia coli O157:H7. J. Biomed. Mater. Res. A 106:71979–86
    [Google Scholar]
  129. 129. 
    Wang Y, Lee SM, Dykes GA. 2013. Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans. Biofouling 29:3307–18
    [Google Scholar]
  130. 130. 
    Watson WT, Minogue TD, Val DL, von Bodman SB, Churchill ME. 2002. Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol. Cell 9:3685–94
    [Google Scholar]
  131. 131. 
    Winzer K, Williams P. 2001. Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int. J. Med. Microbiol. 291:2131–43
    [Google Scholar]
  132. 132. 
    Wojnicz D, Kucharska AZ, Sokół-Łętowska A, Kicia M, Tichaczek-Goska D. 2012. Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli. Urol. Res. 40:6683–97
    [Google Scholar]
  133. 133. 
    Wolber G, Langer T. 2005. LigandScout:3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 45:1160–69
    [Google Scholar]
  134. 134. 
    Wu D, Ding W, Zhang Y, Liu X, Yang L 2015. Oleanolic acid induces the type III secretion system of Ralstonia solanacearum. Front. Microbiol. 6:1466
    [Google Scholar]
  135. 135. 
    Yamazaki A, Li J, Zeng Q, Khokhani D, Hutchins WC et al. 2012. Derivatives of plant phenolic compound affect the type III secretion system of Pseudomonas aeruginosa via a GacS-GacA two-component signal transduction system. Antimicrob. Agents Chemother. 56:136–43
    [Google Scholar]
  136. 136. 
    Yuan ZC, Edlind MP, Liu P, Saenkham P, Banta LM et al. 2007. The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. PNAS 104:2811790–95
    [Google Scholar]
  137. 137. 
    Zhou L, Zheng H, Tang Y, Yu W, Gong Q 2013. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol. Lett. 35:4631–37
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-020620-095740
Loading
/content/journals/10.1146/annurev-phyto-020620-095740
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error