1932

Abstract

The genomics era has ushered in exciting possibilities to examine the genetic bases that undergird the characteristic features of and other plant pathogens. In this review, we provide historical perspectives on some of the salient biological characteristics of , including its morphology, microsclerotia formation, host range, disease symptoms, vascular niche, reproduction, and population structure. The kaleidoscopic population structure of this pathogen is summarized, including different races of the pathogen, defoliating and nondefoliating phenotypes, vegetative compatibility groupings, and clonal populations. Where possible, we place the characteristic differences in the context of comparative and functional genomics analyses that have offered insights into population divergence within and the related species.Current challenges are highlighted along with some suggested future population genomics studies that will contribute to advancing our understanding of the population divergence in .

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-020620-121925
2021-08-25
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/phyto/59/1/annurev-phyto-020620-121925.html?itemId=/content/journals/10.1146/annurev-phyto-020620-121925&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alexander LJ. 1962. Susceptibility of certain Verticillium-resistant tomato varieties to an Ohio isolate of the pathogen. Phytopathology 52:10998–1000
    [Google Scholar]
  2. 2. 
    Almeida P, Barbosa R, Zalar P, Imanishi Y, Shimizu K et al. 2015. A population genomics insight into the Mediterranean origins of wine yeast domestication. Mol. Ecol 24:215412–27
    [Google Scholar]
  3. 3. 
    Atallah ZK, Maruthachalam K, Davis RM, Klosterman SJ, Subbarao KV. 2009. Characterization of 22 highly polymorphic microsatellite loci in the cosmopolitan fungal plant pathogen Verticillium dahliae. Mol. Ecol. Resour. 9:1460–559
    [Google Scholar]
  4. 4. 
    Atallah ZK, Maruthachalam K, du Toit L, Koike ST, Davis RM et al. 2010. Population analyses of the vascular plant pathogen Verticillium dahliae detect recombination and transcontinental gene flow. Fungal Genet. Biol 47:5416–22
    [Google Scholar]
  5. 5. 
    Atallah ZK, Maruthachalam K, Subbarao KV. 2012. Sources of Verticillium dahliae affecting lettuce. Phytopathology 102:111071–78
    [Google Scholar]
  6. 6. 
    Atallah ZK, Maruthachalam K, Vallad GE, Davis RM, Klosterman SJ et al. 2011. Analysis of Verticillium dahliae suggests a lack of correlation between genotypic diversity and virulence phenotypes. Plant Dis 95:101224–32
    [Google Scholar]
  7. 7. 
    Baroudy F, Habib W, Tanos G, Gerges E, Saab C et al. 2018. Long-distance spread of Verticillium dahliae through rivers and irrigation systems. Plant Dis 102:81559–65
    [Google Scholar]
  8. 8. 
    Baroudy F, Putman AI, Habib W, Puri KD, Subbarao KV et al. 2019. Genetic diversity of Verticillium dahliae populations from olive and potato in Lebanon. Plant Dis 103:4656–67
    [Google Scholar]
  9. 9. 
    Bautista-Jalón LS, Frenkel O, Tsror L, Malcolm GM, Gugino BK et al. 2021. Genetic differentiation of Verticillium dahliae populations recovered from symptomatic and asymptomatic hosts. Phytopathology 111:14959
    [Google Scholar]
  10. 10. 
    Bejarano-Alcázar J, Blanco-López MA, Melero-Vara JM, Jiménez-Díaz RM. 1996. Etiology, importance, and distribution of Verticillium wilt of cotton in southern Spain. Plant Dis 80:111233–38
    [Google Scholar]
  11. 11. 
    Bejarano-Alcázar J, Pérez-Artés E, Jiménez-Díaz RM. 2001. Spread of the defoliating pathotype of Verticillium dahliae to new cotton- and olive-growing areas in Southern Spain. Proceedings of the 8th International Verticillium Symposium57 Córdoba, Spain: CSIC
    [Google Scholar]
  12. 12. 
    Bell AA, Wheeler MH. 1986. Biosynthesis and functions of fungal melanins. Annu. Rev. Phytopathol 24:411–51
    [Google Scholar]
  13. 13. 
    Ben-David A, Bashan Y, Okon Y. 1986. Ethylene production in pepper (Capsicum annuum) leaves infected with Xanthomonas campestris pv. vesicatoria. Physiol. Mol. Plant Pathol 29:305–16
    [Google Scholar]
  14. 14. 
    Bhat RG, Smith RF, Koike ST, Wu BM, Subbarao KV. 2003. Characterization of Verticillium dahliae isolates and wilt epidemics of pepper. Plant Dis 87:7789–97
    [Google Scholar]
  15. 15. 
    Carpita NC, Gibeaut DM. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:11–30
    [Google Scholar]
  16. 16. 
    Chavarro-Carrero EA, Vermeulen JP, Torres DE, Usami T, Schouten HJ et al. 2021. Comparative genomics reveals the in planta-secreted Verticillium dahliae Av2 effector protein recognized in tomato plants that carry the V2 resistance locus. Environ. Microbiol 23:194158
    [Google Scholar]
  17. 17. 
    Chen JY, Liu C, Gui YJ, Si KW, Zhang DD et al. 2018. Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium. New Phytol 217:2756–70
    [Google Scholar]
  18. 18. 
    Chen JY, Xiao HL, Gui YJ, Zhang DD, Li L et al. 2016. Characterization of the Verticillium dahliae exoproteome involves in pathogenicity from cotton-containing medium. Front. Microbiol 7:1709
    [Google Scholar]
  19. 19. 
    Cockerton HM, Li B, Vickerstaff RJ, Eyre CA, Sargent DJ et al. 2019. Identifying Verticillium dahliae resistance in strawberry through disease screening of multiple populations and image based phenotyping. Front. Plant Sci 10:924
    [Google Scholar]
  20. 20. 
    Collado-Romero M, Mercado-Blanco J, Olivares-García C, Jiménez-Díaz RM. 2008. Phylogenetic analysis of Verticillium dahliae vegetative compatibility groups. Phytopathology 98:91019–28
    [Google Scholar]
  21. 21. 
    Collado-Romero M, Mercado-Blanco J, Olivares-García C, Valverde-Corredor A, Jiménez-Díaz RM. 2006. Molecular variability within and among Verticillium dahliae vegetative compatibility groups determined by fluorescent amplified fragment length polymorphism and polymerase chain reaction markers. Phytopathology 96:5485–95
    [Google Scholar]
  22. 22. 
    Daayf F, Nicole M, Geiger JP 1995. Differentiation of Verticillium dahliae populations on the basis of vegetative compatibility and pathogenicity on cotton. Eur. J. Plant Pathol. 101:169–79
    [Google Scholar]
  23. 23. 
    de Jonge R, Bolton MD, Kombrink A, van den Berg GC, Yadeta KA et al. 2013. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res 23:81271–82
    [Google Scholar]
  24. 24. 
    de Jonge R, Bolton MD, Thomma BP. 2011. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Curr. Opin. Plant. Biol 14:4400–6
    [Google Scholar]
  25. 25. 
    de Jonge R, van Esse HP, Maruthachalam K, Bolton MD, Santhanam P et al. 2012. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. PNAS 109:135110–15
    [Google Scholar]
  26. 26. 
    de Sain M, Rep M. 2015. The role of pathogen-secreted proteins in fungal vascular wilt diseases. Int. J. Mol. Sci 16:1023970–93
    [Google Scholar]
  27. 27. 
    Depotter JR, Seidl MF, Wood TA, Thomma BP. 2016. Interspecific hybridization impacts host range and pathogenicity of filamentous microbes. Curr. Opin. Microbiol 32:7–13
    [Google Scholar]
  28. 28. 
    Dervis S, Erten L, Soylu S, Tok FM, Kurt S et al. 2007. Vegetative compatibility groups in Verticillium dahliae isolates from olive in western Turkey. Eur. J. Plant Pathol 119:4437–47
    [Google Scholar]
  29. 29. 
    Dhar N, Short DPG, Mamo BE, Corrion AJ, Wai CM et al. 2019. Arabidopsis defense mutant ndr1–1 displays accelerated development and early flowering mediated by the hormone gibberellic acid. Plant Sci 285:200–13
    [Google Scholar]
  30. 30. 
    Dobinson KF, Harrington MA, Omer M, Rowe RC 2000. Molecular characterization of vegetative compatibility group 4A and 4B isolates of Verticillium dahliae associated with potato early dying. Plant Dis 84:111241–45
    [Google Scholar]
  31. 31. 
    Dobinson KF, Patterson NA, White GJ, Grant S. 1998. DNA fingerprinting and vegetative compatibility analysis indicate multiple origins for Verticillium dahliae race 2 tomato isolates from Ontario, Canada. Mycol. Res 102:91089–95
    [Google Scholar]
  32. 32. 
    Dobinson KF, Tenuta GK, Lazarovits G. 1996. Occurrence of race 2 of Verticillium dahliae in processing tomato fields in southwestern Ontario. Can. J. Plant Pathol 18:155–58
    [Google Scholar]
  33. 33. 
    Dung JK, Peever TL, Johnson DA 2013. Verticillium dahliae populations from mint and potato are genetically divergent with predominant haplotypes. Phytopathology 103:5445–59
    [Google Scholar]
  34. 34. 
    Duressa D, Anchieta A, Chen D, Klimes A, Garcia-Pedrajas MD et al. 2013. RNA-seq analyses of gene expression in the microsclerotia of Verticillium dahliae. BMC Genom 14:1607
    [Google Scholar]
  35. 35. 
    Dyer PS, Kück U. 2017. Sex and the imperfect fungi. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0043-2017
    [Crossref] [Google Scholar]
  36. 36. 
    Fan R, Cockerton HM, Armitage AD, Bates H, Cascant-Lopez E et al. 2018. Vegetative compatibility groups partition variation in the virulence of Verticillium dahliae on strawberry. PLOS ONE 13:2e0191824
    [Google Scholar]
  37. 37. 
    Fan R, Klosterman SJ, Wang C, Subbarao KV, Xu X et al. 2017. Vayg1 is required for microsclerotium formation and melanin production in Verticillium dahliae. Fungal Genet. Biol 98:1–11
    [Google Scholar]
  38. 38. 
    Fick GN, Zimmer DE. 1974. Monogenic resistance to Verticillium wilt in sunflowers. Crop Sci 14:6895–96
    [Google Scholar]
  39. 39. 
    Fradin EF, Thomma BP. 2006. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol. Plant Pathol 7:271–86
    [Google Scholar]
  40. 40. 
    Fradin EF, Zhang Z, Juarez Ayala JC, Castroverde CD, Nazar RN et al. 2009. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol 150:1320–32
    [Google Scholar]
  41. 41. 
    Grogan RG, Ioannou N, Schneider RW, Sall MA, Kimble KA. 1979. Verticillium wilt on resistant tomato cultivars in California: virulence of isolates from plants and soil and relationship of inoculum density to disease incidence. Phytopathology 69:101176–80
    [Google Scholar]
  42. 42. 
    Gui YJ, Chen JY, Zhang DD, Li NY, Li TG et al. 2017. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. Environ. Microbiol 19:51914–32
    [Google Scholar]
  43. 43. 
    Gurung S, Short DPG, Atallah ZK, Subbarao KV. 2014. Clonal expansion of Verticillium dahliae in lettuce. Phytopathology 104:6641–49
    [Google Scholar]
  44. 44. 
    Gurung S, Short DPG, Hu X, Sandoya GV, Hayes RJ et al. 2015. Host range of Verticillium isaacii and Verticillium klebahnii from artichoke, spinach, and lettuce. Plant Dis 99:7933–38
    [Google Scholar]
  45. 45. 
    Hane JK, Rouxel T, Howlett BJ, Kema GHJ, Goodwin SB et al. 2011. A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi. Genome Biol 12:5R45
    [Google Scholar]
  46. 46. 
    Hayes RJ, McHale LK, Vallad GE, Truco MJ, Michelmore RW et al. 2011. The inheritance of resistance to Verticillium wilt caused by race 1 isolates of Verticillium dahliae in the lettuce cultivar La Brillante. Theor. Appl. Genet. 123:4509–17
    [Google Scholar]
  47. 47. 
    Hu XP, Gurung S, Short DPG, Sandoya GV, Shang WJ et al. 2015. Nondefoliating and defoliating strains from cotton correlate with races 1 and 2 of Verticillium dahliae. Plant Dis 99:121713–20
    [Google Scholar]
  48. 48. 
    Inderbitzin P, Bostock RM, Davis RM, Usami T, Platt HW et al. 2011. Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLOS ONE 6:12e28341
    [Google Scholar]
  49. 49. 
    Inderbitzin P, Christopoulou M, Lavelle D, Reyes-Chin-Wo S, Michelmore RW et al. 2019. Correction to: The LsVe1L allele provides a molecular marker for resistance to Verticillium dahliae race 1 in lettuce. BMC Plant Biol 19:1374
    [Google Scholar]
  50. 50. 
    Inderbitzin P, Davis RM, Bostock RM, Subbarao KV. 2011b. The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PLOS ONE 6:3e18260
    [Google Scholar]
  51. 51. 
    Inderbitzin P, Davis RM, Bostock RM, Subbarao KV. 2013. Identification and differentiation of Verticillium species and V. longisporum lineages by simplex and multiplex PCR assays. PLOS ONE 8:6e65990
    [Google Scholar]
  52. 52. 
    Inderbitzin P, Subbarao KV. 2014. Verticillium systematics and evolution: how confusion impedes Verticillium wilt management and how to resolve it. Phytopathology 104:6564–74
    [Google Scholar]
  53. 53. 
    Isaac I. 1953. A further comparative study of pathogenic isolates of Verticillium: V. nubilum Pethybr. and V. tricorpus sp. nov. Trans. Br. Mycol. Soc 36:3180–85
    [Google Scholar]
  54. 54. 
    Isaac I. 1967. Speciation in Verticillium. Annu. Rev. Phytopathol 5:201–22
    [Google Scholar]
  55. 55. 
    Jiménez-Díaz RM, Cirulli M, Bubici G, del Mar Jimenez-Gasco M, Antoniou PP et al. 2012. Verticillium wilt, a major threat to olive production: current status and future prospects for its management. Plant Dis 96:3304–29
    [Google Scholar]
  56. 56. 
    Jiménez-Díaz RM, Mercado-Blanco J, Olivares-García C, Collado-Romero M, Bejarano-Alcázar J et al. 2006. Genetic and virulence diversity in Verticillium dahliae populations infecting artichoke in eastern-central Spain. Phytopathology 96:3288–98
    [Google Scholar]
  57. 57. 
    Jimenez-Gasco MDM, Malcolm GM, Berbegal M, Armengol J, Jiménez-Díaz RM. 2014. Complex molecular relationship between vegetative compatibility groups (VCGs) in Verticillium dahliae: VCGs do not always align with clonal lineages. Phytopathology 104:6650–59
    [Google Scholar]
  58. 58. 
    Joaquim TR, Rowe RC. 1991. Vegetative compatibility and virulence of strains of Verticillium dahliae from soil and potato plants. Phytopathology 81:5552–58
    [Google Scholar]
  59. 59. 
    Katan J. 2000. Physical and cultural methods for the management of soil-borne pathogens. Crop Prot 19:725–31
    [Google Scholar]
  60. 60. 
    Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, Van Rooijen G et al. 2001. Tomato Ve disease resistance genes encode cell surface–like receptors. PNAS 98:116511–15
    [Google Scholar]
  61. 61. 
    Kessler KJ, True RP. 1960. Symptoms of Verticillium wilt in yellow poplar [Liriodendron tulipifera]. . Phytopathology 50:Pt. 1572
    [Google Scholar]
  62. 62. 
    Ketring DL, Melouk HA. 1982. Ethylene production and leaflet abscission of three peanut genotypes infected with Cercospora arachidicola Hori. Plant Physiol 69:4789–92
    [Google Scholar]
  63. 63. 
    Kistler HC, Miao VPW. 1992. New modes of genetic change in filamentous fungi. Annu. Rev. Phytopathol 30:131–53
    [Google Scholar]
  64. 64. 
    Klimes A, Dobinson KF, Thomma BP, Klosterman SJ. 2015. Genomics spurs rapid advances in our understanding of the biology of vascular wilt pathogens in the genus Verticillium. Annu. Rev. Phytopathol 53:181–98
    [Google Scholar]
  65. 64a. 
    Klosterman SJ, Anchieta AG, Garcia-Pedrajas MD, Maruthachalam K, Hayes RJet al 2011. SSH reveals a linkage between a senescence-associated protease and Verticillium wilt symptom development in lettuce (Lactuca sativa). Physiol. Mol. Plant Pathol 76:4858
    [Google Scholar]
  66. 65. 
    Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV. 2009. Diversity, pathogenicity, and management of Verticillium species. Annu. Rev. Phytopathol 47:39–62
    [Google Scholar]
  67. 66. 
    Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE et al. 2011. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLOS Pathog 7:7e1002137
    [Google Scholar]
  68. 67. 
    Korolev N, Pérez-Artés E, Mercado-Blanco J, Bejarano-Alcázar J, Rodríguez-Jurado D et al. 2008. Vegetative compatibility of cotton-defoliating Verticillium dahliae in Israel and its pathogenicity to various crop plants. Eur. J. Plant Pathol 122:4603–17
    [Google Scholar]
  69. 68. 
    Li JJ, Zhou L, Yin CM, Zhang DD, Klosterman SJ et al. 2019. The Verticillium dahliae Sho1-MAPK pathway regulates melanin biosynthesis and is required for cotton infection. Environ. Microbiol 21:124852–74
    [Google Scholar]
  70. 69. 
    Li N, Wang W, Bitas V, Subbarao K, Liu X et al. 2018. Volatile compounds emitted by diverse Verticillium species enhance plant growth by manipulating auxin signaling. Mol. Plant-Microbe Interact. 31:101021–31
    [Google Scholar]
  71. 70. 
    Liu T, Song T, Zhang X, Yuan H, Su L et al. 2014. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat. Commun 5:4686
    [Google Scholar]
  72. 71. 
    Martin FN. 2010. Mitochondrial haplotype analysis as a tool for differentiating isolates of Verticillium dahliae. Phytopathology 100:111231–39
    [Google Scholar]
  73. 72. 
    Mercado-Blanco J, Rodríguez-Jurado D, Parrilla-Araujo S, Jiménez-Díaz RM. 2003. Simultaneous detection of the defoliating and nondefoliating Verticillium dahliae pathotypes in infected olive plants by duplex, nested polymerase chain reaction. Plant Dis 87:121487–94
    [Google Scholar]
  74. 73. 
    Milgroom MG, del Mar Jimenez-Gasco M, Olivares Garcia C, Drott MT, Jiménez-Díaz RM 2014. Recombination between clonal lineages of the asexual fungus Verticillium dahliae detected by genotyping by sequencing. PLOS ONE 9:9e106740
    [Google Scholar]
  75. 74. 
    Milgroom MG, del Mar Jimenez-Gasco M, Olivares-Garcia C, Jiménez-Díaz RM. 2016. Clonal expansion and migration of a highly virulent, defoliating lineage of Verticillium dahliae. Phytopathology 106:91038–46
    [Google Scholar]
  76. 75. 
    Misaghi I, De Vay JE, Ravenscroft A. 1969. Cytokinin activity in cotton plants infected by Verticillium albo-atrum. Phytopathology 59:91041
    [Google Scholar]
  77. 76. 
    Nazar RN, Xu X, Shittu H, Kurosky A, Robb J. 2018. Tomato Ve resistance locus; defense or growth. Planta 247:61339–50
    [Google Scholar]
  78. 77. 
    Novakazi F, Inderbitzin P, Sandoya G, Hayes RJ, von Tiedemann A et al. 2015. The three lineages of the diploid hybrid Verticillium longisporum differ in virulence and pathogenicity. Phytopathology 105:5662–73
    [Google Scholar]
  79. 78. 
    O'Gorman CM, Fuller H, Dyer PS. 2009. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457:7228471–74
    [Google Scholar]
  80. 79. 
    Omer MA, Johnson DA, Rowe RC. 2000. Recovery of Verticillium dahliae from North American certified seed potatoes and characterization of strains by vegetative compatibility and aggressiveness. Am. J. Potato Res. 77:325–31
    [Google Scholar]
  81. 80. 
    Patharkar OR, Gassmann W, Walker JC. 2017. Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves. PLOS Genet 13:12e1007132
    [Google Scholar]
  82. 81. 
    Pegg GF, Brady BL. 2002.Verticillium wilts New York: CABI Publ.
  83. 82. 
    Pérez-Artés E, García-Pedrajas MD, Bejarano-Alcázar J, Jiménez-Díaz RM. 2000. Differentiation of cotton-defoliating and nondefoliating pathotypes of Verticillium dahliae by RAPD and specific PCR analyses. Eur. J. Plant. Pathol 106:6507–17
    [Google Scholar]
  84. 83. 
    Pérez-Artés E, Mercado-Blanco J, Ruz-Carrillo AR, Rodríguez-Jurado D, Jiménez-Díaz RM. 2005. Detection of the defoliating and nondefoliating pathotypes of Verticillium dahliae in artificial and natural soils by nested PCR. Plant Soil 268:1349–56
    [Google Scholar]
  85. 84. 
    Pethybridge GH. 1919. Notes on some saprophytic species of fungi, associated with diseased potato plants and tubers. Trans. Br. Mycol. Soc. 6:104–18
    [Google Scholar]
  86. 85. 
    Popov VI, Tarunina TA, Usmanov ZU. 1972. On the physiological races of Verticilliumdahliae Kleb., a causal agent of cotton wilt. Mikol. Fitol. 1972.500–2
    [Google Scholar]
  87. 86. 
    Portenko LG, Kas'yanenko AG 1978. Virulence and aggressiveness of induced mutants of Verticillium dahliae. Genetic Variability of the Wilt-causing Agent and Prospects for Increasing Cotton Wilt Resistance A Maksumov 74–83 Dushanbe: Donish Publ.
    [Google Scholar]
  88. 87. 
    Portenko LG, Kas'yanenko AG 1987. Genetics of cotton wilt causal agent Verticillium dahliae Kleb. for virulence and aggressiveness. Genetika USSR 23:101859–65
    [Google Scholar]
  89. 88. 
    Presley JT. 1950. Verticillium wilt of cotton with particular emphasis on variation of the causal organism. Phytopathology 40:5497–511
    [Google Scholar]
  90. 89. 
    Puhalla JE. 1979. Classification of isolates of Verticillium dahliae based on heterokaryon incompatibility. Phytopathology 69:111186–89
    [Google Scholar]
  91. 90. 
    Puri KD, Gurung S, Short DPG, Atallah ZK, Sandoya G et al. 2017. Short-term host selection pressure has little effect on the evolution of a monoclonal population of Verticillium dahliae race 1. Phytopathology 107:111417–25
    [Google Scholar]
  92. 91. 
    Qin J, Wang K, Sun L, Xing H, Wang S et al. 2018. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. eLife 7:e34902
    [Google Scholar]
  93. 92. 
    Rafiei V, Banihashemi Z, Bautista-Jalon LS, del Mar Jimenez-Gasco M, Turgeon BG et al. 2018. Population genetics of Verticillium dahliae in Iran based on microsatellite and single nucleotide polymorphism markers. Phytopathology 108:6780–88
    [Google Scholar]
  94. 93. 
    Rafiei V, Banihashemi Z, Jiménez-Díaz RM, Navas-Cortés JA, Land BB et al. 2017. Comparison of genotyping by sequencing and microsatellite markers for unravelling population structure in the clonal fungus Verticillium dahliae. Plant Pathol 67:176–86
    [Google Scholar]
  95. 94. 
    Ralhan A, Schottle S, Thurow C, Iven T, Feussner I et al. 2012. The vascular pathogen Verticillium longisporum requires a jasmonic acid–independent COI1 function in roots to elicit disease symptoms in Arabidopsis shoots. Plant Physiol 159:31192–203
    [Google Scholar]
  96. 95. 
    Rodríguez E, García-Garrido JM, García PA, Campos M. 2009. Large-scale epidemiological study and spatial patterns of Verticillium wilt in olive orchards in southern Spain. Crop Prot 28:146–52
    [Google Scholar]
  97. 96. 
    Rowe RC. 1995. Recent progress in understanding relationships between Verticillium species and subspecific groups. Phytoparasitica 23:131–38
    [Google Scholar]
  98. 97. 
    Sandoya G, Truco MJ, Bertier LD, Subbarao KV, Simko I et al. 2021. Genetics of partial resistance against Verticillium dahliae Race 2 in wild and cultivated lettuce. Phytopathology https://doi.org/10.1094/PHYTO-09-20-0396-R
    [Crossref] [Google Scholar]
  99. 98. 
    Sandoya V, Pauchard A, Cavieres LA. 2017. Natives and non-natives plants show different responses to elevation and disturbance on the tropical high Andes of Ecuador. Ecol. Evol. 7:197909–19
    [Google Scholar]
  100. 99. 
    Santhanam P, van Esse HP, Albert I, Faino L, Nürnberger T et al. 2013. Evidence for functional diversification within a fungal NEP1-like protein family. Mol. Plant-Microbe Interact. 226:3278–86
    [Google Scholar]
  101. 100. 
    Schaible L, Cannon OS, Waddoups V. 1951. Inheritance of resistance to Verticillium wilt in a tomato cross. Phytopathology 41:11986–90
    [Google Scholar]
  102. 101. 
    Schnathorst WC, Mathre DE. 1966. Host range and differentiation of a severe form of Verticillium albo-atrum in cotton. Phytopathology 56:101155–61
    [Google Scholar]
  103. 102. 
    Seidl MF, Faino L, Shi-Kunne X, van den Berg GC, Bolton MD et al. 2015. The genome of the saprophytic fungus Verticillium tricorpus reveals a complex effector repertoire resembling that of its pathogenic relatives. Mol. Plant-Microbe Interact 28:3362–73
    [Google Scholar]
  104. 103. 
    Seidl MF, Thomma BP. 2014. Sex or no sex: Evolutionary adaptation occurs regardless. BioEssays 36:4335–45
    [Google Scholar]
  105. 104. 
    Shaban M, Miao Y, Ullah A, Khan AQ, Menghwar H et al. 2018. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae. Plant Physiol. Biochem 125:193–204
    [Google Scholar]
  106. 105. 
    Shi-Kunne X, Faino L, van den Berg GCM, Thomma B, Seidl MF. 2018. Evolution within the fungal genus Verticillium is characterized by chromosomal rearrangement and gene loss. Environ. Microbiol 20:41362–73
    [Google Scholar]
  107. 106. 
    Shi-Kunne X, van Kooten M, Depotter JRL, Thomma B, Seidl MF. 2019. The genome of the fungal pathogen Verticillium dahliae reveals extensive bacterial to fungal gene transfer. Genome Biol. Evol 11:3855–68
    [Google Scholar]
  108. 107. 
    Short DP, Gurung S, Gladieux P, Inderbitzin P, Atallah ZK et al. 2015. Globally invading populations of the fungal plant pathogen Verticillium dahliae are dominated by multiple divergent lineages. Environ. Microbiol 17:82824–40
    [Google Scholar]
  109. 107a. 
    Short DP, Gurung S, Hu X, Inderbitzin P, Subbarao KV 2014. Maintenance of sex-related genes and the co-occurrence of both mating types in Verticillium dahliae. PLOS ONE 9:11e112145
    [Google Scholar]
  110. 108. 
    Short DP, Gurung S, Maruthachalam K, Atallah ZK, Subbarao KV. 2014. Verticillium dahliae race 2–specific PCR reveals a high frequency of race 2 strains in commercial spinach seed lots and delineates race structure. Phytopathology 104:7779–85
    [Google Scholar]
  111. 109. 
    Song Y, Liu L, Wang Y, Valkenburg DJ, Zhang X et al. 2018. Transfer of tomato immune receptor Ve1 confers Ave1-dependent Verticillium resistance in tobacco and cotton. Plant Biotechnol. J 16:2638–48
    [Google Scholar]
  112. 110. 
    Starke R, Capek P, Morais D, Callister SJ, Jehmlich N. 2020. The total microbiome functions in bacteria and fungi. J. Proteom 213:103623
    [Google Scholar]
  113. 111. 
    Stoddart JL, Carr AJH. 1966. Properties of wilt-toxins produced by Verticillium albo-atrum Reinke & Berth. Ann. App. Biol 58:181–92
    [Google Scholar]
  114. 112. 
    Strausbaugh CA, Schroth MN, Weinhold AR, Hancock JG. 1992. Assessment of vegetative compatibility of Verticillium dahliae tester strains and isolates from California potatoes. Phytopathology 83:111253–58
    [Google Scholar]
  115. 113. 
    Sun S, Heitman J. 2011. Is sex necessary?. BMC Biol 9:56
    [Google Scholar]
  116. 114. 
    Tudzynski B, Sharon A 2002. Biosynthesis, biological role and application of fungal phytohormones. Industrial Applications HD Osiewacz 183–211 Berlin: Springer
    [Google Scholar]
  117. 115. 
    Usami T, Itoh M, Amemiya Y. 2008. Mating type gene MAT1-2-1 is common among Japanese isolates of Verticillium dahliae. Physiol. Mol. Plant Pathol 73:6133–37
    [Google Scholar]
  118. 116. 
    Usami T, Itoh M, Amemiya Y. 2009. Asexual fungus Verticillium dahliae is potentially heterothallic. J. Plant Pathol 75:6422–27
    [Google Scholar]
  119. 117. 
    Usami T, Momma N, Kikuchi S, Watanabe H, Hayashi A et al. 2017. Race 2 of Verticillium dahliae infecting tomato in Japan can be split into two races with differential pathogenicity on resistant rootstocks. Plant Pathol 66:2230–38
    [Google Scholar]
  120. 118. 
    Vallad GE, Qin QM, Grube R, Hayes RJ, Subbarao KV. 2006. Characterization of race-specific interactions among isolates of Verticillium dahliae pathogenic on lettuce. Phytopathology 96:121380–87
    [Google Scholar]
  121. 119. 
    Vallad GE, Subbarao KV. 2008. Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein–tagged isolate of Verticillium dahliae. Phytopathology 98:8871–85
    [Google Scholar]
  122. 120. 
    Vettraino AM, Shrestha GP, Vannini A. 2009. First report of Fusarium solani causing wilt of Olea europaea in Nepal. Plant Dis 93:2200
    [Google Scholar]
  123. 121. 
    Vining K, Davis T. 2009. Isolation of a Ve homolog, mVe1, and its relationship to Verticillium wilt resistance in Mentha longifolia (L.) Huds. Mol. Genet. Genom. 282:2173–84
    [Google Scholar]
  124. 122. 
    Wang JY, Cai Y, Gou JY, Mao YB, Xu YH et al. 2004. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Appl. Environ. Microb 70:84989–95
    [Google Scholar]
  125. 123. 
    Wang Y, Hu X, Fang Y, Anchieta A, Goldman PH et al. 2018. Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahliae. Microbiology 164:4685–96
    [Google Scholar]
  126. 124. 
    Wheeler DL, Johnson DA. 2016. Verticillium dahliae infects, alters plant biomass, and produces inoculum on rotation crops. Phytopathology 106:6602–13
    [Google Scholar]
  127. 125. 
    Wheeler DL, Johnson DA. 2019. Does coinoculation with different Verticillium dahliae genotypes affect the host or fungus?. Phytopathology 109:5780–86
    [Google Scholar]
  128. 126. 
    Wiese MV, De Vay JE. 1970. Growth regulator changes in cotton associated with defoliation caused by Verticillium albo-atrum. Plant Physiol 45:3304–9
    [Google Scholar]
  129. 127. 
    Wilhelm S. 1955. Longevity of the Verticillium wilt fungus in the laboratory and field. Phytopathology 45:3180–81
    [Google Scholar]
  130. 128. 
    Xiong D, Wang Y, Ma J, Klosterman SJ, Xiao S, Tian C 2014. Deep mRNA sequencing reveals stage-specific transcriptome alterations during microsclerotia development in the smoke tree vascular wilt pathogen, Verticillium dahliae. BMC Genom 15:11–19
    [Google Scholar]
  131. 129. 
    Zhang DD, Wang J, Wang D, Kong ZQ, Zhou L et al. 2019. Population genomics demystifies the defoliation phenotype in the plant pathogen Verticillium dahliae. New Phytol 222:21012–29
    [Google Scholar]
  132. 130. 
    Zhang L, Ni H, Du X, Wang S, Ma XW et al. 2017. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. New Phytol 215:1368–81
    [Google Scholar]
  133. 131. 
    Zhang YL, Li ZF, Feng ZL, Feng HJ, Zhao LH et al. 2015. Isolation and functional analysis of the pathogenicity-related geneVdPR3 from Verticillium dahliae on cotton. Curr. Genet 61:4555–66
    [Google Scholar]
  134. 132. 
    Zhao P, Zhao YL, Jin Y, Zhang T, Guo HS. 2014. Colonization process of Arabidopsis thaliana roots by a green fluorescent protein-tagged isolate of Verticillium dahliae. Protein Cell 5:294–98
    [Google Scholar]
  135. 133. 
    Zhou B, Jia P, Gao F, Guo H. 2012. Molecular characterization and functional analysis of a necrosis- and ethylene-inducing, protein-encoding gene family from Verticillium dahliae. Mol. Plant-Microbe Interact 25:7964–75
    [Google Scholar]
  136. 134. 
    Zolan ME. 1995. Chromosome-length polymorphism in fungi. Microbiol. Rev. 59:4686–98
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-020620-121925
Loading
/content/journals/10.1146/annurev-phyto-020620-121925
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error