1932

Abstract

Bacterial spot is an endemic seedborne disease responsible for recurring outbreaks on tomato and pepper around the world. The disease is caused by four diverse species, , , , and There are no commercially available disease-resistant tomato varieties, and the disease is managed by chemical/biological control options, although these have not reduced the incidence of outbreaks. The disease on peppers is managed by disease-resistant cultivars that are effective against but not . A significant shift in composition and prevalence of different species and races of the pathogen has occurred over the past century. Here, I attempt to review ecological and evolutionary processes associated with the population dynamics leading to disease emergence and spread. The goal of this review is to integrate the knowledge on population genomics and molecular plant–microbe interactions for this pathosystem to tailor disease management strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-020620-101612
2021-08-25
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/phyto/59/1/annurev-phyto-020620-101612.html?itemId=/content/journals/10.1146/annurev-phyto-020620-101612&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abrahamian P, Sharma A, Jones JB, Vallad GE 2020. Dynamics and spread of bacterial spot epidemics in tomato transplants grown for field production. Plant Dis 105:356675
    [Google Scholar]
  2. 2. 
    Abrahamian P, Timilsina S, Minsavage GV, Kc S, Goss EM et al. 2018. The type III effector AvrBsT enhances Xanthomonas perforans fitness in field-grown tomato. Phytopathology 108:121355–62This paper describes the role of AvrBsT as a fitness factor on tomato acquired by dominant Xp lineages.
    [Google Scholar]
  3. 3. 
    Abrahamian P, Timilsina S, Minsavage GV, Potnis N, Jones JB et al. 2019. Molecular epidemiology of Xanthomonas perforans outbreaks in tomato plants from transplant to field as determined by single-nucleotide polymorphism analysis. Appl. Environ. Microbiol 85:18e01220–19
    [Google Scholar]
  4. 4. 
    Aiello D, Vitale A, Ruota ADL, Polizzi G, Cirvilleri G. 2017. Synergistic interactions between Pseudomonas spp. and Xanthomonas perforans in enhancing tomato pith necrosis symptoms. Phytopathology 108:121355–62
    [Google Scholar]
  5. 5. 
    Araújo ER, Costa JR, Ferreira MASV, Quezado-Duval AM. 2017. Widespread distribution of Xanthomonas perforans and limited presence of X. gardneri in Brazil. Plant Pathol 66:1159–68
    [Google Scholar]
  6. 6. 
    Araújo ER, Costa JR, Pontes NC, Quezado-Duval AM. 2015. Xanthomonas perforans and X. gardneri associated with bacterial leaf spot on weeds in Brazilian tomato fields. Eur. J. Plant Pathol. 143:3543–48
    [Google Scholar]
  7. 7. 
    Araújo ER, Pereira RC, Ferreira MASV, Café-Filho AC, Moita AW, Quezado-Duval AM. 2011. Effect of temperature on pathogenicity components of tomato bacterial spot and competition between Xanthomonas perforans and X. gardneri. Acta Hortic 914:39–42
    [Google Scholar]
  8. 8. 
    Areas MS, Gonçalves RM, Soman JM, Sakate RK, Gioria R et al. 2015. Prevalence of Xanthomonas euvesicatoria on pepper in Brazil. J. Phytopathol. 163:11–121050–54
    [Google Scholar]
  9. 9. 
    Arroyo-Velez N, González-Fuente M, Peeters N, Lauber E, Noël LD. 2020. From effectors to effectomes: Are functional studies of individual effectors enough to decipher plant pathogen infectious strategies?. PLOS Pathog 16:12e1009059
    [Google Scholar]
  10. 10. 
    Astua-Monge G, Minsavage GV, Stall RE, Davis MJ, Bonas U, Jones JB. 2000. Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv. vesicatoria is specified by a plant-inducible avirulence gene. Mol. Plant-Microbe Interact. 13:9911–21
    [Google Scholar]
  11. 11. 
    Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S et al. 2016. Whole-genome sequences of Xanthomonas euvesicatoria strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front. Plant Sci 7:1805
    [Google Scholar]
  12. 12. 
    Basim H, Minsavage GV, Stall RE, Wang J-F, Shanker S, Jones JB. 2005. Characterization of a unique chromosomal copper resistance gene cluster from Xanthomonas campestris pv. vesicatoria. Appl. Environ. Microbiol. 71:128284–91
    [Google Scholar]
  13. 13. 
    Basim H, Stall RE, Minsavage GV, Jones JB. 1999. Chromosomal gene transfer by conjugation in the plant pathogen Xanthomonas axonopodis pv. vesicatoria. Phytopathology 89:111044–49
    [Google Scholar]
  14. 14. 
    Berg M, Koskella B. 2018. Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen. Curr. Biol. 28:152487–92.e3
    [Google Scholar]
  15. 15. 
    Bhattarai K, Louws FJ, Williamson JD, Panthee DR. 2016. Differential response of tomato genotypes to Xanthomonas-specific pathogen-associated molecular patterns and correlation with bacterial spot (Xanthomonas perforans) resistance. Hortic. Res. 3:16035
    [Google Scholar]
  16. 16. 
    Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV et al. 2011. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J. Bacteriol. 193:195450–64
    [Google Scholar]
  17. 17. 
    Bouzar H, Jones JB, Somodi GC, Stall RE, Daouzli N et al. 1996. Diversity of Xanthomonas campestris pv. vesicatoria in tomato and pepper fields of Mexico. Can. J. Plant Pathol. 18:175–77
    [Google Scholar]
  18. 18. 
    Burlakoti RR, Hsu C, Chen J, Wang J 2018. Population dynamics of xanthomonads associated with bacterial spot of tomato and pepper during 27 years across Taiwan. Plant Dis 102:71348–56
    [Google Scholar]
  19. 19. 
    Canteros BI. 1995. Diversity of plasmids in Xanthomonas campestris pv. vesicatoria. Phytopathology 85:121482–86
    [Google Scholar]
  20. 20. 
    Carvalho R, Duman K, Jones JB, Paret ML. 2019. Bactericidal activity of copper-zinc hybrid nanoparticles on copper-tolerant Xanthomonas perforans. Sci. Rep. 9:120124
    [Google Scholar]
  21. 21. 
    Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T et al. 2015. Comparative genomics of pathogenic and nonpathogenic strains of Xanthomonas arboricola unveil molecular and evolutionary events linked to pathoadaptation. Front. Plant Sci. 6:1126
    [Google Scholar]
  22. 22. 
    Cook AA. 1982. Distribution of races of Xanthomonas vesicatoria pathogenic on pepper. Plant Dis 66:1388–89
    [Google Scholar]
  23. 23. 
    Cunnac S, Wilson A, Nuwer J, Kirik A, Baranage G, Mudgett MB. 2007. A conserved carboxylesterase is a SUPPRESSOR OF AVRBST-ELICITED RESISTANCE in Arabidopsis. Plant Cell 19:2688–705
    [Google Scholar]
  24. 24. 
    Cuppels DA, Louws FJ, Ainsworth T. 2006. Development and evaluation of PCR-based diagnostic assays for the bacterial speck and bacterial spot pathogens of tomato. Plant Dis 90:4451–58
    [Google Scholar]
  25. 25. 
    Dahlbeck D. 1979. Mutations for change of race in cultures of Xanthomonas vesicatoria. Phytopathology 69:6634–36
    [Google Scholar]
  26. 26. 
    Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. 2016. Within-host evolution of bacterial pathogens. Nat. Rev. Microbiol. 14:3150–62
    [Google Scholar]
  27. 27. 
    Doidge EM. 1921. A tomato canker. Ann. Appl. Biol. 7:4407–30
    [Google Scholar]
  28. 28. 
    Dutta B, Gitaitis R, Sanders H, Booth C, Smith S, Langston DB. 2013. Role of blossom colonization in pepper seed infestation by Xanthomonas euvesicatoria. Phytopathology 104:3232–39
    [Google Scholar]
  29. 29. 
    Eckshtain-Levi N, Lindeberg M, Vallad GE, Martin GB. 2019. The tomato Pto gene confers resistance to Pseudomonas floridensis, an emergent plant pathogen with just nine type III effectors. Plant Pathol 68:5977–84
    [Google Scholar]
  30. 30. 
    Egel DS, Jones JB, Minsavage GV, Creswell T, Ruhl G et al. 2018. Distribution and characterization of Xanthomonas strains causing bacterial spot of tomato in Indiana. Plant Health Prog 19:4319–21
    [Google Scholar]
  31. 31. 
    van Elsas JD, Turner S, Bailey MJ. 2003. Horizontal gene transfer in the phytosphere. New Phytol 157:3525–37
    [Google Scholar]
  32. 32. 
    Fillol-Salom A, Martínez-Rubio R, Abdulrahman RF, Chen J, Davies R, Penadés JR. 2018. Phage-inducible chromosomal islands are ubiquitous within the bacterial universe. ISME J 12:92114–28
    [Google Scholar]
  33. 33. 
    Gardner MW, Kendrick JB. 1921. Bacterial spot of tomato. J. Agric. Res. 21:123–56
    [Google Scholar]
  34. 34. 
    Garrett KA, Alcalá-Briseño RI, Andersen KF, Buddenhagen CE, Choudhury RA et al. 2018. Network analysis: a systems framework to address grand challenges in plant pathology. Annu. Rev. Phytopathol. 56:559–80
    [Google Scholar]
  35. 35. 
    Gassmann W, Dahlbeck D, Chesnokova O, Minsavage GV, Jones JB, Staskawicz BJ. 2000. Molecular evolution of virulence in natural field strains of Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 182:247053–59
    [Google Scholar]
  36. 36. 
    Giovanardi D, Biondi E, Ignjatov M, Jevtić R, Stefani E 2018. Impact of bacterial spot outbreaks on the phytosanitary quality of tomato and pepper seeds. Plant Pathol 67:51168–76
    [Google Scholar]
  37. 37. 
    Gitaitis RD. 1987. Pectolytic xanthomonads in mixed infections with Pseudomonas syringae pv. syringae, P. syringae pv. tomato, and Xanthomonas campestris pv. vesicatoria in tomato and pepper transplants. Phytopathology 77:4611–15
    [Google Scholar]
  38. 38. 
    Gore JP, O'Garro LW 1999. Xanthomonas campestris pv. vesicatoria from bell pepper and tomato in Barbados undergoes changes in race structure, virulence and sensitivity to chemical control agents. J. Phytopathol. 147:7–8397–402
    [Google Scholar]
  39. 39. 
    Gurlebeck D, Thieme F, Bonas U. 2006. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J. Plant Physiol. 163:3233–55
    [Google Scholar]
  40. 40. 
    Hamza AA, Robène-Soustrade I, Jouen E, Gagnevin L, Lefeuvre P et al. 2010. Genetic and pathological diversity among Xanthomonas strains responsible for bacterial spot on tomato and pepper in the southwest Indian Ocean region. Plant Dis 94:8993–99
    [Google Scholar]
  41. 41. 
    Hert AP, Roberts PD, Momol MT, Minsavage GV, Tudor-Nelson SM, Jones JB. 2005. Relative importance of bacteriocin-like genes in antagonism of Xanthomonas perforans tomato race 3 to Xanthomonas euvesicatoria tomato race 1 strains. Appl. Environ. Microbiol. 71:73581–88This paper describes the role of bacteriocins produced by Xp in displacing Xeu in tomato fields.
    [Google Scholar]
  42. 42. 
    Horvath DM, Stall RE, Jones JB, Pauly MH, Vallad GE et al. 2012. Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PLOS ONE 7:8e42036First transgenic Bs2 tomato lines shown to be effective in controlling BLS pathogen populations.
    [Google Scholar]
  43. 43. 
    Hutton SF, Scott JW, Vallad GE. 2014. Association of the Fusarium wilt race 3 resistance gene, I-3, on chromosome 7 with increased susceptibility to bacterial spot race T4 in tomato. J. Am. Soc. Hortic. Sci. 139:3282–89
    [Google Scholar]
  44. 44. 
    Iruegas-Bocardo F, Abrahamian P, Minsavage GV, Potnis N, Vallad GE et al. 2018. XopJ6, a new member of the XopJ family of type III effectors, in Xanthomonas perforans. Phytopathology 108:S1.1
    [Google Scholar]
  45. 45. 
    Jacques M-A, Arlat M, Boulanger A, Boureau T, Carrère S et al. 2016. Using ecology, physiology, and genomics to understand host specificity in Xanthomonas. Annu. Rev. Phytopathol. 54:163–87
    [Google Scholar]
  46. 46. 
    Jibrin MO, Potnis N, Timilsina S, Minsavage GV, Vallad GE et al. 2018. Genomic inference of recombination-mediated evolution in Xanthomonas euvesicatoria and X. perforans. Appl. Environ. Microbiol. 84:13e00136–18The importance of recombination responsible for diversifying Xp and, at the same time, imparting cohesiveness between Xeu and Xp was shown in this paper.
    [Google Scholar]
  47. 47. 
    Jibrin MO, Timilsina S, Potnis N, Minsavage GV, Shenge KC et al. 2014. First report of atypical Xanthomonas euvesicatoria strains causing bacterial spot of tomato in Nigeria. Plant Dis 99:3415
    [Google Scholar]
  48. 48. 
    Jibrin MO, Timilsina S, Potnis N, Minsavage GV, Shenge KC et al. 2014. First report of Xanthomonas euvesicatoria causing bacterial spot disease in pepper in northwestern Nigeria. Plant Dis 98:101426
    [Google Scholar]
  49. 49. 
    Jones JB. 1983. Occurrence of stem necrosis on field-grown tomatoes incited by Pseudomonas corrugata in Florida. Plant Dis 67:4425–26
    [Google Scholar]
  50. 50. 
    Jones JB. 1984. Pseudomonas viridiflava: causal agent of bacterial leaf blight of tomato. Plant Dis 68:1341–42
    [Google Scholar]
  51. 51. 
    Jones JB. 1986. Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residue, weeds, seeds, and volunteer tomato plants. Phytopathology 76:4430
    [Google Scholar]
  52. 52. 
    Jones JB. 1995. A third tomato race of Xanthomonas campestris pv. vesicatoria. Plant Dis 79:4395–98
    [Google Scholar]
  53. 53. 
    Jones JB, Bouzar H, Somodi GC, Stall RE, Pernezny K et al. 1998. Evidence for the preemptive nature of tomato race 3 of Xanthomonas campestris pv. vesicatoria in Florida. Phytopathology 88:133–38
    [Google Scholar]
  54. 54. 
    Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW. 2004. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol. 27:6755–62
    [Google Scholar]
  55. 55. 
    Jones JB, Stall RE, Bouzar H. 1998. Diversity among xanthomonads pathogenic on pepper and tomato. Annu. Rev. Phytopathol. 36:41–58
    [Google Scholar]
  56. 56. 
    Kearney B, Staskawicz BJ. 1990. Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene Avrbs2. Nature 346:6282385–86
    [Google Scholar]
  57. 57. 
    Kebede M, Timilsina S, Ayalew A, Admassu B, Potnis N et al. 2014. Molecular characterization of Xanthomonas strains responsible for bacterial spot of tomato in Ethiopia. Eur. J. Plant Pathol. 140:4677–88
    [Google Scholar]
  58. 58. 
    Kim J-G, Li XY, Roden JA, Taylor KW, Aakre CD et al. 2009. Xanthomonas T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. Plant Cell 21:41305–23
    [Google Scholar]
  59. 59. 
    Kim J-G, Stork W, Mudgett MB. 2013. Xanthomonas Type III effector XopD desumoylates tomato transcription factor SlERF4 to suppress ethylene responses and promote pathogen growth. Cell Host Microbe 13:2143–54
    [Google Scholar]
  60. 60. 
    Kim J-G, Taylor KW, Hotson A, Keegan M, Schmelz EA, Mudgett MB. 2008. XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-infected tomato leaves. Plant Cell 20:71915–29
    [Google Scholar]
  61. 61. 
    Kim NH, Choi HW, Hwang BK. 2010. Xanthomonas campestris pv. vesicatoria effector AvrBsT induces cell death in pepper, but suppresses defense responses in tomato. Mol. Plant-Microbe Interact. 23:81069–82
    [Google Scholar]
  62. 62. 
    Kim S, Park J, Yeom S-I, Kim Y-M, Seo E et al. 2017. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 18:1210
    [Google Scholar]
  63. 63. 
    Kim SH, Olson TN, Peffer ND, Nikolaeva EV, Park S, Kang S. 2010. First report of bacterial spot of tomato caused by Xanthomonas gardneri in Pennsylvania. Plant Dis 94:5638
    [Google Scholar]
  64. 64. 
    Klein-Gordon J, Xing Y, Garrett KA, Abrahamian P, Paret ML et al. 2020. Assessing changes and associations in the Xanthomonas perforans population across Florida commercial tomato fields via a state-wide survey. Phytopathology https://doi.org/10.1094/PHYTO-09-20-0402-R
    [Crossref] [Google Scholar]
  65. 65. 
    Kornev KP, Matveeva EV, Pekhtereva ESH, Polityko VA, Ignatov AN et al. 2009. Xanthomonas species causing bacterial spot of tomato in the Russian federation. Acta Hortic 808:243–46
    [Google Scholar]
  66. 66. 
    Kousik C. 1996. Race shift in Xanthomonas campestris pv. vesicatoria within a season in field-grown pepper. Phytopathology 86:9952–58
    [Google Scholar]
  67. 67. 
    Kousik CS, Ritchie DF. 1998. Response of bell pepper cultivars to bacterial spot pathogen races that individually overcome major resistance genes. Plant Dis 82:2181–86
    [Google Scholar]
  68. 68. 
    Lamichhane JR, Venturi V. 2015. Synergisms between microbial pathogens in plant disease complexes: a growing trend. Front. Plant Sci. 6:385
    [Google Scholar]
  69. 69. 
    Leach JE, Vera Cruz CM, Bai J, Leung H 2001. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu. Rev. Phytopathol. 39:187–224
    [Google Scholar]
  70. 70. 
    Leben C. 1965. Epiphytic microorganisms in relation to plant disease. Annu. Rev. Phytopathol. 3:209–30
    [Google Scholar]
  71. 71. 
    Lee H-Y, Mang H, Choi E, Seo Y-E, Kim M-S et al. 2021. Genome-wide functional analysis of hot pepper immune receptors reveals an autonomous NLR clade in seed plants. New Phytol 229:1532–47
    [Google Scholar]
  72. 72. 
    Li J, Chitwood J, Menda N, Mueller L, Hutton SF. 2018. Linkage between the I-3 gene for resistance to Fusarium wilt race 3 and increased sensitivity to bacterial spot in tomato. Theor. Appl. Genet. 131:1145–55
    [Google Scholar]
  73. 73. 
    Liao Y-Y, Strayer-Scherer AL, White J, Mukherjee A, De La, Torre-Roche R et al. 2018. Nano-magnesium oxide: a novel bactericide against copper-tolerant Xanthomonas perforans causing tomato bacterial spot. Phytopathology 109:152–62
    [Google Scholar]
  74. 74. 
    Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ. 1995. Differentiation of genomic structure by rep-PCR fingerprinting to rapidly classify Xanthomonas campestris pv. vesicatoria. Phytopathology 85:528–36
    [Google Scholar]
  75. 75. 
    Ma X, Lewis Ivey ML, Miller SA 2011. First report of Xanthomonas gardneri causing bacterial spot of tomato in Ohio and Michigan. Plant Dis 95:121584
    [Google Scholar]
  76. 76. 
    Marois E, Van den Ackerveken G, Bonas U. 2002. The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol. Plant-Microbe Interact. 15:7637–46
    [Google Scholar]
  77. 77. 
    Marutani-Hert M, Hert AP, Tudor-Nelson SM, Preston JF, Minsavage GV et al. 2020. Characterization of three novel genetic loci encoding bacteriocins associated with Xanthomonas perforans. PLOS ONE 15:5e0233301
    [Google Scholar]
  78. 78. 
    Mbega ER, Mabagala RB, Adriko J, Lund OS, Wulff EG, Mortensen CN. 2012. Five species of xanthomonads associated with bacterial leaf spot symptoms in tomato from Tanzania. Plant Dis 96:5760–60
    [Google Scholar]
  79. 79. 
    Mhedbi-Hajri N, Hajri A, Boureau T, Darrasse A, Durand K et al. 2013. Evolutionary history of the plant pathogenic bacterium Xanthomonas axonopodis. PLOS ONE 8:3e58474
    [Google Scholar]
  80. 80. 
    Monteil CL, Yahara K, Studholme DJ, Mageiros L, Méric G et al. 2016. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens. Microb. Genom. 2:10e000089
    [Google Scholar]
  81. 81. 
    Morinière L, Burlet A, Rosenthal ER, Nesme X, Portier P et al. 2020. Clarifying the taxonomy of the causal agent of bacterial leaf spot of lettuce through a polyphasic approach reveals that Xanthomonas cynarae Trébaol et al. 2000 emend. Timilsina et al. 2019 is a later heterotypic synonym of Xanthomonas hortorum Vauterin et al. 1995. Syst. Appl. Microbiol. 43:4126087
    [Google Scholar]
  82. 82. 
    Myung I-S, Yoon M-J, Lee J-Y, Kim YS, Kwon J-H et al. 2015. Bacterial spot of hot pepper, caused by Xanthomonas euvesicatoria, a new disease in Korea. Plant Dis 99:111640–40
    [Google Scholar]
  83. 83. 
    Newberry E, Bhandari R, Kemble J, Sikora E, Potnis N. 2020. Genome-resolved metagenomics to study co-occurrence patterns and intraspecific heterogeneity among plant pathogen metapopulations. Environ. Microbiol. 22:72693–708
    [Google Scholar]
  84. 84. 
    Newberry EA, Bhandari R, Minsavage GV, Timilsina S, Jibrin MO et al. 2019. Independent evolution with the gene flux originating from multiple Xanthomonas species explains genomic heterogeneity in Xanthomonas perforans. Appl. Environ. Microbiol. 85:20e00885–19
    [Google Scholar]
  85. 85. 
    O'Garro LW. 1998. Bacterial spot of tomato and pepper on four east Caribbean islands: races, their abundance, distribution, aggressiveness, and prospects for control. Plant Dis 82:8864–70
    [Google Scholar]
  86. 86. 
    O'Garro LW, Gibbs H, Newton A 1997. Mutation in the avrBs1 avirulence gene of Xanthomonas campestris pv. vesicatoria influences survival of the bacterium in soil and detached leaf tissue. Phytopathology 87:9960–66
    [Google Scholar]
  87. 87. 
    O'Garro LW, Tudor S 1994. Contribution of four races of Xanthomonas campestris pv. vesicatoria to bacterial spot in Barbados. Plant Dis 78:88–90
    [Google Scholar]
  88. 88. 
    Pariaud B, Robert C, Goyeau H, Lannou C. 2009. Aggressiveness components and adaptation to a host cultivar in wheat leaf rust. Phytopathology 99:869–78
    [Google Scholar]
  89. 89. 
    Pernezny K, Collins J. 1997. Epiphytic populations of Xanthomonas campestris pv. vesicatoria on pepper: relationships to host-plant resistance and exposure to copper sprays. Plant Dis 81:7791–94
    [Google Scholar]
  90. 90. 
    Pernezny K, Collins J, Stall RE, Shuler K, Datnoff LE. 1999. A serious outbreak of race 6 of Xanthomonas campestris pv. vesicatoria on pepper in southern Florida. Plant Dis 83:179
    [Google Scholar]
  91. 91. 
    Pohronezny K. 1992. Sudden shift in the prevalent race of Xanthomonas campestris pv. vesicatoria in pepper fields in southern Florida. Plant Dis 76:2118–20
    [Google Scholar]
  92. 92. 
    Potnis N, Colee J, Jones JB, Barak JD. 2015. Plant pathogen-induced water-soaking promotes Salmonella enterica growth on tomato leaves. Appl. Environ. Microbiol. 81:238126–34
    [Google Scholar]
  93. 93. 
    Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB et al. 2011. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genom 12:1146
    [Google Scholar]
  94. 94. 
    Punina NV, Ignatov AN, Pekhtereva ESH, Kornev KP, Matveeva EV et al. 2009. Occurrence of Xanthomonas campestris pv. raphani on tomato plants in the Russian federation. Acta Hortic 808:287–90
    [Google Scholar]
  95. 95. 
    Quezado-Duval AM, Leite RP, Truffi D, Camargo LEA. 2004. Outbreaks of bacterial spot caused by Xanthomonas gardneri on processing tomato in central-west Brazil. Plant Dis 88:2157–61
    [Google Scholar]
  96. 96. 
    Rademaker JLW, Louws FJ, Schultz MH, Rossbach U, Vauterin L et al. 2005. A comprehensive species to strain taxonomic framework for Xanthomonas. Phytopathology 95:91098–111
    [Google Scholar]
  97. 97. 
    Rashid TS, Kamaruzaman S, Golkhandan E, Nasehi A, Awla HK. 2015. First report of Xanthomonas gardneri causing bacterial spot of tomato in Malaysia. Plant Dis 100:4854
    [Google Scholar]
  98. 98. 
    Richard D, Ravigné V, Rieux A, Facon B, Boyer C et al. 2017. Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements. Mol. Ecol. 26:72131–49
    [Google Scholar]
  99. 99. 
    Roach R, Mann R, Gambley CG, Shivas RG, Rodoni B. 2018. Identification of Xanthomonas species associated with bacterial leaf spot of tomato, capsicum and chilli crops in eastern Australia. Eur. J. Plant Pathol. 150:3595–608
    [Google Scholar]
  100. 100. 
    Roberts R, Mainiero S, Powell AF, Liu AE, Shi K et al. 2019. Natural variation for unusual host responses and flagellin-mediated immunity against Pseudomonas syringae in genetically diverse tomato accessions. New Phytol 223:1447–61
    [Google Scholar]
  101. 101. 
    Romero AM, Ritchie DF. 2004. Systemic acquired resistance delays race shifts to major resistance genes in bell pepper. Phytopathology 94:121376–82
    [Google Scholar]
  102. 102. 
    Sahin F. 1995. First report of pepper race 6 of Xanthomonas campestris pv. vesicatoria, causal agent of bacterial spot of pepper. Plant Dis 79:1188
    [Google Scholar]
  103. 103. 
    Schornack S, Ballvora A, Gürlebeck D, Peart J, Baulcombe D et al. 2004. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37:146–60
    [Google Scholar]
  104. 104. 
    Schulze S, Kay S, Büttner D, Egler M, Eschen-Lippold L et al. 2012. Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. New Phytol 195:4894–911
    [Google Scholar]
  105. 105. 
    Schwartz AR, Morbitzer R, Lahaye T, Staskawicz BJ 2017. TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato. PNAS 114:5E897–903
    [Google Scholar]
  106. 106. 
    Schwartz AR, Potnis N, Timilsina S, Wilson M, Patané J et al. 2015. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front. Microbiol 6:535This paper shows the ability of some Xp lineages to cause disease on pepper in the absence of AvrBsT.
    [Google Scholar]
  107. 107. 
    Seong K, Seo E, Witek K, Li M, Staskawicz B. 2020. Evolution of NLR resistance genes with noncanonical N-terminal domains in wild tomato species. New Phytol 227:51530–43NLR expansion in wild tomato described in this paper.
    [Google Scholar]
  108. 108. 
    Shenge KC, Mabagala RB, Mortensen CN. 2008. Coexistence between neighbours: Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria, incitants of bacterial speck and spot diseases of tomato. Arch. Phytopathol. Plant Prot. 41:8559–71
    [Google Scholar]
  109. 109. 
    Singer AU, Schulze S, Skarina T, Xu X, Cui H et al. 2013. A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLOS Pathog 9:1e1003121
    [Google Scholar]
  110. 110. 
    Singer M. 2010. Pathogen-pathogen interaction. Virulence 1:110–18
    [Google Scholar]
  111. 111. 
    Sonnewald S, Priller JPR, Schuster J, Glickmann E, Hajirezaei M-R et al. 2012. Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors. PLOS ONE 7:12e51763
    [Google Scholar]
  112. 112. 
    Stall RE. 1986. Linkage of copper resistance and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pv. vesicatoria. Phytopathology 76:2240–43
    [Google Scholar]
  113. 113. 
    Stall RE, Beaulieu C, Egel D, Hodge NC, Leite RP et al. 1994. Two genetically diverse groups of strains are included in Xanthomonas campestris pv. vesicatoria. Int. J. Syst. Evol. Microbiol. 44:147–53
    [Google Scholar]
  114. 114. 
    Stall RE, Jones JB, Minsavage GV. 2009. Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot. Annu. Rev. Phytopathol. 47:265–84Comprehensive overview of resistance genes and corresponding avirulence genes, which determine race structure in tomato and pepper strains.
    [Google Scholar]
  115. 115. 
    Stork W, Kim J-G, Mudgett MB. 2015. Functional analysis of plant defense suppression and activation by the Xanthomonas core type III effector XopX. Mol. Plant-Microbe Interact. 28:2180–94
    [Google Scholar]
  116. 116. 
    Susi H, Barrès B, Vale PF, Laine A-L. 2015. Co-infection alters population dynamics of infectious disease. Nat. Commun. 6:5975
    [Google Scholar]
  117. 117. 
    Swords KM, Dahlbeck D, Kearney B, Roy M, Staskawicz BJ 1996. Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. J. Bacteriol. 178:154661–69
    [Google Scholar]
  118. 118. 
    Teper D, Salomon D, Sunitha S, Kim J-G, Mudgett MB, Sessa G. 2014. Xanthomonas euvesicatoria type III effector XopQ interacts with tomato and pepper 14-3-3 isoforms to suppress effector-triggered immunity. Plant J 77:2297–309
    [Google Scholar]
  119. 119. 
    Timilsina S, Abrahamian P, Potnis N, Minsavage GV, White FF et al. 2016. Analysis of sequenced genomes of Xanthomonas perforans identifies candidate targets for resistance breeding in tomato. Phytopathology 106:101097–104
    [Google Scholar]
  120. 120. 
    Timilsina S, Jibrin MO, Potnis N, Minsavage GV, Kebede M et al. 2015. Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of Xanthomonas gardneri. Appl. Environ. Microbiol. 81:41520–29
    [Google Scholar]
  121. 121. 
    Timilsina S, Minsavage GV, Preston J, Newberry EA, Paret ML et al. 2018. Pseudomonas floridensis sp. nov., a bacterial pathogen isolated from tomato. Int. J. Syst. Evol. Microbiol. 68:164–70
    [Google Scholar]
  122. 122. 
    Timilsina S, Pereira-Martin JA, Minsavage GV, Iruegas-Bocardo F, Abrahamian P et al. 2019. Multiple recombination events drive the current genetic structure of Xanthomonas perforans in Florida. Front. Microbiol. 10:448
    [Google Scholar]
  123. 123. 
    Tudor-Nelson SM, Minsavage GV, Stall RE, Jones JB. 2003. Bacteriocin-like substances from tomato race 3 strains of Xanthomonas campestris pv. vesicatoria. Phytopathology 93:111415–21
    [Google Scholar]
  124. 124. 
    Vauterin L, Hoste B, Kersters K, Swings J. 1995. Reclassification of Xanthomonas. Int. J. Syst. Evol. Microbiol. 45:3472–89
    [Google Scholar]
  125. 125. 
    Vauterin L, Swings J, Kersters K, Gillis M, Mew TW et al. 1990. Towards an improved taxonomy of Xanthomonas. Int. J. Syst. Evol. Microbiol. 40:3312–16
    [Google Scholar]
  126. 126. 
    Vauterin L, Yang P, Alvarez A, Takikawa Y, Roth DA et al. 1996. Identification of non-pathogenic Xanthomonas strains associated with plants. Syst. Appl. Microbiol. 19:196–105
    [Google Scholar]
  127. 127. 
    Vinatzer BA, Monteil CL, Clarke CR. 2014. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. Annu. Rev. Phytopathol. 52:19–43
    [Google Scholar]
  128. 128. 
    White FF, Potnis N, Jones JB, Koebnik R. 2009. The type III effectors of Xanthomonas. Mol. Plant Pathol. 10:6749–66
    [Google Scholar]
  129. 129. 
    Wichmann G, Bergelson J. 2004. Effector genes of Xanthomonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field. Genetics 166:2693–706This paper confirmed the role of avirulence genes in fitness on pepper.
    [Google Scholar]
  130. 130. 
    Wichmann G, Ritchie D, Kousik CS, Bergelson J. 2005. Reduced genetic variation occurs among genes of the highly clonal plant pathogen Xanthomonas axonopodis pv. vesicatoria, including the effector gene avrBs2. Appl. Environ. Microbiol. 71:52418–32
    [Google Scholar]
  131. 131. 
    Wintermantel WM, Cortez AA, Anchieta AG, Gulati-Sakhuja A, Hladky LL. 2008. Co-infection by two criniviruses alters accumulation of each virus in a host-specific manner and influences efficiency of virus transmission. Phytopathology 98:121340–45
    [Google Scholar]
  132. 132. 
    Wu C-H, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R et al. 2017. NLR network mediates immunity to diverse plant pathogens. PNAS 114:308113–18This paper describes the NLR network containing sensor NLRs and helper NLRs evolved to recognize a broad range of pathogens.
    [Google Scholar]
  133. 133. 
    Zipfel C. 2015. A new receptor for LPS. Nat. Immunol. 16:4340–41
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-020620-101612
Loading
/content/journals/10.1146/annurev-phyto-020620-101612
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error