- Home
- A-Z Publications
- Annual Review of Phytopathology
- Previous Issues
- Volume 44, 2006
Annual Review of Phytopathology - Volume 44, 2006
Volume 44, 2006
-
-
A Retrospective of an Unconventionally Trained Plant Pathologist: Plant Diseases to Molecular Plant Pathology
Vol. 44 (2006), pp. 1–17More LessAbstractPlant pathology evolved from its mycology-oriented origins into a science dealing with biochemical mechanisms of diseases, along with enhanced crop production through disease control. This retrospective describes first my personal experience from my introduction to plant pathology, to the establishment of the concept of accessibility as a model pertaining to genetically defined basic compatibility induced by pathogens. I then refer to the development of molecular plant pathology from physiological and biochemical plant pathology fostered by the growth in recombinant technology in the second half of the past century. This progress was best reflected by the U.S.-Japan Seminar Series held at 4–5-year intervals from 1966 to 2003 and documented by publications in major journals of our discipline. These seminars emphasized that progress in science has always been supported by the invention of novel techniques and that knowledge integrated from modern genomics and subsequent proteomics should contribute to the progress of basic life sciences and, more importantly, to the elaboration of rational measures for disease control.
-
-
-
The Current and Future Dynamics of Disease in Plant Communities
Vol. 44 (2006), pp. 19–39More LessAbstractPathogens are powerful evolutionary forces shaping the structure and dynamics of both individual species and of the communities of which they are part, at a broad range of genetic, ecological, spatial, and temporal scales. At all these levels their impact varies from the subtle and little recognized through to the most obvious destruction. Today the direct role of pathogens in natural plant communities is better recognized than at previous times, although the nuances of their interactions and the cascade of ramifications that can flow through changing biotic and abiotic effects are only now gaining recognition. However, as human influence on pathogens increases—either directly through enhanced if accidental dispersal, or through anthropogenic impacts on climate—we may expect to see increasing evidence of pathogens affecting plant species, community structure, and ecosystem function.
-
-
-
A Catalogue of the Effector Secretome of Plant Pathogenic Oomycetes
Vol. 44 (2006), pp. 41–60More LessAbstractThe oomycetes form a phylogenetically distinct group of eukaryotic microorganisms that includes some of the most notorious pathogens of plants. Oomycetes accomplish parasitic colonization of plants by modulating host cell defenses through an array of disease effector proteins. The biology of effectors is poorly understood but tremendous progress has been made in recent years. This review classifies and catalogues the effector secretome of oomycetes. Two classes of effectors target distinct sites in the host plant: Apoplastic effectors are secreted into the plant extracellular space, and cytoplasmic effectors are translocated inside the plant cell, where they target different subcellular compartments. Considering that five species are undergoing genome sequencing and annotation, we are rapidly moving toward genome-wide catalogues of oomycete effectors. Already, it is evident that the effector secretome of pathogenic oomycetes is more complex than expected, with perhaps several hundred proteins dedicated to manipulating host cell structure and function.
-
-
-
Genome Packaging by Spherical Plant RNA Viruses
Vol. 44 (2006), pp. 61–87More LessAbstractThe majority of positive-strand RNA viruses of plants replicate and selectively encapsidate their progeny genomes into stable virions in cytoplasmic compartments of the cell where the opportunity to copackage cellular RNA also exists. Remarkably, highly purified infectious virions contain almost exclusively viral RNA, suggesting that mechanisms exist to regulate preferential packaging of viral genomes. The general principle that governs RNA packaging is an interaction between the structural CP and a specific RNA signal. Mechanisms that enhance selective packaging of viral genomes and formation of infectious virions may involve factors other than CP and nucleic acid sequences. The possible involvement of replicase proteins is an example. Our knowledge concerning genome packaging among spherical plant RNA viruses is still maturing. The main focus of this review is to discuss factors that have limited progress and to evaluate recent technical breakthroughs likely to help unravel the mechanism of RNA packaging among viruses of agronomic importance. A key breakthrough is the development of in vivo systems and comparisons with results obtained in vitro.
-
-
-
Quantification and Modeling of Crop Losses: A Review of Purposes
Vol. 44 (2006), pp. 89–112More LessAbstractThis review considers the cascade of events that link injuries caused by plant pathogens on crop stands to possible (quantitative and qualitative) crop losses (damage), and to the resulting economic losses. To date, much research has focused on injury control to prevent this cascade of events from occurring. However, this cascade involves a complex succession of components and processes whereby knowledge on crop loss generates entry points for management. Proposed here is a framework linking different types of knowledge on crop loss to a range of decision categories, from tactical to strategic short- or long-term. Important advances in this field are now under way, including a probabilistic treatment of the injury-damage relationship, or analyses of the sources of uncertainty attached to some components of the decision process. Management of injury profiles, rather than individual injuries, and shifts in dimensionality of crop losses are anticipated to contribute to the design of sustainable agricultural systems, and address global issues concerning food security and food safety.
-
-
-
Nonsystemic Bunt Fungi—Tilletia indica and T. horrida: A Review of History, Systematics, and Biology*
Vol. 44 (2006), pp. 113–133More LessAbstractThe genus Tilletia is a group of smut fungi that infects grasses either systemically or locally. Basic differences exist between the systemically infecting species, such as the common and dwarf bunt fungi, and locally infecting species. Tilletia indica, which causes Karnal bunt of wheat, and Tilletia horrida, which causes rice kernel smut, are two examples of locally infecting species on economically important crops. However, even species on noncultivated hosts can become important when occurring as contaminants in export grain and seed shipments. In this review, we focus on T. indica and the morphologically similar but distantly related T. horrida, considering history, systematics, and biology. In addition, the controversial generic placement and evolutionary relationships of these two species are discussed in light of recent molecular studies.
-
-
-
Significance of Inducible Defense-related Proteins in Infected Plants
Vol. 44 (2006), pp. 135–162More LessAbstractInducible defense-related proteins have been described in many plant species upon infection with oomycetes, fungi, bacteria, or viruses, or insect attack. Several types of proteins are common and have been classified into 17 families of pathogenesis-related proteins (PRs). Others have so far been found to occur more specifically in some plant species. Most PRs and related proteins are induced through the action of the signaling compounds salicylic acid, jasmonic acid, or ethylene, and possess antimicrobial activities in vitro through hydrolytic activities on cell walls, contact toxicity, and perhaps an involvement in defense signaling. However, when expressed in transgenic plants, they reduce only a limited number of diseases, depending on the nature of the protein, plant species, and pathogen involved. As exemplified by the PR-1 proteins in Arabidopsis and rice, many homologous proteins belonging to the same family are regulated developmentally and may serve different functions in specific organs or tissues. Several defense-related proteins are induced during senescence, wounding or cold stress, and some possess antifreeze activity. Many defense-related proteins are present constitutively in floral tissues and a substantial number of PR-like proteins in pollen, fruits, and vegetables can provoke allergy in humans. The evolutionary conservation of similar defense-related proteins in monocots and dicots, but also their divergent occurrence in other conditions, suggest that these proteins serve essential functions in plant life, whether in defense or not.
-
-
-
Coexistence of Related Pathogen Species on Arable Crops in Space and Time
Vol. 44 (2006), pp. 163–182More LessAbstractThis review considers factors affecting the coexistence of closely related pathogen species on arable crops, with particular reference to data available at Rothamsted for Septoria tritici/Stagonospora nodorum (Mycosphaerella graminicola/Phaeosphaeria nodorum) (septoria leaf blotch diseases on winter wheat), Oculimacula yallundae/O. acuformis (eyespot disease of winter cereals), and Leptosphaeria maculans/L. biglobosa (phoma stem canker on winter oilseed rape). Factors affecting the short-term, medium-term, and long-term coexistence of such related pathogen species are reviewed, and their evolution from common ancestors considered. Small niche differences between the related pathogen species enable them to coexist on the same host. The niche differences result from small differences in their biology/epidemiology, leading to separation in space, time, or resource use. Changes in both natural (e.g., fluctuating temperature) and man-made (e.g., agronomic practices, pollution) factors influence the coexistence. Such factors may result in coexistence between the related species in some parts of the world, whereas in other parts only one species occurs. These principles illustrated with pathogens of arable crops are generic to other host-pathogen systems.
-
-
-
Virus-Vector Interactions Mediating Nonpersistent and Semipersistent Transmission of Plant Viruses
Vol. 44 (2006), pp. 183–212More LessAbstractMost plant viruses are absolutely dependent on a vector for plant-to-plant spread. Although a number of different types of organisms are vectors for different plant viruses, phloem-feeding Hemipterans are the most common and transmit the great majority of plant viruses. The complex and specific interactions between Hemipteran vectors and the viruses they transmit have been studied intensely, and two general strategies, the capsid and helper strategies, are recognized. Both strategies are found for plant viruses that are transmitted by aphids in a nonpersistent manner. Evidence suggests that these strategies are found also for viruses transmitted in a semipersistent manner. Recent applications of molecular and cell biology techniques have helped to elucidate the mechanisms underlying the vector transmission of several plant viruses. This review examines the fundamental contributions and recent developments in this area.
-
-
-
Breeding for Disease Resistance in the Major Cool-Season Turfgrasses
Vol. 44 (2006), pp. 213–234More LessAbstractOver the past several decades, breeding cool-season turfgrasses for improved disease resistance has been the focus of many turfgrass breeding programs. This review article discusses the dramatic improvements made in breeding Kentucky bluegrass (Poa pratensis) for resistance to leaf spot (caused by Drechslera poae), stem rust (caused by Puccinia graminis), and stripe smut (caused by Ustilago striiformis); perennial ryegrass (Lolium perenne) for resistance to gray leaf spot (caused by Pyricularia grisea), stem rust and crown rust (caused by Puccinia coronata); tall fescue (Festuca arundinacea) for resistance to brown patch (Rhizoctonia solani) and stem rust; creeping bentgrass (Agrostis stolonifera) for resistance to dollar spot (caused by Sclerotinia homoeocarpa); and fine fescues (Festuca spp.) for improved disease resistance. Historically, the dramatic improvements in disease resistance of the cool-season grasses have been attributed to traditional/conventional breeding techniques; however, it is likely that functional genomics and molecular techniques will play a more significant role in the development of cultivated turfgrasses as the specific genes and mechanisms for disease resistance are identified in the future.
-
-
-
Molecular Ecology and Emergence of Tropical Plant Viruses
Vol. 44 (2006), pp. 235–260More LessAbstractAn appreciation of the risks caused by emergent plant viruses is critical in tropical areas that rely heavily on agriculture for subsistence and rural livelihood. Molecular ecology, within 10 years, has unraveled the factors responsible for the emergence of several of the economically most important tropical plant viruses: Rice yellow mottle virus (RYMV), Cassava mosaic geminiviruses (CMGs), Maize streak virus (MSV), and Banana streak virus (BSV). A large range of mechanisms—most unsuspected until recently—were involved: recombination and synergism between virus species, new vector biotypes, genome integration of the virus, host adaptation, and long-distance dispersal. A complex chain of molecular and ecological events resulted in novel virus-vector-plant-environment interactions that led to virus emergence. It invariably involved a major agricultural change: crop introduction, cultural intensification, germplasm movement, and new genotypes. A current challenge is now to complement the analysis of the causes by an assessment of the risks of emergence. Recent attempts to assess the risks of emergence of virulent virus strains are described.
-
-
-
Biology of Flower-Infecting Fungi
Vol. 44 (2006), pp. 261–282More LessAbstractThe ability to infect host flowers offers important ecological benefits to plant-parasitic fungi; not surprisingly, therefore, numerous fungal species from a wide range of taxonomic groups have adopted a life style that involves flower infection. Although flower-infecting fungi are very diverse, they can be classified readily into three major groups: opportunistic, unspecialized pathogens causing necrotic symptoms such as blossom blights (group 1), and specialist flower pathogens which infect inflorescences either through the gynoecium (group 2) or systemically through the apical meristem (group 3). This three-tier system is supported by life history attributes such as host range, mode of spore transmission, degree of host sterilization as a result of infection, and whether or not the fungus undergoes an obligate sexual cycle, produces resting spores in affected inflorescences, and is r- or K-selected. Across the three groups, the flower as an infection court poses important challenges for disease management. Ecologically and evolutionarily, terms and concepts borrowed from the study of venereal (sexually transmitted) diseases of animals do not adequately capture the range of strategies employed by fungi that infect flowers.
-
-
-
A Model Plant Pathogen from the Kingdom Animalia: Heterodera glycines, the Soybean Cyst Nematode
Vol. 44 (2006), pp. 283–303More LessAbstractThe soybean cyst nematode, Heterodera glycines, adversely affects the production of soybean, Glycine max, in many areas of the world, particularly in the United States, where it is the most economically important soybean pathogen. Despite the availability of hundreds of H. glycines–resistant soybean cultivars, the nematode continues to be a major limiting factor in soybean production. The use of nonhost rotation and resistance are the primary means of reducing losses caused by the nematode, but each of these options has disadvantages. As a subject for study of nematode parasitism and virulence, H. glycines provides a useful model despite its obligately parasitic nature. Its obligately sexual reproduction and ready adaptation to resistant cultivars, formerly referred to as “race shift,” presents an excellent opportunity for the study of virulence in nematodes. Recent advances in H. glycines genomics have helped identify putative nematode parasitism genes, which, in turn, will aid in the understanding of nematode pathogenicity and virulence and may provide new targets for engineering nematode resistance.
-
-
-
Comparative Genomics Reveals What Makes An Enterobacterial Plant Pathogen
Vol. 44 (2006), pp. 305–336More LessAbstractThe bacterial family Enterobacteriaceae contains some of the most devastating human and animal pathogens, including Escherichia coli, Salmonella enterica and species of Yersinia and Shigella. These are among the best-studied of any organisms, yet there is much to be learned about the nature and evolution of interactions with their hosts and with the wider environment. Comparative and functional genomics have fundamentally improved our understanding of their modes of adaptation to different ecological niches and the genes that determine their pathogenicity. In addition to animal pathogens, Enterobacteriaceae include important plant pathogens, such as Erwinia carotovora subsp. atroseptica (Eca), the first plant-pathogenic enterobacterium to be sequenced (20). This review focuses on genomic comparisons between Eca and other enterobacteria, with particular emphasis on the differences that exemplify or explain the plant-associated lifestyle(s) of Eca. Horizontal gene transfer in Eca may directly have led to the acquisition of a number of determinants that mediate its interactions, pathogenic or otherwise, with plants, offering a glimpse into its evolutionary divergence from animal-pathogenic enterobacteria.
-
-
-
The Dawn of Fungal Pathogen Genomics
Vol. 44 (2006), pp. 337–366More LessAbstractRecent advances in sequencing technologies have led to a remarkable increase in the number of sequenced fungal genomes. Several important plant pathogenic fungi are among those that have been sequenced or are being sequenced. Additional fungal pathogens are likely to be sequenced in the near future. Analysis of the available genomes has provided useful information about genes that may be important for plant infection and colonization. Genome features, such as repetitive sequences, telomeres, conserved syntenic blocks, and expansion of pathogenicity-related genes, are discussed in detail with Magnaporthe oryzae (M. grisea) and Fusarium graminearum as examples. Functional and comparative genomic studies in plant pathogenic fungi, although still in the early stages and limited to a few pathogens, have enormous potential to improve our understanding of the molecular mechanisms involved in host-pathogen interactions. Development of advanced genomics tools and infrastructure is critical for efficient utilization of the vast wealth of available genome sequence information and will form a solid foundation for systems biology studies of plant pathogenic fungi.
-
-
-
Fitness of Human Enteric Pathogens on Plants and Implications for Food Safety1
Vol. 44 (2006), pp. 367–392More LessAbstractThe continuous rise in the number of outbreaks of foodborne illness linked to fresh fruit and vegetables challenges the notion that enteric pathogens are defined mostly by their ability to colonize the intestinal habitat. This review describes the epidemiology of produce-associated outbreaks of foodborne disease and presents recently acquired knowledge about the behavior of enteric pathogens on plants, with an emphasis on Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes. The growth and survival of enteric pathogens on plants are discussed in the light of knowledge and concepts in plant microbial ecology, including epiphytic fitness, the physicochemical nature of plant surfaces, biofilm formation, and microbe-microbe and plant-microbe interactions. Information regarding the various stresses that affect the survival of enteric pathogens and the molecular events that underlie their interactions in the plant environment provides a good foundation for assessing their role in the infectious dose of the pathogens when contaminated fresh produce is the vehicle of illness.
-
-
-
The Role of Ethylene in Host-Pathogen Interactions
Vol. 44 (2006), pp. 393–416More LessAbstractThe phytohormone ethylene is a principal modulator in many aspects of plant life, including various mechanisms by which plants react to pathogen attack. Induced ethylene biosynthesis and subsequent intracellular signaling through a single conserved pathway have been well characterized. This leads to a cascade of transcription factors consisting of primary EIN3-like regulators and downstream ERF-like transcription factors. The latter control the expression of various effector genes involved in various aspects of systemic induced defense responses. Moreover, at this level significant cross-talk occurs with other defense response pathways controlled by salicylic acid and jasmonate, eventually resulting in a differentiated disease response.
-
-
-
Phenazine Compounds in Fluorescent Pseudomonas Spp. Biosynthesis and Regulation*
Vol. 44 (2006), pp. 417–445More LessAbstractThe phenazines include upward of 50 pigmented, heterocyclic nitrogen-containing secondary metabolites synthesized by some strains of fluorescent Pseudomonas spp. and a few other bacterial genera. The antibiotic properties of these compounds have been known for over 150 years, but advances within the past two decades have provided significant new insights into the genetics, biochemistry, and regulation of phenazine synthesis, as well as the mode of action and functional roles of these compounds in the environment. This new knowledge reveals conservation of biosynthetic enzymes across genera but raises questions about conserved biosynthetic mechanisms, and sets the stage for improving the performance of phenazine producers used as biological control agents for soilborne plant pathogens.
-
-
-
Long-Distance RNA-RNA Interactions in Plant Virus Gene Expression and Replication
Vol. 44 (2006), pp. 447–467More LessAbstractThe vast majority of plant and animal viruses have RNA genomes. Viral gene expression and replication are controlled by cis-acting elements in the viral genome, which have been viewed conventionally as localized structures. However, recent research has altered this perception and provided compelling evidence for cooperative activity involving distantly positioned RNA elements. This chapter focuses on viral RNA elements that interact across hundreds or thousands of intervening nucleotides to control translation, genomic RNA synthesis, and subgenomic mRNA transcription. We discuss evidence supporting the existence and function of the interactions, and speculate on the regulatory roles that such long-distance interactions play in the virus life cycle. We emphasize viruses in the Tombusviridae and Luteoviridae families in which long-distance interactions are best characterized, but similar phenomena in other viruses are also discussed. Many more examples likely remain undiscovered.
-
-
-
Evolution of Plant Pathogenicity in Streptomyces
Vol. 44 (2006), pp. 469–487More LessAbstractAmong the multitude of soil-inhabiting, saprophytic Streptomyces species are a growing number of plant pathogens that cause economically important diseases, including potato scab. Streptomyces scabies is the dominant pathogenic species worldwide, but is only one of many that cause very similar disease symptoms on plants. Molecular genetic analysis is beginning to identify the mechanisms used by plant pathogenic species to manipulate their hosts. The nitrated dipeptide phytotoxin, thaxtomin, inhibits cellulose biosynthesis in expanding plant tissues, stimulates Ca2+ spiking, and causes cell death. A secreted necrogenic protein, Nec1, contributes to virulence on diverse plant species. The thaxtomin biosynthetic genes and nec1 lie on a large mobilizable PAI, along with other putative virulence genes including a cytokinin biosynthetic pathway and a saponinase homolog. The PAI is mobilized during conjugation and site-specifically inserts in the linear chromosome of recipient species, accounting for the emergence of new pathogens in agricultural systems. The recently available genome sequence of S. scabies will accelerate research on host-pathogen interactions.
-
Previous Volumes
-
Volume 62 (2024)
-
Volume 61 (2023)
-
Volume 60 (2022)
-
Volume 59 (2021)
-
Volume 58 (2020)
-
Volume 57 (2019)
-
Volume 56 (2018)
-
Volume 55 (2017)
-
Volume 54 (2016)
-
Volume 53 (2015)
-
Volume 52 (2014)
-
Volume 51 (2013)
-
Volume 50 (2012)
-
Volume 49 (2011)
-
Volume 48 (2010)
-
Volume 47 (2009)
-
Volume 46 (2008)
-
Volume 45 (2007)
-
Volume 44 (2006)
-
Volume 43 (2005)
-
Volume 42 (2004)
-
Volume 41 (2003)
-
Volume 40 (2002)
-
Volume 39 (2001)
-
Volume 38 (2000)
-
Volume 37 (1999)
-
Volume 36 (1998)
-
Volume 35 (1997)
-
Volume 34 (1996)
-
Volume 33 (1995)
-
Volume 32 (1994)
-
Volume 31 (1993)
-
Volume 30 (1992)
-
Volume 29 (1991)
-
Volume 28 (1990)
-
Volume 27 (1989)
-
Volume 26 (1988)
-
Volume 25 (1987)
-
Volume 24 (1986)
-
Volume 23 (1985)
-
Volume 22 (1984)
-
Volume 21 (1983)
-
Volume 20 (1982)
-
Volume 19 (1981)
-
Volume 18 (1980)
-
Volume 17 (1979)
-
Volume 16 (1978)
-
Volume 15 (1977)
-
Volume 14 (1976)
-
Volume 13 (1975)
-
Volume 12 (1974)
-
Volume 11 (1973)
-
Volume 10 (1972)
-
Volume 9 (1971)
-
Volume 8 (1970)
-
Volume 7 (1969)
-
Volume 6 (1968)
-
Volume 5 (1967)
-
Volume 4 (1966)
-
Volume 3 (1965)
-
Volume 2 (1964)
-
Volume 1 (1963)
-
Volume 0 (1932)