1932

Abstract

Potyviruses (viruses in the genus , family ) constitute the largest group of known plant-infecting RNA viruses and include many agriculturally important viruses that cause devastating epidemics and significant yield losses in many crops worldwide. Several potyviruses are recognized as the most economically important viral pathogens. Therefore, potyviruses are more studied than other groups of plant viruses. In the past decade, a large amount of knowledge has been generated to better understand potyviruses and their infection process. In this review, we list the top 10 economically important potyviruses and present a brief profile of each. We highlight recent exciting findings on the novel genome expression strategy and the biological functions of potyviral proteins and discuss recent advances in molecular plant–potyvirus interactions, particularly regarding the coevolutionary arms race. Finally, we summarize current disease control strategies, with a focus on biotechnology-based genetic resistance, and point out future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-020620-114550
2021-08-25
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/phyto/59/1/annurev-phyto-020620-114550.html?itemId=/content/journals/10.1146/annurev-phyto-020620-114550&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG et al. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–43
    [Google Scholar]
  2. 2. 
    Ala-Poikela M, Rajarnaki ML, Valkonen JPT. 2019. A novel interaction network used by potyviruses in virus-host interactions at the protein level. Viruses 11:1158
    [Google Scholar]
  3. 3. 
    Aman R, Ali Z, Butt H, Mahas A, Aljedaani F et al. 2018. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19:1
    [Google Scholar]
  4. 4. 
    Anandalakshmi R, Marathe R, Ge X, Herr JM, Mau C et al. 2000. A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290:142–44
    [Google Scholar]
  5. 5. 
    Arroyo-Mateos M, Sabarit B, Maio F, Sánchez-Durán MA, Rosas-Díaz T et al. 2018. Geminivirus replication protein impairs SUMO conjugation of proliferating cellular nuclear antigen at two acceptor sites. J. Virol. 92:e00611–18
    [Google Scholar]
  6. 6. 
    Barrangou R, Doudna JA. 2016. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34:933–41
    [Google Scholar]
  7. 7. 
    Benlloch R, Lois LM. 2018. Sumoylation in plants: mechanistic insights and its role in drought stress. J. Exp. Bot. 69:4539–54
    [Google Scholar]
  8. 8. 
    Boualem A, Dogimont C, Bendahmane A. 2016. The battle for survival between viruses and their host plants. Curr. Opin. Virol. 17:32–38
    [Google Scholar]
  9. 9. 
    Carbonell A, Carrington JC. 2015. Antiviral roles of plant ARGONAUTES. Curr. Opin. Plant Biol. 27:111–17
    [Google Scholar]
  10. 10. 
    Cavatorta J, Perez KW, Gray SM, Van Eck J, Yeam I, Jahn M. 2011. Engineering virus resistance using a modified potato gene. Plant Biotechnol. J. 9:1014–21
    [Google Scholar]
  11. 11. 
    Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C et al. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17:1140–53
    [Google Scholar]
  12. 12. 
    Charon J, Theil S, Nicaise V, Michon T. 2016. Protein intrinsic disorder within the potyvirus genus: from proteome-wide analysis to functional annotation. Mol. Biosyst. 12:634–52
    [Google Scholar]
  13. 13. 
    Chen H, Cao Y, Li Y, Xia Z, Xie J et al. 2017. Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection. New Phytol 215:1156–72
    [Google Scholar]
  14. 14. 
    Cheng G, Yang Z, Zhang H, Zhang J, Xu J. 2020. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. New Phytol 225:2122–39
    [Google Scholar]
  15. 15. 
    Cheng X, Wang A. 2017. The potyvirus silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways. J. Virol. 91:e01478–16
    [Google Scholar]
  16. 16. 
    Cheng X, Xiong R, Li Y, Li F, Zhou X, Wang A. 2017. Sumoylation of Turnip mosaic virus RNA polymerase promotes viral infection by counteracting the host NPR1-mediated immune response. Plant Cell 29:508–25
    [Google Scholar]
  17. 17. 
    Chewachong GM, Miller SA, Blakeslee JJ, Francis DM, Morris TJ, Qu F. 2015. Generation of an attenuated, cross-protective Pepino mosaic virus variant through alignment-guided mutagenesis of the viral capsid protein. Phytopathology 105:126–34
    [Google Scholar]
  18. 18. 
    Chiang CH, Lee CY, Wang CH, Jan FJ, Lin SS et al. 2007. Genetic analysis of an attenuated Papaya ringspot virus strain applied for cross-protection. Eur. J. Plant Pathol. 118:333–48
    [Google Scholar]
  19. 19. 
    Chisholm ST, Mahajan SK, Whitham SA, Yamamoto ML, Carrington JC 2000. Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. PNAS 97:489–94
    [Google Scholar]
  20. 20. 
    Chung BY, Miller WA, Atkins JF, Firth AE 2008. An overlapping essential gene in the Potyviridae. PNAS 105:5897–902
    [Google Scholar]
  21. 21. 
    Clark CA, Davis JA, Abad JA, Cuellar WJ, Fuentes S et al. 2012. Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Dis 96:168–85
    [Google Scholar]
  22. 22. 
    Clavel M, Michaeli S, Genschik P. 2017. Autophagy: a double-edged sword to fight plant viruses. Trends Plant Sci 22:646–48
    [Google Scholar]
  23. 23. 
    Contreras-Paredes CA, Silva-Rosales L, Daros JA, Alejandri-Ramirez ND, Dinkova TD. 2013. The absence of eukaryotic initiation factor eIF(iso)4E affects the systemic spread of a Tobacco etch virus isolate in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 26:461–70
    [Google Scholar]
  24. 24. 
    Cosson P, Sofer L, Le QH, Leger V, Schurdi-Levraud V et al. 2010. RTM3, which controls long-distance movement of potyviruses, is a member of a new plant gene family encoding a meprin and TRAF homology domain-containing protein. Plant Physiol 154:222–32
    [Google Scholar]
  25. 25. 
    Coutinho de Oliveira L, Volpon L, Rahardjo AK, Osborne MJ, Culjkovic-Kraljacic B et al. 2019. Structural studies of the eIF4E-VPg complex reveal a direct competition for capped RNA: implications for translation. PNAS 116:24056–65
    [Google Scholar]
  26. 26. 
    Coutts BA, Kehoe MA, Webster CG, Wylie SJ, Jones RA. 2011. Zucchini yellow mosaic virus: biological properties, detection procedures and comparison of coat protein gene sequences. Arch. Virol. 156:2119–31
    [Google Scholar]
  27. 27. 
    Csorba T, Kontra L, Burgyan J. 2015. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479:85–103
    [Google Scholar]
  28. 28. 
    Cuesta R, Yuste-Calvo C, Gil-Cartón D, Sánchez F, Ponz F, Valle M. 2019. Structure of Turnip mosaic virus and its viral-like particles. Sci. Rep. 9:15396
    [Google Scholar]
  29. 29. 
    Cui H, Wang A. 2016. Plum pox virus 6K1 protein is required for viral replication and targets the viral replication complex at the early stage of infection. J. Virol. 90:5119–31
    [Google Scholar]
  30. 30. 
    Cui H, Wang A. 2017. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene. Plant Biotechnol. J. 15:344–56
    [Google Scholar]
  31. 31. 
    Cui H, Wang A. 2019. The biological impact of the hypervariable N-terminal region of potyviral genomes. Annu. Rev. Virol. 6:255–74
    [Google Scholar]
  32. 32. 
    Cui X, Wei T, Chowda-Reddy RV, Sun G, Wang A 2010. The tobacco etch virus P3 protein forms mobile inclusions via the early secretory pathway and traffics along actin microfilaments. Virology 397:56–63
    [Google Scholar]
  33. 33. 
    Cui X, Yaghmaiean H, Wu G, Wu X, Chen X et al. 2017. The C-terminal region of the Turnip mosaic virus P3 protein is essential for viral infection via targeting P3 to the viral replication complex. Virology 510:147–55
    [Google Scholar]
  34. 34. 
    Dai Z, He R, Bernards MA, Wang A 2020. The cis-expression of the coat protein of turnip mosaic virus is essential for viral intercellular movement in plants. Mol. Plant Pathol. 21:1194–211
    [Google Scholar]
  35. 35. 
    Davie K, Holmes R, Pickup J, Lacomme C. 2017. Dynamics of PVY strains in field grown potato: impact of strain competition and ability to overcome host resistance mechanisms. Virus Res 241:95–104
    [Google Scholar]
  36. 36. 
    Decroocq V, Salvador B, Sicard O, Glasa M, Cosson P et al. 2009. The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Mol. Plant-Microbe Interact. 22:1302–11
    [Google Scholar]
  37. 37. 
    del Toro FJ, Mencía E, Aguilar E, Tenllado F, Canto T. 2018. HCPro-mediated transmission by aphids of purified virions does not require its silencing suppression function and correlates with its ability to coat cell microtubules in loss-of-function mutant studies. Virology 525:10–18
    [Google Scholar]
  38. 38. 
    Deng P, Wu Z, Wang A. 2015. The multifunctional protein CI of potyviruses plays interlinked and distinct roles in viral genome replication and intercellular movement. Virol. J. 12:141
    [Google Scholar]
  39. 39. 
    Diaz-Pendon JA, Truniger V, Nieto C, Garcia-Mas J, Bendahmane A, Aranda MA. 2004. Advances in understanding recessive resistance to plant viruses. Mol. Plant Pathol. 5:223–33
    [Google Scholar]
  40. 40. 
    Dolja VV, Krupovic M, Koonin EV. 2020. Deep roots and splendid boughs of the global plant virome. Annu. Rev. Phytopathol. 58:23–53
    [Google Scholar]
  41. 41. 
    Dong OX, Ronald PC. 2019. Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiol 180:26–38
    [Google Scholar]
  42. 42. 
    Dunoyer P, Thomas C, Harrison S, Revers F, Maule A. 2004. A cysteine-rich plant protein potentiates potyvirus movement through an interaction with the virus genome-linked protein VPg. J. Virol. 78:2301–9
    [Google Scholar]
  43. 43. 
    Endres MW, Gregory BD, Gao Z, Foreman AW, Mlotshwa S et al. 2010. Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. PLOS Pathog 6:e1000729
    [Google Scholar]
  44. 44. 
    Eskelin K, Hafrén A, Rantalainen KI, Mäkinen K. 2011. Potyviral VPg enhances viral RNA translation and inhibits reporter mRNA translation in planta. J. Virol. 85:9210–21
    [Google Scholar]
  45. 45. 
    Feng X, Myers JR, Karasev AV. 2015. Bean common mosaic virus isolate exhibits a novel pathogenicity profile in common bean, overcoming the bc-3 resistance allele coding for the mutated eIF4E translation initiation factor. Phytopathology 105:1487–95
    [Google Scholar]
  46. 46. 
    Folimonova SY. 2013. Developing an understanding of cross-protection by Citrus tristeza virus. Front. Microbiol. 4:76
    [Google Scholar]
  47. 47. 
    Gadhave KR, Gautam S, Rasmussen DA, Srinivasan R. 2020. Aphid transmission of potyvirus: the largest plant-infecting RNA virus genus. Viruses 12:773
    [Google Scholar]
  48. 48. 
    Gallo A, Valli A, Calvo M, García JA. 2018. A functional link between RNA replication and virion assembly in the potyvirus plum pox virus. J. Virol. 92:e02179–17
    [Google Scholar]
  49. 49. 
    Gal-On A. 2000. A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology 90:467–73
    [Google Scholar]
  50. 50. 
    Gal-On A. 2007. Zucchini yellow mosaic virus: insect transmission and pathogenicity—the tails of two proteins. Mol. Plant Pathol. 8:139–50
    [Google Scholar]
  51. 51. 
    García JA, Glasa M, Cambra M, Candresse T. 2014. Plum pox virus and sharka: a model potyvirus and a major disease. Mol. Plant Pathol. 15:226–41
    [Google Scholar]
  52. 52. 
    Garcia-Ruiz H. 2019. Host factors against plant viruses. Mol. Plant Pathol. 20:1588–601
    [Google Scholar]
  53. 53. 
    Gauffier C, Lebaron C, Moretti A, Constant C, Moquet F et al. 2016. A TILLING approach to generate broad-spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy. Plant J 85:717–29
    [Google Scholar]
  54. 54. 
    Geng C, Cong QQ, Li XD, Mou AL, Gao R et al. 2015. DEVELOPMENTALLY REGULATED PLASMA MEMBRANE PROTEIN of Nicotiana benthamiana contributes to potyvirus movement and transports to plasmodesmata via the early secretory pathway and the actomyosin system. Plant Physiol 167:394–410
    [Google Scholar]
  55. 55. 
    German-Retana S, Walter J, Le Gall O 2008. Lettuce mosaic virus: from pathogen diversity to host interactors. Mol. Plant Pathol. 9:127–36
    [Google Scholar]
  56. 56. 
    Gibbs AJ, Hajizadeh M, Ohshima K, Jones RAC. 2020. The potyviruses: an evolutionary synthesis is emerging. Viruses 12:132
    [Google Scholar]
  57. 57. 
    Gibbs AJ, Ohshima K, Yasaka R, Mohammadi M, Gibbs MJ, Jones RAC. 2017. The phylogenetics of the global population of potato virus Y and its necrogenic recombinants. Virus Evol 3:vex002
    [Google Scholar]
  58. 58. 
    Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L et al. 2019. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnol. J. 17:421–34
    [Google Scholar]
  59. 59. 
    Gong YN, Tang RQ, Zhang Y, Peng J, Xian O et al. 2020. The NIa-protease protein encoded by the Pepper mottle virus is a pathogenicity determinant and releases DNA methylation of Nicotiana benthamiana. Front. Microbiol. 11:102
    [Google Scholar]
  60. 60. 
    Gonsalves D. 1998. Control of papaya ringspot virus in papaya: a case study. Annu. Rev. Phytopathol. 36:415–37
    [Google Scholar]
  61. 61. 
    Gonsalves D. 2006. Transgenic papaya: development, release, impact and challenges. Adv. Virus Res. 67:317–354
    [Google Scholar]
  62. 62. 
    Gonsalves D. 2015. The wayward Hawaiian boy returns home. Annu. Rev. Phytopathol. 53:1–17
    [Google Scholar]
  63. 63. 
    Gonzalez R, Wu B, Li X, Martinez F, Elena SF. 2019. Mutagenesis scanning uncovers evolutionary constraints on tobacco etch potyvirus membrane-associated 6K2 protein. Genome Biol. Evol. 11:1207–22
    [Google Scholar]
  64. 64. 
    Gottula J, Fuchs M. 2009. Toward a quarter century of pathogen-derived resistance and practical approaches to plant virus disease control. Adv. Virus Res. 75:161–83
    [Google Scholar]
  65. 65. 
    Grangeon R, Agbeci M, Chen J, Grondin G, Zheng H, Laliberté J-F. 2012. Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection. J. Virol. 86:9255–65
    [Google Scholar]
  66. 66. 
    Gray SM, Power AG. 2018. Anthropogenic influences on emergence of vector-borne plant viruses: the persistent problem of potato virus Y. Curr. Opin. Virol. 33:177–83
    [Google Scholar]
  67. 67. 
    Green KJ, Brown CJ, Gray SM, Karasev AV. 2017. Phylogenetic study of recombinant strains of Potato virus Y. Virology 507:40–52
    [Google Scholar]
  68. 68. 
    Guo B, Lin J, Ye K. 2011. Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase. J. Biol. Chem. 286:21937–43
    [Google Scholar]
  69. 69. 
    Guo Z, Li Y, Ding SW. 2019. Small RNA-based antimicrobial immunity. Nat. Rev. Immunol. 19:31–44
    [Google Scholar]
  70. 70. 
    Hafrén A, Ustun S, Hochmuth A, Svenning S, Johansen T, Hofius D. 2018. Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HCPro. Plant Physiol 176:649–62
    [Google Scholar]
  71. 71. 
    Hagiwara-Komoda Y, Choi SH, Sato M, Atsumi G, Abe J et al. 2016. Truncated yet functional viral protein produced via RNA polymerase slippage implies underestimated coding capacity of RNA viruses. Sci. Rep. 6:21411
    [Google Scholar]
  72. 72. 
    Hajimorad MR, Domier LL, Tolin SA, Whitham SA, Saghai Maroof MA 2018. Soybean mosaic virus: a successful potyvirus with a wide distribution but restricted natural host range. Mol. Plant Pathol. 19:1563–79
    [Google Scholar]
  73. 73. 
    Hajizadeh M, Gibbs AJ, Amirnia F, Glasa M. 2019. The global phylogeny of Plum pox virus is emerging. J. Gen. Virol. 100:1457–68
    [Google Scholar]
  74. 74. 
    Hasiow-Jaroszewska B, Fares MA, Elena SF. 2014. Molecular evolution of viral multifunctional proteins: the case of potyvirus HC-Pro. J. Mol. Evol. 78:75–86
    [Google Scholar]
  75. 75. 
    Hofius D, Lie L, Hafrén A, Coll NS. 2017. Autophagy as an emerging arena for plant-pathogen interactions. Curr. Opin. Plant Biol. 38:117–23
    [Google Scholar]
  76. 76. 
    Huang X, Chen S, Yang X, Yang X, Zhang T, Zhou G. 2020. Friend or enemy: a dual role of autophagy in plant virus infection. Front. Microbiol. 11:736
    [Google Scholar]
  77. 77. 
    Hyodo K, Okuno T. 2016. Pathogenesis mediated by proviral host factors involved in translation and replication of plant positive-strand RNA viruses. Curr. Opin. Virol. 17:11–18
    [Google Scholar]
  78. 78. 
    Ilardi V, Tavazza M. 2015. Biotechnological strategies and tools for Plum pox virus resistance: trans-, intra-, cis-genesis, and beyond. Front. Plant Sci 6:379
    [Google Scholar]
  79. 79. 
    Ivanov KI, Eskelin K, Basic M, De S, Lohmus A et al. 2016. Molecular insights into the function of the viral RNA silencing suppressor HCPro. Plant J 85:30–45
    [Google Scholar]
  80. 80. 
    Jamous RM, Boonrod K, Fuellgrabe MW, Ali-Shtayeh MS, Krczal G, Wassenegger M. 2011. The helper component-proteinase of the Zucchini yellow mosaic virus inhibits the Hua Enhancer 1 methyltransferase activity in vitro. J. Gen. Virol. 92:2222–26
    [Google Scholar]
  81. 81. 
    Jenner CE, Wang XW, Tomimura K, Ohshima K, Ponz F, Walsh JA. 2003. The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol. Plant-Microbe Interact. 16:777–84
    [Google Scholar]
  82. 82. 
    Jiang J, Laliberté J-F. 2011. The genome-linked protein VPg of plant viruses: a protein with many partners. Curr. Opin. Virol. 1:347–54
    [Google Scholar]
  83. 83. 
    Jiang J, Patarroyo C, Cabanillas DG, Zheng H, Laliberté J-F. 2015. The vesicle-forming 6K2 protein of turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection. J. Virol. 89:6695–710
    [Google Scholar]
  84. 84. 
    Jones RAC, Naidu RA. 2019. Global dimensions of plant virus diseases: current status and future perspectives. Annu. Rev. Virol. 6:387–409
    [Google Scholar]
  85. 85. 
    Kang B-C, Yeam I, Li H, Perez KW, Jahn MM. 2007. Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants. Plant Biotechnol. J. 5:526–36
    [Google Scholar]
  86. 86. 
    Kannan M, Ismail I, Bunawan H. 2018. Maize dwarf mosaic virus: from genome to disease management. Viruses 10:492
    [Google Scholar]
  87. 87. 
    Kasschau KD, Carrington JC. 1998. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461–70
    [Google Scholar]
  88. 88. 
    Kežar A, Kavčič L, Polák M, Nováček J, Gutiérrez-Aguirre I et al. 2019. Structural basis for the multitasking nature of the potato virus Y coat protein. Sci. Adv. 5:eaaw3808
    [Google Scholar]
  89. 89. 
    Kim SB, Lee HY, Seo S, Lee JH, Choi D. 2015. RNA-dependent RNA polymerase (NIb) of the potyviruses is an avirulence factor for the broad-spectrum resistance gene pvr4 in Capsicum annuum cv. Cm334. PLOS ONE 10:e0119639
    [Google Scholar]
  90. 90. 
    Kreuze JF, Karyeija RF, Gibson RW, Valkonen JPT. 2000. Comparisons of coat protein gene sequences show that East African isolates of Sweet potato feathery mottle virus form a genetically distinct group. Arch. Virol. 145:567–74
    [Google Scholar]
  91. 91. 
    Laliberté J-F, Sanfaçon H. 2010. Cellular remodeling during plant virus infection. Annu. Rev. Phytopathol. 48:69–91
    [Google Scholar]
  92. 92. 
    Lecoq H, Desbiez C. 2012. Viruses of cucurbit crops in the Mediterranean region: an ever-changing picture. Adv. Virus Res. 84:67–126
    [Google Scholar]
  93. 93. 
    Li F, Wang A. 2018. RNA decay is an antiviral defense in plants that is counteracted by viral RNA silencing suppressors. PLOS Pathog 14:e1007228
    [Google Scholar]
  94. 94. 
    Li F, Wang A. 2019. RNA-targeted antiviral immunity: more than just RNA silencing. Trends Microbiol 27:792–805
    [Google Scholar]
  95. 95. 
    Li F, Zhang C, Li Y, Wu G, Hou X et al. 2018. Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase. Nat. Commun. 9:1268
    [Google Scholar]
  96. 96. 
    Li F, Zhang C, Tang Z, Zhang L, Dai Z et al. 2020. A plant RNA virus activates selective autophagy in a UPR-dependent manner to promote virus infection. New Phytol 228:622–39
    [Google Scholar]
  97. 97. 
    Li F, Zhao N, Li Z, Xu X, Wang Y et al. 2017. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLOS Pathog 13:e1006213
    [Google Scholar]
  98. 98. 
    Li G, Lv H, Zhang S, Zhang S, Li F et al. 2019. TuMV management for brassica crops through host resistance: retrospect and prospects. Plant Pathol 68:1035–44
    [Google Scholar]
  99. 99. 
    Lindbo JA, Dougherty WG. 1992. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725–33
    [Google Scholar]
  100. 100. 
    Lindbo JA, Falk BW. 2017. The impact of “coat protein-mediated virus resistance” in applied plant pathology and basic research. Phytopathology 107:624–34
    [Google Scholar]
  101. 101. 
    Liu Q, Hobbs HA, Domier LL. 2019. Genome-wide association study of the seed transmission rate of soybean mosaic virus and associated traits using two diverse population panels. Theor. Appl. Genet. 132:3413–24
    [Google Scholar]
  102. 102. 
    Lohmus A, Varjosalo M, Mäkinen K. 2016. Protein composition of 6K2-induced membrane structures formed during potato virus A infection. Mol. Plant Pathol. 17:943–58
    [Google Scholar]
  103. 103. 
    Mahas A, Mahfouz M. 2018. Engineering virus resistance via CRISPR-Cas systems. Curr. Opin. Virol. 32:1–8
    [Google Scholar]
  104. 104. 
    Maina S, Barbetti MJ, Martin DP, Edwards OR, Jones RA. 2018. New isolates of Sweet potato feathery mottle virus and Sweet potato virus C: biological and molecular properties, and recombination analysis based on complete genomes. Plant Dis 102:1899–914
    [Google Scholar]
  105. 105. 
    Mäkinen K. 2020. Plant susceptibility genes as a source for potyvirus resistance. Ann. Appl. Biol. 176:122–29
    [Google Scholar]
  106. 106. 
    Mann KS, Sanfaçon H. 2019. Expanding repertoire of plant positive-strand RNA virus proteases. Viruses 11:66
    [Google Scholar]
  107. 107. 
    Mansilla PJ, Moreira AG, Mello APOA, Rezende JAM, Ventura JA et al. 2013. Importance of cucurbits in the epidemiology of Papaya ringspot virus type P. Plant Pathol 62:571–77
    [Google Scholar]
  108. 108. 
    Martínez-Turiño S, García JA. 2020. Potyviral coat protein and genomic RNA: a striking partnership leading virion assembly and more. Adv. Virus Res. 108:165–211
    [Google Scholar]
  109. 109. 
    McGinn J, Marraffini LA. 2019. Molecular mechanisms of CRISPR-CAS spacer acquisition. Nat. Rev. Microbiol. 17:7–12
    [Google Scholar]
  110. 110. 
    McKinney HH. 1929. Mosaic diseases in the Canary Islands, West Africa, and Gibraltar. J. Agric. Res. 39:557–78
    [Google Scholar]
  111. 111. 
    Meziadi C, Blanchet S, Geffroy V, Pflieger S. 2017. Genetic resistance against viruses in Phaseolus vulgaris L.: state of the art and future prospects. Plant Sci 265:39–50
    [Google Scholar]
  112. 112. 
    Mingot A, Valli A, Rodamilans B, Leon DS, Baulcombe DC et al. 2016. The P1N-PISPO trans-frame gene of Sweet potato feathery mottle potyvirus is produced during virus infection and functions as an RNA silencing suppressor. J. Virol. 90:3543–57
    [Google Scholar]
  113. 113. 
    Miras M, Miller WA, Truniger V, Aranda MA. 2017. Non-canonical translation in plant RNA viruses. Front. Plant Sci. 8:494
    [Google Scholar]
  114. 114. 
    Moon SL, Wilusz J. 2013. Cytoplasmic viruses: rage against the (cellular RNA decay) machine. PLOS Pathog 9:e1003762
    [Google Scholar]
  115. 115. 
    Moreno A, Fereres A. 2012. Virus diseases in lettuce in the Mediterranean Basin. Adv. Virus Res. 84:247–88
    [Google Scholar]
  116. 116. 
    Morris CE, Moury B. 2019. Revisiting the concept of host range of plant pathogens. Annu. Rev. Phytopathol. 57:63–90
    [Google Scholar]
  117. 117. 
    Nakahara KS, Masuta C, Yamada S, Shimura H, Kashihara Y et al. 2012. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. PNAS 109:10113–18
    [Google Scholar]
  118. 118. 
    Nakahara KS, Shimada R, Choi SH, Yamamoto H, Shao J, Uyeda I. 2010. Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against Clover yellow vein virus in pea. Mol. Plant-Microbe Interact. 23:1460–69
    [Google Scholar]
  119. 119. 
    Nicaise V. 2014. Crop immunity against viruses: outcomes and future challenges. Front. Plant Sci. 5:660
    [Google Scholar]
  120. 120. 
    Nicaise V, Candresse T. 2017. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity. Mol. Plant Pathol. 18:878–86
    [Google Scholar]
  121. 121. 
    Niehl A, Wyrsch I, Boller T, Heinlein M. 2016. Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. New Phytol 211:1008–19
    [Google Scholar]
  122. 122. 
    Nieto C, Piron F, Dalmais M, Marco CF, Moriones E et al. 2007. EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol 7:34
    [Google Scholar]
  123. 123. 
    Nishiguchi M, Kobayashi K. 2011. Attenuated plant viruses: preventing virus diseases and understanding the molecular mechanism. J. Gen. Plant Pathol. 77:221–29
    [Google Scholar]
  124. 124. 
    Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW et al. 2006. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24:1420–28
    [Google Scholar]
  125. 125. 
    Olspert A, Chung BYW, Atkins JF, Carr JP, Firth AE. 2015. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Rep 16:995–1004
    [Google Scholar]
  126. 126. 
    Park SH, Li F, Renaud J, Shen W, Li Y, Guo L, Cui H, Sumarah M, Wang A. 2017. NbEXPA1, an α-expansin, is plasmodesmata-specific and a novel host factor for potyviral infection. Plant J 92:846–61
    [Google Scholar]
  127. 127. 
    Pasin F, Simón-Mateo C, García JA. 2014. The hypervariable amino-terminus of P1 protease modulates potyviral replication and host defense responses. PLOS Pathog 10:e1003985
    [Google Scholar]
  128. 128. 
    Piron F, Nicolaï M, Minoia S, Piednoir E, Moretti A et al. 2010. An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLOS ONE 5:e11313
    [Google Scholar]
  129. 129. 
    Pollari M, De S, Wang A, Mäkinen K 2020. The potyviral silencing suppressor HCPro recruits and employs host ARGONAUTE1 in pro-viral functions. PLOS Pathog 16:e1008965
    [Google Scholar]
  130. 130. 
    Pumplin N, Voinnet O. 2013. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat. Rev. Microbiol. 11:745–60
    [Google Scholar]
  131. 131. 
    Puustinen P, Mäkinen K. 2004. Uridylylation of the potyvirus VPg by viral replicase NIb correlates with the nucleotide binding capacity of VPg. J. Biol. Chem. 279:38103–10
    [Google Scholar]
  132. 132. 
    Pyott DE, Sheehan E, Molnar A. 2016. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 17:1276–88
    [Google Scholar]
  133. 133. 
    Quenouille J, Vassilakos N, Moury B. 2013. Potato virus Y: a major crop pathogen that has provided major insights into the evolution of viral pathogenicity. Mol. Plant Pathol. 14:439–52
    [Google Scholar]
  134. 134. 
    Rajamäki ML, Streng J, Valkonen JPT. 2014. Silencing suppressor protein VPg of a potyvirus interacts with the plant silencing-related protein SGS3. Mol. Plant-Microbe Interact. 27:1199–210
    [Google Scholar]
  135. 135. 
    Rajamäki ML, Valkonen JPT. 2009. Control of nuclear and nucleolar localization of nuclear inclusion protein a of picoRNA-like potato virus A in Nicotiana species. Plant Cell 21:2485–502
    [Google Scholar]
  136. 136. 
    Ravelonandro M, Scorza R, Michel HJ, Briard P. 2014. The efficiency of RNA interference for conferring stable resistance to plum pox virus. Plant Cell Tissue Organ Cult 118:347–56
    [Google Scholar]
  137. 137. 
    Redinbaugh MG, Stewart LR. 2018. Maize lethal necrosis: an emerging, synergistic viral disease. Annu. Rev. Virol. 5:301–22
    [Google Scholar]
  138. 138. 
    Revers F, García JA. 2015. Molecular biology of potyviruses. Adv. Virus Res. 92:101–99
    [Google Scholar]
  139. 139. 
    Revers F, Lot H, Souche S, Le Gall O, Candresse T, Dunez J 1997. Biological and molecular variability of lettuce mosaic virus isolates. Phytopathology 87:397–403
    [Google Scholar]
  140. 140. 
    Riechmann JL, Cervera MT, García JA. 1995. Processing of the plum pox virus polyprotein at the P3–6K1 junction is not required for virus viability. J. Gen. Virol. 76:951–56
    [Google Scholar]
  141. 141. 
    Rimbaud L, Dallot S, Gottwald T, Decroocq V, Jacquot E et al. 2015. Sharka epidemiology and worldwide management strategies: learning lessons to optimize disease control in perennial plants. Annu. Rev. Phytopathol. 53:357–78
    [Google Scholar]
  142. 142. 
    Rodamilans B, Valli A, García JA 2020. Molecular plant-Plum pox virus interactions. Mol. Plant-Microbe Interact. 33:6–17
    [Google Scholar]
  143. 143. 
    Rodamilans B, Valli A, Mingot A, San León D, Baulcombe D et al. 2015. RNA polymerase slippage as a mechanism for the production of frameshift gene products in plant viruses of the Potyviridae family. J. Virol. 89:6965–67
    [Google Scholar]
  144. 144. 
    Rodamilans B, Valli A, Mingot A, San León D, López-Moya JJ, García JA 2018. An atypical RNA silencing suppression strategy provides a snapshot of the evolution of sweet potato-infecting potyviruses. Sci. Rep. 8:15937
    [Google Scholar]
  145. 145. 
    Rosa C, Kuo YW, Wuriyanghan H, Falk BW. 2018. RNA interference mechanisms and applications in plant pathology. Annu. Rev. Phytopathol. 56:581–610
    [Google Scholar]
  146. 146. 
    Rybicki EP. 2015. A top ten list for economically important plant viruses. Arch. Virol. 160:17–20
    [Google Scholar]
  147. 147. 
    Sabharwal P, Srinivas S, Savithri HS 2018. Mapping the domain of interaction of PVBV VPg with NIa-Pro: role of N-terminal disordered region of VPg in the modulation of structure and function. Virology 524:18–31
    [Google Scholar]
  148. 148. 
    Saleh A, Withers J, Mohan R, Marques J, Gu Y et al. 2015. Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses. Cell Host Microbe 18:169–82
    [Google Scholar]
  149. 149. 
    Sánchez F, Wang X, Jenner CE, Walsh JA, Ponz F. 2003. Strains of Turnip mosaic potyvirus as defined by the molecular analysis of the coat protein gene of the virus. Virus Res 94:33–43
    [Google Scholar]
  150. 150. 
    Sandford JC, Johnston SA. 1985. The concept of parasite-derived resistance: deriving resistance genes from the parasite's own genome. J. Theor. Biol. 113:395–405
    [Google Scholar]
  151. 151. 
    Sanfaçon H. 2015. Plant translation factors and virus resistance. Viruses 7:3392–419
    [Google Scholar]
  152. 152. 
    Schaad MC, Jensen PE, Carrington JC. 1997. Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16:4049–59
    [Google Scholar]
  153. 153. 
    Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E et al. 2011. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 12:938–54
    [Google Scholar]
  154. 154. 
    Shan HY, Pasin F, Tzanetakis IE, Simón-Mateo C, García JA, Rodamilans B. 2018. Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host. Mol. Plant Pathol. 19:1504–10
    [Google Scholar]
  155. 155. 
    Shen W, Shi Y, Dai Z, Wang A. 2020. The RNA-dependent RNA polymerase NIb of potyviruses plays multifunctional, contrasting roles during viral infection. Viruses 12:77
    [Google Scholar]
  156. 156. 
    Shopan J, Mou H, Zhang L, Zhang C, Ma W et al. 2017. Eukaryotic translation initiation factor 2B-beta (eIF2Bβ), a new class of plant virus resistance gene. Plant J 90:929–40
    [Google Scholar]
  157. 157. 
    Simmons HE, Dunham JP, Zinn KE, Munkvold GP, Holmes EC, Stephenson AG. 2013. Zucchini yellow mosaic virus (ZYMV, Potyvirus): vertical transmission, seed infection and cryptic infections. Virus Res 176:259–64
    [Google Scholar]
  158. 158. 
    Singh SP, Schwartz HF. 2010. Breeding common bean for resistance to diseases: a review. Crop Sci 50:2199–223
    [Google Scholar]
  159. 159. 
    Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM. 2000. Gene expression: total silencing by intron-spliced hairpin RNAs. Nature 407:319–20
    [Google Scholar]
  160. 160. 
    Smýkal P, Šafářová D, Navrátil M, Dostalová R. 2010. Marker assisted pea breeding: eIF4E allele specific markers to pea seed-borne mosaic virus (PSbMV) resistance. Mol. Breed. 26:425–38
    [Google Scholar]
  161. 161. 
    Soitamo AJ, Jada B, Lehto K 2011. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers. BMC Plant Biol 11:68
    [Google Scholar]
  162. 162. 
    Sorel M, García JA, German-Retana S. 2014. The Potyviridae cylindrical inclusion helicase: a key multipartner and multifunctional protein. Mol. Plant-Microbe Interact. 27:215–26
    [Google Scholar]
  163. 163. 
    Sorel M, Svanella-Dumas L, Candresse T, Acelin G, Pitarch A et al. 2014. Key mutations in the cylindrical inclusion involved in Lettuce mosaic virus adaptation to eIF4E-mediated resistance in lettuce. Mol. Plant-Microbe Interact. 27:1014–24
    [Google Scholar]
  164. 164. 
    Spetz C, Valkonen JPT. 2004. Potyviral 6K2 protein long-distance movement and symptom-induction functions are independent and host-specific. Mol. Plant-Microbe Interact. 17:502–10
    [Google Scholar]
  165. 165. 
    Tang Z, Bernards M, Wang A 2020. Identification and manipulation of host factors for the control of plant viruses. Applied Plant Virology LP Awasthi 671–95 Cambridge, MA: Academic
    [Google Scholar]
  166. 166. 
    Tricoli DM, Carney KJ, Russell PF, McMaster JR, Groff DW et al. 1995. Field-evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus, and zucchini yellow mosaic virus. Nat. Biotechnol. 13:1458–65
    [Google Scholar]
  167. 167. 
    Tripathi S, Suzuki JY, Ferreira SA, Gonsalves D. 2008. Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Mol. Plant Pathol. 9:269–80
    [Google Scholar]
  168. 168. 
    Truniger V, Aranda MA. 2009. Recessive resistance to plant viruses. Adv. Virus Res. 75:119–59
    [Google Scholar]
  169. 169. 
    Untiveros M, Olspert A, Artola K, Firth AE, Kreuze JF, Valkonen JPT. 2016. A novel sweet potato potyvirus open reading frame (ORF) is expressed via polymerase slippage and suppresses RNA silencing. Mol. Plant Pathol. 17:1111–23
    [Google Scholar]
  170. 170. 
    Ustun S, Hafrén A, Hofius D. 2017. Autophagy as a mediator of life and death in plants. Curr. Opin. Plant Biol. 40:122–30
    [Google Scholar]
  171. 171. 
    Valli AA, Gallo A, Rodamilans B, López-Moya JJ, García JA. 2018. The HCPro from the Potyviridae family: an enviable multitasking helper component that every virus would like to have. Mol. Plant Pathol. 19:744–63
    [Google Scholar]
  172. 172. 
    Verchot J, Carrington JC. 1995. Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification. J. Virol. 69:3668–74
    [Google Scholar]
  173. 173. 
    Vijayapalani P, Maeshima M, Nagasaki-Takekuchi N, Miller WA. 2012. Interaction of the trans-frame potyvirus protein P3N-PIPO with host protein PCaP1 facilitates potyvirus movement. PLOS Pathog 8:e1002639
    [Google Scholar]
  174. 174. 
    Walsh JA, Jenner CE. 2002. Turnip mosaic virus and the quest for durable resistance. Mol. Plant Pathol. 3:289–300
    [Google Scholar]
  175. 175. 
    Walter J, Barra A, Doublet B, Cere N, Charon J, Michon T. 2019. Hydrodynamic behavior of the intrinsically disordered potyvirus protein VPg, of the translation initiation factor eIF4E and of their binary complex. Int. J. Mol. Sci. 20:1794
    [Google Scholar]
  176. 176. 
    Waltermann A, Maiss E. 2006. Detection of 6K1 as a mature protein of 6 kDa in plum pox virus-infected Nicotiana benthamiana. J. Gen. Virol. 87:2381–86
    [Google Scholar]
  177. 177. 
    Wang A. 2015. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu. Rev. Phytopathol. 53:45–66
    [Google Scholar]
  178. 178. 
    Wang A. 2018. Virus and host plant interactions. eLS https://doi.org/10.1002/9780470015902.a0000758.pub3
    [Crossref] [Google Scholar]
  179. 179. 
    Wang A, Krishnaswamy S. 2012. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol. Plant Pathol. 13:795–803
    [Google Scholar]
  180. 180. 
    Wang Q, Zhang C, Wang CY, Qian YJ, Li ZH et al. 2017. Further characterization of Maize chlorotic mottle virus and its synergistic interaction with Sugarcane mosaic virus in maize. Sci. Rep. 7:39960
    [Google Scholar]
  181. 181. 
    Wang X, Kohalmi SE, Svircev A, Wang A, Sanfaçon H, Tian L. 2013. Silencing of the host factor eIF(iso)4E gene confers Plum pox virus resistance in plum. PLOS ONE 8:e50627
    [Google Scholar]
  182. 182. 
    Wang XB, Wu Q, Ito T, Cillo F, Li W-X et al. 2010. RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. PNAS 107:484–89
    [Google Scholar]
  183. 183. 
    Wei T, Huang T-S, McNeil J, Laliberté J-F, Hong J et al. 2010. Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. J. Virol. 84:799–809
    [Google Scholar]
  184. 184. 
    Wei T, Wang A. 2008. Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. J. Virol. 82:12252–64
    [Google Scholar]
  185. 185. 
    Wei T, Zhang C, Hong J, Xiong R, Kasschau KD et al. 2010. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLOS Pathog 6:e1000962
    [Google Scholar]
  186. 186. 
    Wei T, Zhang C, Hou X, Sanfaçon H, Wang A. 2013. The SNARE protein Syp71 is essential for turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLOS Pathog 9:e1003378
    [Google Scholar]
  187. 187. 
    Wen RH, Hajimorad MR. 2010. Mutational analysis of the putative pipo of soybean mosaic virus suggests disruption of PIPO protein impedes movement. Virology 400:1–7
    [Google Scholar]
  188. 188. 
    White KA. 2015. The polymerase slips and PIPO exists. EMBO Rep 16:885–86
    [Google Scholar]
  189. 189. 
    Widyasari K, Alazem M, Kim KH. 2020. Soybean resistance to soybean mosaic virus. Plants 9:219
    [Google Scholar]
  190. 190. 
    Wokorach G, Otim G, Njuguna J, Edema H, Njung'e V et al. 2020. Genomic analysis of Sweet potato feathery mottle virus from East Africa. Physiol. Mol. Plant Pathol. 110:101473
    [Google Scholar]
  191. 191. 
    Worrall EA, Wamonje FO, Mukeshimana G, Harvey JJW, Carr JP, Mitter N. 2015. Bean common mosaic virus and Bean common mosaic necrosis virus: relationships, biology, and prospects for control. Adv. Virus Res. 93:1–46
    [Google Scholar]
  192. 192. 
    Wu G, Cui X, Chen H, Renaud JB, Yu K et al. 2018. Dynamin-like proteins of endocytosis in plants are coopted by potyviruses to enhance virus infection. J. Virol. 92:e01320–18
    [Google Scholar]
  193. 193. 
    Wu G, Cui X, Dai Z, He R, Li Y et al. 2020. A plant RNA virus hijacks endocytic proteins to establish its infection in plants. Plant J 101:384–400
    [Google Scholar]
  194. 194. 
    Wu LJ, Zu XF, Wang SX, Chen YH. 2012. Sugarcane mosaic virus—long history but still a threat to industry. Crop Prot 42:74–78
    [Google Scholar]
  195. 195. 
    Xiong R, Wang A. 2013. SCE1, the SUMO-conjugating enzyme in plants that interacts with NIb, the RNA-dependent RNA polymerase of turnip mosaic virus, is required for viral infection. J. Virol. 87:4704–15
    [Google Scholar]
  196. 196. 
    Yang M, Ismayil A, Liu Y. 2020. Autophagy in plant-virus interactions. Annu. Rev. Virol. 7:403–19
    [Google Scholar]
  197. 197. 
    Zamora M, Méndez-López E, Agirrezabala X, Cuesta R, Lavín JL et al. 2017. Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses. Sci. Adv. 3:eaao2182
    [Google Scholar]
  198. 198. 
    Zhang CQ, Hajimorad MR, Eggenberger AL, Tsang S, Whitham SA, Hill JH. 2009. Cytoplasmic inclusion cistron of Soybean mosaic virus serves as a virulence determinant on Rsv3-genotype soybean and a symptom determinant. Virology 391:240–48
    [Google Scholar]
  199. 199. 
    Zhang X, Guo H. 2017. mRNA decay in plants: both quantity and quality matter. Curr. Opin. Plant Biol. 35:138–44
    [Google Scholar]
  200. 200. 
    Ziebell H, Carr JP. 2010. Cross-protection: a century of mystery. Adv. Virus Res. 76:211–64
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-020620-114550
Loading
/content/journals/10.1146/annurev-phyto-020620-114550
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error