- Home
- A-Z Publications
- Annual Review of Phytopathology
- Previous Issues
- Volume 40, 2002
Annual Review of Phytopathology - Volume 40, 2002
Volume 40, 2002
- Review Articles
-
-
-
One Foot in the Furrow: Implications to One's Career in Plant Pathology
Vol. 40 (2002), pp. 1–11More LessMost of us want to be successful in what we do—either financially or programmatically. For me, being a good, well-respected plant pathologist is what motivated me throughout my professional career. After being trained as a plant pathologist at the University of California-Davis, an institution that prides itself in solving problems, I spent the majority of my career in population-sparse Montana—“the last best place.” And best place it has been for me as I became involved in researching a number of plant disease problems and solving a few. J.C. Walker's philosophy of keeping “one foot in the furrow” has stood by me, and I encourage young plant pathologists to adopt it as well to ensure a productive and satisfying life in agricultural science.
-
-
-
-
EVOLUTIONARY ECOLOGY OF PLANT DISEASES IN NATURAL ECOSYSTEMS
Vol. 40 (2002), pp. 13–43More Less▪ AbstractPlant pathogens cause mortality and reduce fecundity of individual plants, drive host population dynamics, and affect the structure and composition of natural plant communities. Pathogens are responsible for both numerical changes in host populations and evolutionary changes through selection for resistant genotypes. Linking such ecological and evolutionary dynamics has been the focus of a growing body of literature on the effects of plant diseases in natural ecosystems. A guiding principle is the importance of understanding the spatial and temporal scales at which plants and pathogens interact. This review summarizes the effects of diseases on populations of wild plants, focusing in particular on the mediation of plant competition and succession, the maintenance of plant species diversity, as well as the process of rapid evolutionary changes in host-pathogen symbioses.
-
-
-
MAKING AN ALLY FROM AN ENEMY: Plant Virology and the New Agriculture
Vol. 40 (2002), pp. 45–74More Less▪ AbstractHistorically, the study of plant viruses has contributed greatly to the elucidation of eukaryotic biology. Recently, concurrent with the development of viruses into expression vectors, the biotechnology industry has developed an increasing number of disease therapies utilizing recombinant proteins. Plant virus vectors are viewed as a viable option for recombinant protein production. Employing pathogens in the process of creating added value to agriculture is, in effect, making an ally from an enemy. This review discusses the development and use of viruses as expression vectors, with special emphasis on (+) strand RNA virus systems. Further, the use of virus expression vectors in large-scale agricultural settings to produce recombinant proteins is described, and the technical challenges that need to be addressed by agriculturists and molecular virologists to fully realize the potential of this latest evolution of plant science are outlined.
-
-
-
STRIPE RUST OF WHEAT AND BARLEY IN NORTH AMERICA: A Retrospective Historical Review1
Vol. 40 (2002), pp. 75–118More Less▪ AbstractThis retrospective review deals with the sequence of events and research progress on control of stripe rust of wheat and barley in North America. From the discovery of stripe rust in 1915, it documents the early years of stripe rust research, the 20-year hiatus when stripe rust was not considered important and research was almost nonexistent, the short period in the 1950s when stripe rust became prevalent in the central United States, and the severe epidemics in the West in the 1960s and the associated revival and expansion of research. Finally, it covers 1968 to 2001 when the earlier information was consolidated and combined with results of new research to enable prediction and control of stripe rust, especially in the West.
-
-
-
VIRAL SEQUENCES INTEGRATED INTO PLANT GENOMES
Vol. 40 (2002), pp. 119–136More Less▪ AbstractSequences of various DNA plant viruses have been found integrated into the host genome. There are two forms of integrant, those that can form episomal viral infections and those that cannot. Integrants of three pararetroviruses, Banana streak virus (BSV), Tobacco vein clearing virus (TVCV), and Petunia vein clearing virus (PVCV), can generate episomal infections in certain hybrid plant hosts in response to stress. In the case of BSV and TVCV, one of the parents contains the integrant but is has not been seen to be activated in that parent; the other parent does not contain the integrant. The number of integrant loci is low for BSV and PVCV and high in TVCV. The structure of the integrants is complex, and it is thought that episomal virus is released by recombination and/or reverse transcription. Geminiviral and pararetroviral sequences are found in plant genomes although not so far associated with a virus disease. It appears that integration of viral sequences is widespread in the plant kingdom and has been occurring for a long period of time.
-
-
-
MOLECULAR BASIS OF RECOGNITION BETWEENPHYTOPHTHORA PATHOGENS AND THEIR HOSTS
Vol. 40 (2002), pp. 137–167More Less▪ AbstractRecognition is the earliest step in any direct plant-microbe interaction. Recognition between Phytophthora pathogens, which are oomycetes, phylogenetically distinct from fungi, has been studied at two levels. Recognition of the host by the pathogen has focused on recognition of chemical, electrical, and physical features of plant roots by zoospores. Both host-specific factors such as isoflavones, and host-nonspecific factors such as amino acids, calcium, and electrical fields, influence zoospore taxis, encystment, cyst germination, and hyphal chemotropism in guiding the pathogen to potential infection sites. Recognition of the pathogen by the host defense machinery has been analyzed using biochemical and genetic approaches. Biochemical approaches have identified chemical elicitors of host defense responses, and in some cases, their cognate receptors from the host. Some elicitors, such as glucans and fatty acids, have broad host ranges, whereas others such as elicitins have narrow host ranges. Most elicitors identified appear to contribute primarily to basic or nonhost resistance. Genetic analysis has identified host resistance (R) genes and pathogen avirulence (Avr) genes that interact in a gene-for-gene manner. One Phytophthora Avr gene, Avr1b from P. sojae, has been cloned and characterized. It encodes a secreted elicitor that triggers a system-wide defense response in soybean plants carrying the cognate R gene, Rps1b.
-
-
-
COMPARATIVE GENOMIC ANALYSIS OF PLANT-ASSOCIATED BACTERIA
Vol. 40 (2002), pp. 169–189More Less▪ AbstractThis review deals with a comparative analysis of seven genome sequences from plant-associated bacteria. These are the genomes of Agrobacterium tumefaciens, Mesorhizobium loti, Sinorhizobium meliloti, Xanthomonas campestris pv campestris, Xanthomonas axonopodis pv citri, Xylella fastidiosa, and Ralstonia solanacearum. Genome structure and the metabolism pathways available highlight the compromise between the genome size and lifestyle. Despite the recognized importance of the type III secretion system in controlling host compatibility, its presence is not universal in all necrogenic pathogens. Hemolysins, hemagglutinins, and some adhesins, previously reported only for mammalian pathogens, are present in most organisms discussed. Different numbers and combinations of cell wall degrading enzymes and genes to overcome the oxidative burst generally induced by the plant host are characterized in these genomes. A total of 19 genes not involved in housekeeping functions were found common to all these bacteria.
-
-
-
GENE EXPRESSION IN NEMATODE FEEDING SITES
Vol. 40 (2002), pp. 191–219More Less▪ AbstractThe feeding sites induced by sedentary root–endoparasitic nematodes have long fascinated researchers. Nematode feeding sites are constructed from plant cells, modified by the nematode to feed itself. Powerful new techniques are allowing us to begin to elucidate the molecular mechanisms that produce the ultrastructural features in nematode feeding cells. Many plant genes that are expressed in feeding sites produced by different nematodes have been identified in several plant species. Nematode-responsive plant genes can now be grouped in categories related to plant developmental pathways and their roles in the making of a feeding site can be illuminated. The black box of how nematodes bring about such elaborate cell differentiation in the plant is also starting to open. Although the information is far from complete, the groundwork is set so that the functions of the plant and nematode genes in feeding site development can begin to be assessed.
-
-
-
PHYTOCHEMICAL BASED STRATEGIES FOR NEMATODE CONTROL1
Vol. 40 (2002), pp. 221–249More Less▪ AbstractThis review examines the discovery of naturally occurring phytochemicals antagonistic toward plant-parasitic and other nematodes. Higher plants have yielded a broad spectrum of active compounds, including polythienyls, isothiocyanates, glucosinolates, cyanogenic glycosides, polyacetylenes, alkaloids, lipids, terpenoids, sesquiterpenoids, diterpenoids, quassinoids, steroids, triterpenoids, simple and complex phenolics, and several other classes. Many other antinematodal compounds have been isolated from biocontrol and other fungi. Natural products active against mammalian parasites can serve as useful sources of compounds for examination of activity against plant parasites. The agricultural utilization of phytochemicals, although currently uneconomic in many situations, offers tremendous potential.
-
-
-
HOST-SELECTIVE TOXINS AND AVIRULENCE DETERMINANTS: What's in a Name?*
Vol. 40 (2002), pp. 251–285More Less▪ AbstractHost-selective toxins, a group of structurally complex and chemically diverse metabolites produced by plant pathogenic strains of certain fungal species, function as essential determinants of pathogenicity or virulence. Investigations into the molecular and biochemical responses to these disease determinants reveal responses typically associated with host defense and incompatibility induced by avirulence determinants. The characteristic responses that unify these disparate disease phenotypes are numerous, yet the evidence implicating a causal relationship of these responses, whether induced by host-selective toxins or avirulence factors, in determining the consequences of the host-pathogen interaction is equivocal. This review summarizes some examples of the action of host-selective toxins to illustrate the similarity in responses with those to avirulence determinants.
-
-
-
TOBACCO MOSAIC VIRUS ASSEMBLY AND DISASSEMBLY: Determinants in Pathogenicity and Resistance
Vol. 40 (2002), pp. 287–308More Less▪ AbstractThe structural proteins of plant viruses have evolved to self-associate into complex macromolecules that are centrally involved in virus biology. In this review, the structural and biophysical properties of the Tobacco mosaic virus (TMV) coat protein (CP) are addressed in relation to its role in host resistance and disease development. TMV CP affects the display of several specific virus and host responses, including cross-protection, systemic virus movement, hypersensitive disease resistance, and symptom development. Studies indicate that the three-dimensional structure of CP is critical to the control of these responses, either directly through specific structural motifs or indirectly via alterations in CP assembly. Thus, both the structure and assembly of the TMV CP function as determinants in the induction of disease and resistance responses.
-
-
-
MICROBIAL POPULATIONS RESPONSIBLE FOR SPECIFIC SOIL SUPPRESSIVENESS TO PLANT PATHOGENS1
Vol. 40 (2002), pp. 309–348More Less▪ AbstractAgricultural soils suppressive to soilborne plant pathogens occur worldwide, and for several of these soils the biological basis of suppressiveness has been described. Two classical types of suppressiveness are known. General suppression owes its activity to the total microbial biomass in soil and is not transferable between soils. Specific suppression owes its activity to the effects of individual or select groups of microorganisms and is transferable. The microbial basis of specific suppression to four diseases, Fusarium wilts, potato scab, apple replant disease, and take-all, is discussed. One of the best-described examples occurs in take-all decline soils. In Washington State, take-all decline results from the buildup of fluorescent Pseudomonas spp. that produce the antifungal metabolite 2,4-diacetylphloroglucinol. Producers of this metabolite may have a broader role in disease-suppressive soils worldwide. By coupling molecular technologies with traditional approaches used in plant pathology and microbiology, it is possible to dissect the microbial composition and complex interactions in suppressive soils.
-
-
-
PATHOGEN POPULATION GENETICS, EVOLUTIONARY POTENTIAL, AND DURABLE RESISTANCE
Vol. 40 (2002), pp. 349–379More Less▪ AbstractWe hypothesize that the evolutionary potential of a pathogen population is reflected in its population genetic structure. Pathogen populations with a high evolutionary potential are more likely to overcome genetic resistance than pathogen populations with a low evolutionary potential. We propose a flexible framework to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure. According to this framework, pathogens that pose the greatest risk of breaking down resistance genes have a mixed reproduction system, a high potential for genotype flow, large effective population sizes, and high mutation rates. The lowest risk pathogens are those with strict asexual reproduction, low potential for gene flow, small effective population sizes, and low mutation rates. We present examples of high-risk and low-risk pathogens. We propose general guidelines for a rational approach to breed durable resistance according to the evolutionary potential of the pathogen.
-
-
-
USE OF MULTILINE CULTIVARS AND CULTIVAR MIXTURES FOR DISEASE MANAGEMENT
Vol. 40 (2002), pp. 381–410More Less▪ AbstractThe usefulness of mixtures (multiline cultivars and cultivar mixtures) for disease management has been well demonstrated for rusts and powdery mildews of small grain crops. Such mixtures are more useful under some epidemiological conditions than under others, and experimental methodology, especially problems of scale, may be crucial in evaluating the potential efficacy of mixtures on disease. There are now examples of mixtures providing both low and high degrees of disease control for a wide range of pathosystems, including crops with large plants, and pathogens that demonstrate low host specificity, or are splash dispersed, soilborne, or insect vectored. Though most analyses of pathogen evolution in mixtures consider static costs of virulence to be the main mechanism countering selection for pathogen complexity, many other potential mechanisms need to be investigated. Agronomic and marketing considerations must be carefully evaluated when implementing mixture approaches to crop management. Practical difficulties associated with mixtures have often been overestimated, however, and mixtures will likely play an increasingly important role as we develop more sustainable agricultural systems.
-
-
-
BIOLOGICAL CONTROL OF POSTHARVEST DISEASES OF FRUITS
Vol. 40 (2002), pp. 411–441More Less▪ AbstractLosses from postharvest fruit diseases range from 1 to 20 percent in the United States, depending on the commodity. The application of fungicides to fruits after harvest to reduce decay has been increasingly curtailed by the development of pathogen resistance to many key fungicides, the lack of replacement fungicides, negative public perception regarding the safety of pesticides and consequent restrictions on fungicide use. Biological control of postharvest diseases (BCPD) has emerged as an effective alternative. Because wound-invading necrotrophic pathogens are vulnerable to biocontrol, antagonists can be applied directly to the targeted area (fruit wounds), and a single application using existing delivery systems (drenches, line sprayers, on-line dips) can significantly reduce fruit decays. The pioneering biocontrol products BioSave and Aspire were registered by EPA in 1995 for control of postharvest rots of pome and citrus fruit, respectively, and are commercially available. The limitations of these biocontrol products can be addressed by enhancing biocontrol through manipulation of the environment, using mixtures of beneficial organisms, physiological and genetic enhancement of the biocontrol mechanisms, manipulation of formulations, and integration of biocontrol with other alternative methods that alone do not provide adequate protection but in combination with biocontrol provide additive or synergistic effects.
-
-
-
ANTIBIOTIC USE IN PLANT AGRICULTURE
Vol. 40 (2002), pp. 443–465More Less▪ AbstractAntibiotics have been used since the 1950s to control certain bacterial diseases of high-value fruit, vegetable, and ornamental plants. Today, the antibiotics most commonly used on plants are oxytetracycline and streptomycin. In the USA, antibiotics applied to plants account for less than 0.5% of total antibiotic use. Resistance of plant pathogens to oxytetracycline is rare, but the emergence of streptomycin-resistant strains of Erwinia amylovora, Pseudomonas spp., and Xanthomonas campestris has impeded the control of several important diseases. A fraction of streptomycin-resistance genes in plant-associated bacteria are similar to those found in bacteria isolated from humans, animals, and soil, and are associated with transfer-proficient elements. However, the most common vehicles of streptomycin-resistance genes in human and plant pathogens are genetically distinct. Nonetheless, the role of antibiotic use on plants in the antibiotic-resistance crisis in human medicine is the subject of debate.
-
-
-
RISK ASSESSMENT OF VIRUS-RESISTANT TRANSGENIC PLANTS
Vol. 40 (2002), pp. 467–491More Less▪ AbstractVirus-resistant transgenic plants (VRTPs) hold the promise of enormous benefit for agriculture. However, over the past ten years, questions concerning the potential ecological impact of VRTPs have been raised. In some cases, detailed study of the mode of action of the resistance gene has made it possible to eliminate the source of potential risk, notably the possible effects of heterologous encapsidation on the transmission of viruses by their vectors. In other cases, the means of eliminating likely sources of risk have not yet been developed. When such residual risk still exists, the potential risks associated with the VRTP must be compared with those associated with nontransgenic plants so that risk assessment can fully play its role as part of an overall analysis of the advantages and disadvantages of practicable solutions to the problem solved by the VRTP.
-
Previous Volumes
-
Volume 62 (2024)
-
Volume 61 (2023)
-
Volume 60 (2022)
-
Volume 59 (2021)
-
Volume 58 (2020)
-
Volume 57 (2019)
-
Volume 56 (2018)
-
Volume 55 (2017)
-
Volume 54 (2016)
-
Volume 53 (2015)
-
Volume 52 (2014)
-
Volume 51 (2013)
-
Volume 50 (2012)
-
Volume 49 (2011)
-
Volume 48 (2010)
-
Volume 47 (2009)
-
Volume 46 (2008)
-
Volume 45 (2007)
-
Volume 44 (2006)
-
Volume 43 (2005)
-
Volume 42 (2004)
-
Volume 41 (2003)
-
Volume 40 (2002)
-
Volume 39 (2001)
-
Volume 38 (2000)
-
Volume 37 (1999)
-
Volume 36 (1998)
-
Volume 35 (1997)
-
Volume 34 (1996)
-
Volume 33 (1995)
-
Volume 32 (1994)
-
Volume 31 (1993)
-
Volume 30 (1992)
-
Volume 29 (1991)
-
Volume 28 (1990)
-
Volume 27 (1989)
-
Volume 26 (1988)
-
Volume 25 (1987)
-
Volume 24 (1986)
-
Volume 23 (1985)
-
Volume 22 (1984)
-
Volume 21 (1983)
-
Volume 20 (1982)
-
Volume 19 (1981)
-
Volume 18 (1980)
-
Volume 17 (1979)
-
Volume 16 (1978)
-
Volume 15 (1977)
-
Volume 14 (1976)
-
Volume 13 (1975)
-
Volume 12 (1974)
-
Volume 11 (1973)
-
Volume 10 (1972)
-
Volume 9 (1971)
-
Volume 8 (1970)
-
Volume 7 (1969)
-
Volume 6 (1968)
-
Volume 5 (1967)
-
Volume 4 (1966)
-
Volume 3 (1965)
-
Volume 2 (1964)
-
Volume 1 (1963)
-
Volume 0 (1932)