1932

Abstract

Hybrid necrosis in plants refers to a genetic autoimmunity syndrome in the progeny of interspecific or intraspecific crosses. Although the phenomenon was first documented in 1920, it has been unequivocally linked to autoimmunity only recently, with the discovery of the underlying genetic and biochemical mechanisms. The most common causal loci encode immune receptors, which are known to differ within and between species. One mechanism can be explained by the guard hypothesis, in which a guard protein, often a nucleotide-binding site–leucine-rich repeat protein, is activated by interaction with a plant protein that mimics standard guardees modified by pathogen effector proteins. Another surprising mechanism is the formation of inappropriately active immune receptor complexes. In this review, we summarize our current knowledge of hybrid necrosis and discuss how its study is not only informing the understanding of immune gene evolution but also revealing new aspects of plant immune signaling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-020620-114826
2021-08-25
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/phyto/59/1/annurev-phyto-020620-114826.html?itemId=/content/journals/10.1146/annurev-phyto-020620-114826&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adachi H, Contreras MP, Harant A, Wu C-H, Derevnina L et al. 2019. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 8:e49956
    [Google Scholar]
  2. 2. 
    Adachi H, Derevnina L, Kamoun S. 2019. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Curr. Opin. Plant Biol. 50:121–31
    [Google Scholar]
  3. 3. 
    Adachi H, Sakai T, Kourelis J, Maqbool A, Kamoun S. 2020. Jurassic NLR: conserved and dynamic evolutionary features of the atypically ancient immune receptor ZAR1. bioRxiv 333484. https://doi.org/10.1101/2020.10.12.333484
    [Crossref]
  4. 4. 
    Afzal AJ, da Cunha L, Mackey D. 2011. Separable fragments and membrane tethering of Arabidopsis RIN4 regulate its suppression of PAMP-triggered immunity. Plant Cell 23:103798–811
    [Google Scholar]
  5. 5. 
    Albert I, Böhm H, Albert M, Feiler CE, Imkampe J et al. 2015. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nat. Plants 1:15140
    [Google Scholar]
  6. 6. 
    Alcázar R, García AV, Kronholm I, de Meaux J, Koornneef M et al. 2010. Natural variation at Strubbelig Receptor Kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nat. Genet. 42:121135–39
    [Google Scholar]
  7. 7. 
    Alcázar R, von Reth M, Bautor J, Chae E, Weigel D et al. 2014. Analysis of a plant complex resistance gene locus underlying immune-related hybrid incompatibility and its occurrence in nature. PLOS Genet 10:12e1004848
    [Google Scholar]
  8. 8. 
    Asai S, Furzer OJ, Cevik V, Kim DS, Ishaque N et al. 2018. A downy mildew effector evades recognition by polymorphism of expression and subcellular localization. Nat. Commun. 9:15192
    [Google Scholar]
  9. 9. 
    Ashfield T, Redditt T, Russell A, Kessens R, Rodibaugh N et al. 2014. Evolutionary relationship of disease resistance genes in soybean and Arabidopsis specific for the Pseudomonas syringae effectors AvrB and AvrRpm1. Plant Physiol 166:1235–51
    [Google Scholar]
  10. 10. 
    Axtell MJ, Staskawicz BJ. 2003. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:3369–77
    [Google Scholar]
  11. 11. 
    Babcock EB, Collins JL 1920. Interspecific hybrids in Crepis. I. Crepis capillaris (L) Wallr. x C. tectorum L.. PNAS 6:11670–73
    [Google Scholar]
  12. 12. 
    Baggs E, Monroe JG, Thanki AS, O'Grady R, Schudoma C et al. 2020. Convergent loss of an EDS1/PAD4 signaling pathway in several plant lineages reveals co-evolved components of plant immunity and drought response. Plant Cell 32:2158–77
    [Google Scholar]
  13. 13. 
    Bailey K, Çevik V, Holton N, Byrne-Richardson J, Sohn KH et al. 2011. Molecular cloning of ATR5Emoy2 from Hyaloperonospora arabidopsidis, an avirulence determinant that triggers RPP5-mediated defense in Arabidopsis. Mol. Plant-Microbe Interact. 24:7827–38
    [Google Scholar]
  14. 14. 
    Barragan AC, Collenberg M, Wang J, Lee RRQ, Cher WY et al. 2021. A truncated singleton NLR causes hybrid necrosis in Arabidopsis thaliana. Mol. Biol. Evol. 38:2557–74
    [Google Scholar]
  15. 15. 
    Barragan AC, Weigel D. 2021. Plant NLR diversity: the known unknowns of pan-NLRomes. Plant Cell https://doi.org/10.1093/plcell/koaa002
    [Crossref] [Google Scholar]
  16. 16. 
    Barragan CA, Wu R, Kim S-T, Xi W, Habring A et al. 2019. RPW8/HR repeats control NLR activation in Arabidopsis thaliana. PLOS Genet 15:7e1008313
    [Google Scholar]
  17. 17. 
    Bentham AR, Zdrzalek R, De la Concepcion JC, Banfield MJ. 2018. Uncoiling CNLs: structure/function approaches to understanding CC domain function in plant NLRs. Plant Cell Physiol 59:122398–408
    [Google Scholar]
  18. 18. 
    Bhandari DD, Lapin D, Kracher B, von Born P, Bautor J et al. 2019. An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Nat. Commun. 10:1772
    [Google Scholar]
  19. 19. 
    Birker D, Heidrich K, Takahara H, Narusaka M, Deslandes L et al. 2009. A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Plant J 60:4602–13
    [Google Scholar]
  20. 20. 
    Boller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406
    [Google Scholar]
  21. 21. 
    Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C et al. 2007. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLOS Biol 5:9e236
    [Google Scholar]
  22. 22. 
    Bomblies K, Weigel D. 2007. Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat. Rev. Genet. 8:5382–93
    [Google Scholar]
  23. 23. 
    Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL. 2011. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. PNAS 108:3916463–68
    [Google Scholar]
  24. 24. 
    Boutrot F, Zipfel C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55:257–86
    [Google Scholar]
  25. 25. 
    Buscaill P, Chandrasekar B, Sanguankiattichai N, Kourelis J, Kaschani F et al. 2019. Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides. Science 364:6436eaav0748
    [Google Scholar]
  26. 26. 
    Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP et al. 2014. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3:e03766
    [Google Scholar]
  27. 27. 
    Castel B, Ngou P-M, Cevik V, Redkar A, Kim D-S et al. 2019. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol 222:2966–80
    [Google Scholar]
  28. 28. 
    Césari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V et al. 2014. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J 33:171941–59
    [Google Scholar]
  29. 29. 
    Chae E, Bomblies K, Kim S-T, Karelina D, Zaidem M et al. 2014. Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 159:61341–51
    [Google Scholar]
  30. 30. 
    Chen C, Chen H, Lin YS, Shen JB, Shan JX et al. 2014. A two-locus interaction causes interspecific hybrid weakness in rice. Nat. Commun. 5:3357
    [Google Scholar]
  31. 31. 
    Chen H, Chen J, Li M, Chang M, Xu K et al. 2017. A bacterial type III effector targets the master regulator of salicylic acid signaling, NPR1, to subvert plant immunity. Cell Host Microbe 22:6777–88.e7
    [Google Scholar]
  32. 32. 
    Cheng C, Gao X, Feng B, Sheen J, Shan L, He P. 2013. Plant immune response to pathogens differs with changing temperatures. Nat. Commun. 4:2530
    [Google Scholar]
  33. 33. 
    Cheng YT, Zhang L, He SY. 2019. Plant-microbe interactions facing environmental challenge. Cell Host Microbe 26:2183–92
    [Google Scholar]
  34. 34. 
    Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T et al. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:7152497–500
    [Google Scholar]
  35. 35. 
    Chu C-G, Faris JD, Friesen TL, Xu SS. 2006. Molecular mapping of hybrid necrosis genes Ne1 and Ne2 in hexaploid wheat using microsatellite markers. Theor. Appl. Genet. 112:71374–81
    [Google Scholar]
  36. 36. 
    Chung E-H, El-Kasmi F, He Y, Loehr A, Dangl JL. 2014. A plant phosphoswitch platform repeatedly targeted by type III effector proteins regulates the output of both tiers of plant immune receptors. Cell Host Microbe 16:4484–94
    [Google Scholar]
  37. 37. 
    Collier SM, Hamel L-P, Moffett P. 2011. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol. Plant-Microbe Interact. 24:8918–31
    [Google Scholar]
  38. 38. 
    Coyne JA, Orr HA. 2004. Speciation Sunderland, MA: Sinauer557 pp.
    [Google Scholar]
  39. 39. 
    Cutter AD. 2012. The polymorphic prelude to Bateson-Dobzhansky-Muller incompatibilities. Trends Ecol. Evol. 27:4209–18
    [Google Scholar]
  40. 40. 
    Dangl JL, Jones JD. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:6839826–33
    [Google Scholar]
  41. 41. 
    de Jong CF, Takken FLW, Cai X, de Wit PJGM, Joosten MHAJ. 2002. Attenuation of Cf-mediated defense responses at elevated temperatures correlates with a decrease in elicitor-binding sites. Mol. Plant-Microbe Interact. 15:101040–49
    [Google Scholar]
  42. 42. 
    de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y et al. 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:5994953–55
    [Google Scholar]
  43. 43. 
    Deng J, Fang L, Zhu X, Zhou B, Zhang T. 2019. A CC-NBS-LRR gene induces hybrid lethality in cotton. J. Exp. Bot. 70:195145–56
    [Google Scholar]
  44. 44. 
    Dixon MS, Golstein C, Thomas CM, van Der Biezen EA, Jones JD. 2000. Genetic complexity of pathogen perception by plants: the example of Rcr3, a tomato gene required specifically by Cf-2. PNAS 97:168807–14
    [Google Scholar]
  45. 45. 
    Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JD 1998. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10:111915–25
    [Google Scholar]
  46. 46. 
    Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JD. 1996. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84:3451–59
    [Google Scholar]
  47. 47. 
    Dong OX, Ao K, Xu F, Johnson KCM, Wu Y et al. 2018. Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases. Nat. Plants 4:9699–710
    [Google Scholar]
  48. 48. 
    Duxbury Z, Wang S, MacKenzie CI, Tenthorey JL, Zhang X et al. 2020. Induced proximity of a TIR signaling domain on a plant-mammalian NLR chimera activates defense in plants. PNAS 117:3118832–39
    [Google Scholar]
  49. 49. 
    Eulgem T, Tsuchiya T, Wang X-J, Beasley B, Cuzick A et al. 2007. EDM2 is required for RPP7-dependent disease resistance in Arabidopsis and affects RPP7 transcript levels. Plant J 49:5829–39
    [Google Scholar]
  50. 50. 
    Feehan JM, Castel B, Bentham AR, Jones JDG. 2020. Plant NLRs get by with a little help from their friends. Curr. Opin. Plant Biol. 56:99–108
    [Google Scholar]
  51. 51. 
    Flor HH. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275–96
    [Google Scholar]
  52. 52. 
    Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L et al. 2009. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:59191357–60
    [Google Scholar]
  53. 53. 
    Fu ZQ, Dong X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839–63
    [Google Scholar]
  54. 54. 
    Fukunaga S, Sogame M, Hata M, Singkaravanit-Ogawa S, Piślewska-Bednarek M et al. 2017. Dysfunction of Arabidopsis MACPF domain protein activates programmed cell death via tryptophan metabolism in MAMP-triggered immunity. Plant J 89:2381–93
    [Google Scholar]
  55. 55. 
    Gangappa SN, Berriri S, Kumar SV. 2017. PIF4 coordinates thermosensory growth and immunity in Arabidopsis. Curr. Biol. 27:2243–49
    [Google Scholar]
  56. 56. 
    Gao L-L, Xue H-W. 2012. Global analysis of expression profiles of rice receptor-like kinase genes. Mol. Plant 5:1143–53
    [Google Scholar]
  57. 57. 
    Gao M, Wang X, Wang D, Xu F, Ding X et al. 2009. Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6:134–44
    [Google Scholar]
  58. 58. 
    Hermsen JGT. 1963. Sources and distribution of the complementary genes for hybrid necrosis in wheat. Euphytica 12:2147–60
    [Google Scholar]
  59. 59. 
    Hollingshead L. 1930. A lethal factor in Crepis effective only in an interspecific hybrid. Genetics 15:2114–40
    [Google Scholar]
  60. 60. 
    Hörger AC, Ilyas M, Stephan W, Tellier A, van der Hoorn RAL, Rose LE. 2012. Balancing selection at the tomato RCR3 guardee gene family maintains variation in strength of pathogen defense. PLOS Genet 8:7e1002813
    [Google Scholar]
  61. 61. 
    Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y et al. 2019. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365:6455793–99
    [Google Scholar]
  62. 62. 
    Huard-Chauveau C, Perchepied L, Debieu M, Rivas S, Kroj T et al. 2013. An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. PLOS Genet 9:9e1003766
    [Google Scholar]
  63. 63. 
    Huh SU, Cevik V, Ding P, Duxbury Z, Ma Y et al. 2017. Protein-protein interactions in the RPS4/RRS1 immune receptor complex. PLOS Pathog 13:5e1006376
    [Google Scholar]
  64. 64. 
    Huot B, Castroverde CDM, Velásquez AC, Hubbard E, Pulman JA et al. 2017. Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nat. Commun. 8:11808
    [Google Scholar]
  65. 65. 
    Hurni S, Brunner S, Stirnweis D, Herren G, Peditto D et al. 2014. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J 79:6904–13
    [Google Scholar]
  66. 66. 
    Hwang CF, Bhakta AV, Truesdell GM, Pudlo WM, Williamson VM. 2000. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell 12:81319–29
    [Google Scholar]
  67. 67. 
    Ichitani K, Namigoshi K, Sato M, Taura S, Aoki M et al. 2007. Fine mapping and allelic dosage effect of Hwc1, a complementary hybrid weakness gene in rice. Theor. Appl. Genet. 114:81407–15
    [Google Scholar]
  68. 68. 
    Janda M, Lamparová L, Zubíková A, Burketová L, Martinec J, Krčková Z. 2019. Temporary heat stress suppresses PAMP-triggered immunity and resistance to bacteria in Arabidopsis thaliana. Mol. Plant Pathol. 20:71005–12
    [Google Scholar]
  69. 69. 
    Jeuken MJ, Zhang NW, McHale LK, Pelgrom K, den Boer E et al. 2009. RIN4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. Plant Cell 21:103368–78
    [Google Scholar]
  70. 70. 
    Jiao W-B, Schneeberger K. 2020. Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. Nat. Commun. 11:989
    [Google Scholar]
  71. 71. 
    Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:7117323–29
    [Google Scholar]
  72. 72. 
    Jones JDG, Vance RE, Dangl JL. 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:6316aaf6395
    [Google Scholar]
  73. 73. 
    Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S et al. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54:143–55
    [Google Scholar]
  74. 74. 
    Karasov TL, Shirsekar G, Schwab R, Weigel D. 2020. What natural variation can teach us about resistance durability. Curr. Opin. Plant Biol. 56:89–98
    [Google Scholar]
  75. 75. 
    Knepper C, Savory EA, Day B. 2011. Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion. Plant Physiol 156:1286–300
    [Google Scholar]
  76. 76. 
    Kopp A, Frank AK. 2005. Speciation in progress? A continuum of reproductive isolation in Drosophila bipectinata. Genetica 125:155–68
    [Google Scholar]
  77. 77. 
    Kourelis J, Malik S, Mattinson O, Krauter S, Kahlon PS et al. 2020. Evolution of a guarded decoy protease and its receptor in solanaceous plants. Nat. Commun. 11:14393
    [Google Scholar]
  78. 78. 
    Krasileva KV, Dahlbeck D, Staskawicz BJ. 2010. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22:72444–58
    [Google Scholar]
  79. 79. 
    Krüger J, Thomas CM, Golstein C, Dixon MS, Smoker M et al. 2002. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296:5568744–47
    [Google Scholar]
  80. 80. 
    Kuboyama T, Saito T, Matsumoto T, Wu J, Kanamori H et al. 2009. Fine mapping of HWC2, a complementary hybrid weakness gene, and haplotype analysis around the locus in rice. Rice 2:293–103
    [Google Scholar]
  81. 81. 
    Lapin D, Bhandari DD, Parker JE. 2020. Origins and immunity networking functions of EDS1 family proteins. Annu. Rev. Phytopathol. 58:253–76
    [Google Scholar]
  82. 82. 
    Lapin D, Kovacova V, Sun X, Dongus JA, Bhandari DD et al. 2019. A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-domain immune receptors. Plant Cell 31:102430–55
    [Google Scholar]
  83. 83. 
    Le Roux C, Huet G, Jauneau A, Camborde L, Trémousaygue D et al. 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161:51074–88
    [Google Scholar]
  84. 84. 
    Lewis JD, Wu R, Guttman DS, Desveaux D. 2010. Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein. PLOS Genet 6:4e1000894
    [Google Scholar]
  85. 85. 
    Li L, Habring A, Wang K, Weigel D. 2020. Atypical resistance protein RPW8/HR triggers oligomerization of the NLR immune receptor RPP7 and autoimmunity. Cell Host Microbe 27:3405–17.e6
    [Google Scholar]
  86. 86. 
    Li L, Li M, Yu L, Zhou Z, Liang X et al. 2014. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15:3329–38
    [Google Scholar]
  87. 87. 
    Li Q, Chen Y, Wang J, Zou F, Jia Y et al. 2019. A Phytophthora capsici virulence effector associates with NPR1 and suppresses plant immune responses. Phytopathol. Res. 1:16
    [Google Scholar]
  88. 88. 
    Li Y, Yang S, Yang H, Hua J 2007. The TIR-NB-LRR gene SNC1 is regulated at the transcript level by multiple factors. Mol. Plant-Microbe Interact. 20:111449–56
    [Google Scholar]
  89. 89. 
    Liebrand TWH, van den Berg GCM, Zhang Z, Smit P, Cordewener JHG et al. 2013. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. PNAS 110:2410010–15
    [Google Scholar]
  90. 90. 
    Lozano-Torres JL, Wilbers RHP, Gawronski P, Boshoven JC, Finkers-Tomczak A et al. 2012. Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. PNAS 109:2510119–24
    [Google Scholar]
  91. 91. 
    Lu D, Wu S, Gao X, Zhang Y, Shan L, He P. 2010. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. PNAS 107:1496–501
    [Google Scholar]
  92. 92. 
    Luderer R, Takken FLW, de Wit PJGM, Joosten MHAJ. 2002. Cladosporium fulvum overcomes Cf-2-mediated resistance by producing truncated AVR2 elicitor proteins. Mol. Microbiol. 45:3875–84
    [Google Scholar]
  93. 93. 
    Lu H, Liu Y, Greenberg JT. 2005. Structure-function analysis of the plasma membrane-localized Arabidopsis defense component ACD6. Plant J 44:5798–809
    [Google Scholar]
  94. 94. 
    Lu H, Rate DN, Song JT, Greenberg JT. 2003. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell 15:102408–20
    [Google Scholar]
  95. 95. 
    Lu H, Salimian S, Gamelin E, Wang G, Fedorowski J et al. 2009. Genetic analysis of acd6-1 reveals complex defense networks and leads to identification of novel defense genes in Arabidopsis. Plant J 58:3401–12
    [Google Scholar]
  96. 96. 
    Luu DD, Joe A, Chen Y, Parys K, Bahar O et al. 2019. Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor. PNAS 116:178525–34
    [Google Scholar]
  97. 97. 
    Ma S, Lapin D, Liu L, Sun Y, Song W et al. 2020. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 370:6521eabe3069
    [Google Scholar]
  98. 98. 
    Ma Y, Guo H, Hu L, Martinez PP, Moschou PN et al. 2018. Distinct modes of derepression of an Arabidopsis immune receptor complex by two different bacterial effectors. PNAS 115:4110218–27
    [Google Scholar]
  99. 99. 
    Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL. 2003. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112:3379–89
    [Google Scholar]
  100. 100. 
    Mackey D, Holt BF 3rd, Wiig A, Dangl JL 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:6743–54
    [Google Scholar]
  101. 101. 
    Mahdi LK, Huang M, Zhang X, Nakano RT, Kopp LB et al. 2020. Discovery of a family of mixed lineage kinase domain-like proteins in plants and their role in innate immune signaling. Cell Host Microbe 28:6813–24.e6
    [Google Scholar]
  102. 102. 
    Martin R, Qi T, Zhang H, Liu F, King M et al. 2020. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370:6521eabd9993
    [Google Scholar]
  103. 103. 
    McDowell JM, Cuzick A, Can C, Beynon J, Dangl JL, Holub EB. 2000. Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant J 22:6523–29
    [Google Scholar]
  104. 104. 
    Miya A, Albert P, Shinya T, Desaki Y, Ichimura K et al. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. PNAS 104:4919613–18
    [Google Scholar]
  105. 105. 
    Mizuno N, Hosogi N, Park P, Takumi S. 2010. Hypersensitive response-like reaction is associated with hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii Coss. PLOS ONE 5:6e11326
    [Google Scholar]
  106. 106. 
    Monteiro F, Nishimura MT. 2018. Structural, functional, and genomic diversity of plant NLR proteins: an evolved resource for rational engineering of plant immunity. Annu. Rev. Phytopathol. 56:243–67
    [Google Scholar]
  107. 107. 
    Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T et al. 2009. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J 60:2218–26
    [Google Scholar]
  108. 108. 
    Ngou BPM, Ahn H-K, Ding P, Jones JDG. 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592:110–15
    [Google Scholar]
  109. 109. 
    Ordon J, Martin P, Erickson JL, Ferik F, Balcke G et al. 2021. Disentangling cause and consequence: genetic dissection of the DANGEROUS MIX2 risk locus, and activation of the DM2h NLR in autoimmunity. Plant J https://doi.org/10.1111/tpj.15215
    [Crossref] [Google Scholar]
  110. 110. 
    Orr HA. 1996. Dobzhansky, Bateson, and the genetics of speciation. Genetics 144:41331–35
    [Google Scholar]
  111. 111. 
    Parra L, Maisonneuve B, Lebeda A, Schut J, Christopoulou M et al. 2016. Rationalization of genes for resistance to Bremia lactucae in lettuce. Euphytica 210:3309–26
    [Google Scholar]
  112. 112. 
    Peng Y, van Wersch R, Zhang Y. 2018. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Mol. Plant-Microbe Interact. 31:4403–9
    [Google Scholar]
  113. 113. 
    Pitsili E, Phukan UJ, Coll NS. 2020. Cell death in plant immunity. Cold Spring Harb. Perspect. Biol. 12:a036483
    [Google Scholar]
  114. 114. 
    Prigozhin DM, Krasileva KV. 2021. Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites. Plant Cell https://doi.org/10.1093/plcell/koab013
    [Crossref] [Google Scholar]
  115. 115. 
    Pruitt RN, Joe A, Zhang W, Feng W, Stewart V et al. 2017. A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone. New Phytol 215:2725–36
    [Google Scholar]
  116. 116. 
    Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F et al. 2015. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci. Adv. 1:6e1500245
    [Google Scholar]
  117. 117. 
    Pruitt RN, Zhang L, Saile SC, Karelina D, Fröhlich K et al. 2020. Arabidopsis cell surface LRR immune receptor signaling through the EDS1-PAD4-ADR1 node. bioRxiv 391516. https://doi.org/10.1101/2020.11.23.391516
    [Crossref] [Google Scholar]
  118. 118. 
    Qi T, Seong K, Thomazella DPT, Kim JR, Pham J et al. 2018. NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana. PNAS 115:46E10979–87
    [Google Scholar]
  119. 119. 
    Ray SK, Macoy DM, Kim W-Y, SY Lee, Kim MG. 2019. Role of RIN4 in regulating PAMP-triggered immunity and effector-triggered immunity: current status and future perspectives. Mol. Cell 42:7503–11
    [Google Scholar]
  120. 120. 
    Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR et al. 2005. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17:61839–50
    [Google Scholar]
  121. 121. 
    Rocafort M, Fudal I, Mesarich CH. 2020. Apoplastic effector proteins of plant-associated fungi and oomycetes. Curr. Opin. Plant Biol. 56:9–19
    [Google Scholar]
  122. 122. 
    Rodriguez E, El Ghoul H, Mundy J, Petersen M. 2016. Making sense of plant autoimmunity and “negative regulators. .” FEBS J 283:81385–91
    [Google Scholar]
  123. 123. 
    Saijo Y, Loo EP-I, Yasuda S 2018. Pattern recognition receptors and signaling in plant-microbe interactions. Plant J 93:4592–613
    [Google Scholar]
  124. 124. 
    Saile SC, Jacob P, Castel B, Jubic LM, Salas-Gonzáles I et al. 2020. Two unequally redundant “helper” immune receptor families mediate Arabidopsis thaliana intracellular “sensor” immune receptor functions. PLOS Biol 18:9e3000783
    [Google Scholar]
  125. 125. 
    Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C et al. 2015. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161:51089–100
    [Google Scholar]
  126. 126. 
    Selote D, Kachroo A. 2010. RPG1-B-derived resistance to AvrB-expressing Pseudomonas syringae requires RIN4-like proteins in soybean. Plant Physiol 153:31199–211
    [Google Scholar]
  127. 127. 
    Shirano Y, Kachroo P, Shah J, Klessig DF. 2002. A gain-of-function mutation in an Arabidopsis Toll interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:123149–62
    [Google Scholar]
  128. 128. 
    Shiu S-H, Karlowski WM, Pan R, Tzeng Y-H, Mayer KFX, Li W-H. 2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:51220–34
    [Google Scholar]
  129. 129. 
    Sicard A, Kappel C, Josephs EB, Lee YW, Marona C et al. 2015. Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella. Nat. Commun. 6:7960
    [Google Scholar]
  130. 130. 
    Smirnova A, Li H, Weingart H, Aufhammer S, Burse A et al. 2001. Thermoregulated expression of virulence factors in plant-associated bacteria. Arch. Microbiol. 176:6393–99
    [Google Scholar]
  131. 131. 
    Smith LM, Bomblies K, Weigel D. 2011. Complex evolutionary events at a tandem cluster of Arabidopsis thaliana genes resulting in a single-locus genetic incompatibility. PLOS Genet 7:7e1002164
    [Google Scholar]
  132. 132. 
    Song J, Win J, Tian M, Schornack S, Kaschani F et al. 2009. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. PNAS 106:51654–59
    [Google Scholar]
  133. 133. 
    Song WY, Wang GL, Chen LL, Kim HS, Pi LY et al. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene. Xa21. Science 270:52431804–6
    [Google Scholar]
  134. 134. 
    Stakman EC. 1915. Relation between Puccinia graminis and plants highly resistant to its attack. J. Agric. Res. 4:193–99
    [Google Scholar]
  135. 135. 
    Steinbrenner AD. 2020. The evolving landscape of cell surface pattern recognition across plant immune networks. Curr. Opin. Plant Biol. 56:135–46
    [Google Scholar]
  136. 136. 
    Stirnweis D, Milani SD, Brunner S, Herren G, Buchmann G et al. 2014. Suppression among alleles encoding nucleotide-binding-leucine-rich repeat resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants. Plant J 79:6893–903
    [Google Scholar]
  137. 137. 
    Stuttmann J, Peine N, Garcia AV, Wagner C, Choudhury SR et al. 2016. Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like resistance locus underlies three different cases of EDS1-conditioned autoimmunity. PLOS Genet 12:4e1005990
    [Google Scholar]
  138. 138. 
    Sun Y, Detchemendy TW, Pajerowska-Mukhtar KM, Mukhtar MS. 2018. NPR1 in JazzSet with pathogen effectors. Trends Plant Sci 23:6469–72
    [Google Scholar]
  139. 139. 
    Świadek M, Proost S, Sieh D, Yu J, Todesco M et al. 2017. Novel allelic variants in ACD6 cause hybrid necrosis in local collection of Arabidopsis thaliana. New Phytol 213:2900–915
    [Google Scholar]
  140. 140. 
    Tahir J, Watanabe M, Jing H-C, Hunter DA, Tohge T et al. 2013. Activation of R-mediated innate immunity and disease susceptibility is affected by mutations in a cytosolic O-acetylserine (thiol) lyase in Arabidopsis. Plant J 73:1118–30
    [Google Scholar]
  141. 141. 
    Takai R, Isogai A, Takayama S, Che F-S. 2008. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol. Plant-Microbe Interact. 21:121635–42
    [Google Scholar]
  142. 142. 
    Tamborski J, Krasileva KV. 2020. Evolution of plant NLRs: from natural history to precise modifications. Annu. Rev. Plant Biol. 71:355–78
    [Google Scholar]
  143. 143. 
    Tateda C, Zhang Z, Shrestha J, Jelenska J, Chinchilla D, Greenberg JT. 2014. Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling. Plant Cell 26:104171–87
    [Google Scholar]
  144. 144. 
    Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ et al. 1997. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9:122209–24
    [Google Scholar]
  145. 145. 
    Thomma BPHJ, Nürnberger T, Joosten MHAJ. 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:14–15
    [Google Scholar]
  146. 146. 
    Thor K, Jiang S, Michard E, George J, Scherzer S et al. 2020. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 585:569–73
    [Google Scholar]
  147. 147. 
    Tian W, Hou C, Ren Z, Wang C, Zhao F et al. 2019. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572:131–35
    [Google Scholar]
  148. 148. 
    Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M et al. 2010. Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465:7298632–36
    [Google Scholar]
  149. 149. 
    Todesco M, Kim S-T, Chae E, Bomblies K, Zaidem M et al. 2014. Activation of the Arabidopsis thaliana immune system by combinations of common ACD6 alleles. PLOS Genet 10:7e1004459
    [Google Scholar]
  150. 150. 
    Tran DTN, Chung E-H, Habring-Müller A, Demar M, Schwab R et al. 2017. Activation of a plant NLR complex through heteromeric association with an autoimmune risk variant of another NLR. Curr. Biol. 27:81148–60
    [Google Scholar]
  151. 151. 
    Van der Biezen EA, Jones JD 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23:12454–56
    [Google Scholar]
  152. 152. 
    Van de Weyer A-L, Monteiro F, Furzer OJ, Nishimura MT, Cevik V et al. 2019. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178:51260–72.e14
    [Google Scholar]
  153. 153. 
    Wan L, Essuman K, Anderson RG, Sasaki Y, Monteiro F et al. 2019. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365:6455799–803
    [Google Scholar]
  154. 154. 
    Wan W-L, Fröhlich K, Pruitt RN, Nürnberger T, Zhang L. 2019. Plant cell surface immune receptor complex signaling. Curr. Opin. Plant Biol. 50:18–28
    [Google Scholar]
  155. 155. 
    Wan W-L, Zhang L, Pruitt R, Zaidem M, Brugman R et al. 2019. Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences. New Phytol 221:42080–95
    [Google Scholar]
  156. 156. 
    Wang G, Ellendorff U, Kemp B, Mansfield JW, Forsyth A et al. 2008. A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol 147:2503–17
    [Google Scholar]
  157. 157. 
    Wang J, Hu M, Wang J, Qi J, Han Z et al. 2019. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364:6435eaav5870
    [Google Scholar]
  158. 158. 
    Wang J, Wang J, Hu M, Wu S, Qi J et al. 2019. Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364:6435eaav5868
    [Google Scholar]
  159. 159. 
    Wang W, Wen Y, Berkey R, Xiao S 2009. Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell 21:92898–913
    [Google Scholar]
  160. 160. 
    Wang Y, Bao Z, Zhu Y, Hua J. 2009. Analysis of temperature modulation of plant defense against biotrophic microbes. Mol. Plant-Microbe Interact. 22:5498–506
    [Google Scholar]
  161. 161. 
    Webb KM, Oña I, Bai J, Garrett KA, Mew T et al. 2010. A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytol 185:2568–76
    [Google Scholar]
  162. 162. 
    Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF et al. 2014. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344:6181299–303
    [Google Scholar]
  163. 163. 
    Wu Z, Li M, Dong OX, Xia S, Liang W et al. 2019. Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. New Phytol 222:2938–53
    [Google Scholar]
  164. 164. 
    Xiao S, Brown S, Patrick E, Brearley C, Turner JG. 2003. Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15:133–45
    [Google Scholar]
  165. 165. 
    Xiao S, Calis O, Patrick E, Zhang G, Charoenwattana P et al. 2005. The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant J 42:195–110
    [Google Scholar]
  166. 166. 
    Xiao S, Ellwood S, Calis O, Patrick E, Li T et al. 2001. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:5501118–20
    [Google Scholar]
  167. 167. 
    Xiao S, Emerson B, Ratanasut K, Patrick E, O'Neill C et al. 2004. Origin and maintenance of a broad-spectrum disease resistance locus in Arabidopsis. Mol. Biol. Evol. 21:91661–72
    [Google Scholar]
  168. 168. 
    Xiao Z, Hu Y, Zhang X, Xue Y, Fang Z et al. 2017. Fine mapping and transcriptome analysis reveal candidate genes associated with hybrid lethality in cabbage (Brassica oleracea). Genes 8:6147
    [Google Scholar]
  169. 169. 
    Yamamoto E, Takashi T, Morinaka Y, Lin S, Wu J et al. 2010. Gain of deleterious function causes an autoimmune response and Bateson-Dobzhansky-Muller incompatibility in rice. Mol. Genet. Genom. 283:4305–15
    [Google Scholar]
  170. 170. 
    Yu X, Feng B, He P, Shan L. 2017. From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 55:109–37
    [Google Scholar]
  171. 171. 
    Yuan M, Jiang Z, Bi G, Nomura K, Liu M et al. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592:105–9
    [Google Scholar]
  172. 172. 
    Zhang J, Li W, Xiang T, Liu Z, Laluk K et al. 2010. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:4290–301
    [Google Scholar]
  173. 173. 
    Zhang L, Kars I, Essenstam B, Liebrand TWH, Wagemakers L et al. 2014. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol 164:1352–64
    [Google Scholar]
  174. 174. 
    Zhang P, Hiebert CW, McIntosh RA, McCallum BD, Thomas JB et al. 2016. The relationship of leaf rust resistance gene Lr13 and hybrid necrosis gene Ne2m on wheat chromosome 2BS. Theor. Appl. Genet. 129:3485–93
    [Google Scholar]
  175. 175. 
    Zhang X, Dodds PN, Bernoux M. 2017. What do we know about NOD-like receptors in plant immunity?. Annu. Rev. Phytopathol. 55:205–29
    [Google Scholar]
  176. 176. 
    Zhang Y, Goritschnig S, Dong X, Li X 2003. A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1–1, constitutive 1. Plant Cell 15:112636–46
    [Google Scholar]
  177. 177. 
    Zhang Z, Shrestha J, Tateda C, Greenberg JT. 2014. Salicylic acid signaling controls the maturation and localization of the Arabidopsis defense protein ACCELERATED CELL DEATH6. Mol. Plant 7:81365–83
    [Google Scholar]
  178. 178. 
    Zhu W, Zaidem M, Van de Weyer A-L, Gutaker RM, Chae E et al. 2018. Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLOS Genet 14:9e1007628
    [Google Scholar]
  179. 179. 
    Zhu Y, Qian W, Hua J. 2010. Temperature modulates plant defense responses through NB-LRR proteins. PLOS Pathog 6:4e1000844
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-020620-114826
Loading
/content/journals/10.1146/annurev-phyto-020620-114826
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error