1932

Abstract

is one of the most important genera of plant-pathogenic fungi in the world and arguably the world's most important mycotoxin-producing genus. species produce a staggering array of toxic metabolites that contribute to plant disease and mycotoxicoses in humans and other animals. A thorough understanding of the mycotoxin potential of individual species is crucial for assessing the toxicological risks associated with diseases. There are thousands of reports of mycotoxin production by various species, and there have been numerous attempts to summarize them. These efforts have been complicated by competing classification systems based on morphology, sexual compatibility, and phylogenetic relationships. The current depth of knowledge of genomes and mycotoxin biosynthetic pathways provides insights into how mycotoxin production is distributedamong species and multispecies lineages (species complexes) in the genus as well as opportunities to clarify and predict mycotoxin risks connected with known and newly described species. Here, we summarize mycotoxin production in the genus and how mycotoxin risk aligns with current phylogenetic species concepts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-020620-102825
2021-08-25
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/phyto/59/1/annurev-phyto-020620-102825.html?itemId=/content/journals/10.1146/annurev-phyto-020620-102825&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Achari SR, Kaur J, Dinh Q, Mann R, Sawbridge T et al. 2020. Phylogenetic relationship between Australian Fusarium oxysporum isolates and resolving the species complex using the multispecies coalescent model. BMC Genom 21:248
    [Google Scholar]
  2. 2. 
    Alexander NJ, Proctor RH, McCormick SP. 2009. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev 28:198–215
    [Google Scholar]
  3. 3. 
    Amatulli MT, Spadaro D, Gullino ML, Garibaldi A. 2010. Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathol 59:839–44
    [Google Scholar]
  4. 4. 
    Aoki T, O'Donnell K, Homma Y, Lattanzi AR. 2003. Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex–F. virguliforme in North America and F. tucumaniae in South America. Mycologia 95:660–84
    [Google Scholar]
  5. 5. 
    Arias SL, Theumer MG, Mary VS, Rubinstein HR. 2012. Fumonisins: probable role as effectors in the complex interaction of susceptible and resistant maize hybrids and Fusarium verticillioides. J. Agric. Food Chem. 60:5667–75
    [Google Scholar]
  6. 6. 
    Avila CF, Moreira GM, Nicolli CP, Gomes LB, Abreu LM et al. 2019. Fusarium incarnatum-equiseti species complex associated with Brazilian rice: phylogeny, morphology and toxigenic potential. Int. J. Food Microbiol. 306:108267
    [Google Scholar]
  7. 7. 
    Baayen RP, O'Donnell K, Bonants PJM, Cigelnik E, Kroon L et al. 2000. Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology 90:891–900
    [Google Scholar]
  8. 8. 
    Backhouse D. 2014. Global distribution of Fusarium graminearum, F. asiaticum and F. boothii from wheat in relation to climate. Eur. J. Plant Pathol. 139:161–73
    [Google Scholar]
  9. 9. 
    Barros G, Alaniz Zanon MS, Abod A, Oviedo MS, Ramirez ML et al. 2012. Natural deoxynivalenol occurrence and genotype and chemotype determination of a field population of the Fusarium graminearum complex associated with soybean in Argentina. Food Addit. Contam. A 29:293–303
    [Google Scholar]
  10. 10. 
    Barros GG, Alaniz Zanon MS, Chiotta ML, Reynoso MM, Scandiani MM, Chulze SN. 2014. Pathogenicity of phylogenetic species in the Fusarium graminearum complex on soybean seedlings in Argentina. Eur. J. Plant Pathol. 138:215–22
    [Google Scholar]
  11. 11. 
    Berthiller F, Crews C, Dall'Asta C, De Saeger S, Haesaert G et al. 2013. Masked mycotoxins: a review. Mol. Nutr. Food Res. 57:165–86
    [Google Scholar]
  12. 12. 
    Berthiller F, Dall'asta C, Corradini R, Marchelli R, Sulyok M et al. 2009. Occurrence of deoxynivalenol and its 3-β-D-glucoside in wheat and maize. Food Addit. Contam. A 26:507–11
    [Google Scholar]
  13. 13. 
    Berthiller F, Dall'Asta C, Schuhmacher R, Lemmens M, Adam G, Krska R 2005. Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 53:3421–25
    [Google Scholar]
  14. 14. 
    Berthiller F, Krska R, Domig KJ, Kneifel W, Juge N et al. 2011. Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicol. Lett. 206:264–67
    [Google Scholar]
  15. 15. 
    Berthiller F, Werner U, Sulyok M, Krska R, Hauser MT, Schuhmacher R. 2006. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. Food Addit. Contam. A 23:1194–200
    [Google Scholar]
  16. 16. 
    Bilgi VN, Bradley CA, Mathew FM, Ali S, Rasmussen JB 2011. Root rot of dry edible bean caused by Fusarium graminearum. Plant Health Prog https://doi.org/10.1094/PHP-2011-0425-01-RS
    [Crossref] [Google Scholar]
  17. 17. 
    Booth C. 1971. The Genus Fusarium Surrey, UK: Commonw. Mycol. Inst.
    [Google Scholar]
  18. 18. 
    Boutigny A-L, Ward TJ, Ballois N, Iancu G, Ioos R. 2014. Diversity of the Fusarium graminearum species complex on French cereals. Eur. J. Plant Pathol. 138:133–48
    [Google Scholar]
  19. 19. 
    Boutigny A-L, Ward TJ, Van Coller GJ, Flett B, Lamprecht SC et al. 2011. Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Genet. Biol. 48:914–20
    [Google Scholar]
  20. 20. 
    Broders KD, Lipps PE, Paul PA, Dorrance AE. 2007. Evaluation of Fusarium graminearum associated with corn and soybean seed and seedling disease in Ohio. Plant Dis 91:1155–60
    [Google Scholar]
  21. 21. 
    Broekaert N, Devreese M, De Baere S, De Backer P, Croubels S. 2015. Modified Fusarium mycotoxins unmasked: from occurrence in cereals to animal and human excretion. Food Chem. Toxicol. 80:17–31
    [Google Scholar]
  22. 22. 
    Brown DW, Lee S-H, Kim L-H, Ryu J-G, Lee S et al. 2015. Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics. Mol. Plant-Microbe Interact. 28:319–32
    [Google Scholar]
  23. 23. 
    Brown DW, Proctor RH, Dyer RB, Plattner RD. 2003. Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification. J. Agric. Food Chem. 51:7936–44
    [Google Scholar]
  24. 24. 
    Bryden WL, Logrieco A, Abbas HK, Porter JK, Vesonder RF et al. 2001. Other significant Fusarium mycotoxins. Fusarium: Paul E. Nelson Memorial Symposium BA Summerell, JF Leslie, D Backhouse, WL Bryden 360–92 St. Paul, MN: APS Press
    [Google Scholar]
  25. 25. 
    Burgess LW, Summerell BA 2000. Taxonomy of Fusarium: Fusarium armeniacum stat & comb. Nov. Mycotaxon 75:347–48
    [Google Scholar]
  26. 26. 
    Castella G, Cabanes FJ. 2014. Phylogenetic diversity of Fusarium incarnatum-equiseti species complex isolated from Spanish wheat. Antonie van Leeuwenhoek 106:309–17
    [Google Scholar]
  27. 27. 
    Chang HX, Domier LL, Radwan O, Yendrek CR, Hudson ME, Hartman GL. 2016. Identification of multiple phytotoxins produced by Fusarium virguliforme including a phytotoxic effector (fvnis1) associated with sudden death syndrome foliar symptoms. Mol. Plant-Microbe Interact. 29:96–108
    [Google Scholar]
  28. 28. 
    Chiotta ML, Alaniz Zanon MS, Palazzini JM, Scandiani MM, Formento AN et al. 2016. Pathogenicity of Fusarium graminearum and F. meridionale on soybean pod blight and trichothecene accumulation. Plant Pathol 65:1492–97
    [Google Scholar]
  29. 29. 
    Coleman JJ. 2016. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol. Plant Pathol. 17:146–58
    [Google Scholar]
  30. 30. 
    Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC et al. 2009. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLOS Genet 5:e1000618
    [Google Scholar]
  31. 31. 
    Constable PD, Smith GW, Rottinghaus GE, Tumbleson ME, Haschek WM. 2003. Fumonisin-induced blockade of ceramide synthase in sphingolipid biosynthetic pathway alters aortic input impedance spectrum of pigs. Am. J. Physiol. Heart Circ. Physiol. 284:H2034–44
    [Google Scholar]
  32. 32. 
    Cuomo CA, Gueldener U, Xu JR, Trail F, Turgeon BG et al. 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–2
    [Google Scholar]
  33. 33. 
    Dall'Asta C, Galaverna G, Aureli G, Dossena A, Marchelli R. 2008. A LC/MS/MS method for the simultaneous quantification of free and masked fumonisins in maize and maize-based products. World Mycotoxin J 1:237–46
    [Google Scholar]
  34. 34. 
    Dall'Asta C, Mangia M, Berthiller F, Molinelli A, Sulyok M et al. 2009. Difficulties in fumonisin determination: the issue of hidden fumonisins. Anal. Bioanal. Chem. 395:1335–45
    [Google Scholar]
  35. 35. 
    Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A et al. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414–30
    [Google Scholar]
  36. 36. 
    Del Ponte EM, Spolti P, Ward TJ, Gomes LB, Nicolli CP et al. 2015. Regional and field-specific factors affect the composition of Fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil. Phytopathology 105:246–54
    [Google Scholar]
  37. 37. 
    Desjardins AE. 2006. Fusarium Mycotoxins: Chemistry, Genetics and Biology St. Paul, MN: APS Press
    [Google Scholar]
  38. 38. 
    Desjardins AE, Manandhar HK, Plattner RD, Manandhar GG, Poling SM, Maragos CM. 2000. Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl. Environ. Microbiol. 66:1020–25
    [Google Scholar]
  39. 39. 
    Desjardins AE, Munkvold GP, Plattner RD, Proctor RH. 2002. FUM1: a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Mol. Plant-Microbe Interact. 15:1157–64
    [Google Scholar]
  40. 40. 
    Desjardins AE, Proctor RH. 2011. Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biol 115:38–48
    [Google Scholar]
  41. 41. 
    Desjardins AE, Proctor RH, Bai GH, McCormick SP, Shaner G et al. 1996. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Mol. Plant-Microbe Interact. 9:775–81
    [Google Scholar]
  42. 42. 
    Edwards SG, Imathiu SM, Ray RV, Back M, Hare MC. 2012. Molecular studies to identify the Fusarium species responsible for HT-2 and T-2 mycotoxins in UK oats. Int. J. Food Microbiol. 156:168–75
    [Google Scholar]
  43. 43. 
    Ellis ML, Arias MMD, Leandro LF, Munkvold GP. 2012. First report of Fusarium armeniacum causing seed rot and root rot on soybean (Glycine max) in the United States. Plant Dis 96:1693
    [Google Scholar]
  44. 44. 
    Ellis ML, Munkvold GP. 2014. Trichothecene genotype of Fusarium graminearum isolates from soybean (Glycine max) seedling and root diseases in the United States. Plant Dis 98:1012–13
    [Google Scholar]
  45. 45. 
    Elmer WH, Marra RE. 2011. New species of Fusarium associated with dieback of Spartina alterniflora in Atlantic salt marshes. Mycologia 103:806–19
    [Google Scholar]
  46. 46. 
    Eudes F, Comeau A, Rioux S, Collin J 2000. Phytotoxicity of eight mycotoxins associated with Fusarium in wheat head blight. Can. J. Plant Pathol. 22:286–92
    [Google Scholar]
  47. 47. 
    Fredlund E, Gidlund A, Pettersson H, Olsen M, Börjesson T. 2010. Real-time PCR detection of Fusarium species in Swedish oats and correlation to T-2 and HT-2 toxin content. World Mycotoxin J 3:77–88
    [Google Scholar]
  48. 48. 
    Fu M, Li R, Guo C, Pang M, Liu Y, Dong J. 2015. Natural incidence of Fusarium species and fumonisins B-1 and B-2 associated with maize kernels from nine provinces in China in 2012. Food Addit. Contam. A 32:503–11
    [Google Scholar]
  49. 49. 
    Fumero MV, Villani A, Susca A, Haidukowski M, Cimmarusti MT et al. 2020. Fumonisin and beauvericin chemotypes and genotypes of the sister species Fusarium subglutinans and Fusarium temperatum. Appl. Environ. Microbiol. 86:e00133–20
    [Google Scholar]
  50. 50. 
    Gale LR, Harrison SA, Ward TJ, O'Donnell K, Milus EA et al. 2011. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 101:124–34
    [Google Scholar]
  51. 51. 
    Gardiner DM, McDonald MC, Covarelli L, Solomon PS, Rusu AG et al. 2012. Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLOS Pathog 8:9e1002952
    [Google Scholar]
  52. 52. 
    Gargouri S, Balmas V, Burgess L, Paulitz T, Laraba I et al. 2020. An endophyte of Macrochloa tenacissima (esparto or needle grass) from Tunisia is a novel species in the Fusarium redolens species complex. Mycologia 112:792–807
    [Google Scholar]
  53. 53. 
    Geiser DM, Al-Hatmi A, Aoki T, Arie T, Balmas V et al. 2020. Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathology. In press
    [Google Scholar]
  54. 54. 
    Geiser DM, Aoki T, Bacon CW, Baker SE, Bhattacharyya MK et al. 2013. One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103:400–8
    [Google Scholar]
  55. 55. 
    Gerlach W, Nirenberg H. 1982. The Genus Fusarium: A Pictorial Atlas Berlin: Kommissionsverlag P. Parey
    [Google Scholar]
  56. 56. 
    Gomes LB, Ward TJ, Badiale-Furlong E, Del Ponte EM. 2015. Species composition, toxigenic potential and pathogenicity of Fusarium graminearum species complex isolates from southern Brazilian rice. Plant Pathol 64:980–87
    [Google Scholar]
  57. 57. 
    Goswami RS, Kistler HC. 2005. Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology 95:1397–404
    [Google Scholar]
  58. 58. 
    Haese A, Schubert M, Herrmann M, Zocher R. 1993. Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi. Mol. Microbiol. 7:905–14
    [Google Scholar]
  59. 59. 
    Hansen FT, Gardiner DM, Lysoe E, Fuertes PR, Tudzynski B et al. 2015. An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium. Fungal Genet. Biol. 75:20–29
    [Google Scholar]
  60. 60. 
    Hawksworth DL. 2011. A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus 2:155–62
    [Google Scholar]
  61. 61. 
    Herrmann M, Zocher R, Haese A. 1996. Enniatin production by Fusarium strains and its effect on potato tuber tissue. Appl. Environ. Microbiol. 62:393–98
    [Google Scholar]
  62. 62. 
    Hestbjerg H, Nielsen KF, Thrane U, Elmholt S. 2002. Production of trichothecenes and other secondary metabolites by Fusarium culmorum and Fusarium equiseti on common laboratory media and a soil organic matter agar: an ecological interpretation. J. Agric. Food Chem. 50:7593–99
    [Google Scholar]
  63. 63. 
    IARC Work. Group Eval. Carcinog. Risks Hum 2002. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene Rep. 82, IARC Monogr. Eval. Carcinog. Risks Hum., Lyon, Fr .
    [Google Scholar]
  64. 64. 
    Imathiu SM, Edwards SG, Ray RV, Back MA. 2013. Fusarium langsethiae: a HT-2 and T-2 toxins producer that needs more attention. J. Phytopathol. 161:1–10
    [Google Scholar]
  65. 65. 
    Jacobs-Venter A, Laraba I, Geiser DM, Busman M, Vaughan MM et al. 2018. Molecular systematics of two sister clades, the Fusarium concolor and F. babinda species complexes, and the discovery of a novel microcycle macroconidium-producing species from South Africa. Mycologia 110:1189–204
    [Google Scholar]
  66. 66. 
    Jansen C, von Wettstein D, Schafer W, Kogel KH, Felk A, Maier FJ 2005. Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. PNAS 102:16892–97
    [Google Scholar]
  67. 67. 
    Jestoi M. 2008. Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: a review. Crit. Rev. Food Sci. Nutr. 48:21–49
    [Google Scholar]
  68. 68. 
    Kawakami A, Kato N, Sasaya T, Tomioka K, Inoue H et al. 2015. Gibberella ear rot of corn caused by Fusarium asiaticum in Japan. J. Gen. Plant Pathol. 81:324–27
    [Google Scholar]
  69. 69. 
    Kelly AC, Clear RM, O'Donnell K, McCormick S, Turkington TK et al. 2015. Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal Genet. Biol. 82:22–31
    [Google Scholar]
  70. 70. 
    Kelly AC, Ward TJ. 2018. Population genomics of Fusarium graminearum reveals signatures of divergent evolution within a major cereal pathogen. PLOS ONE 13:e0194616
    [Google Scholar]
  71. 71. 
    Kim HS, Lohmar JM, Busman M, Brown DW, Naumann TA et al. 2020. Identification and distribution of gene clusters required for synthesis of sphingolipid metabolism inhibitors in diverse species of the filamentous fungus Fusarium. BMC Genom 21:510
    [Google Scholar]
  72. 72. 
    Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M. 2007. Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci. Biotechnol. Biochem. 71:2105–23
    [Google Scholar]
  73. 73. 
    King R, Brown NA, Urban M, Hammond-Kosack KE. 2018. Inter-genome comparison of the Quorn fungus Fusarium venenatum and the closely related plant infecting pathogen Fusarium graminearum. BMC Genom 19:269
    [Google Scholar]
  74. 74. 
    King R, Urban M, Hammond-Kosack MCU, Hassani-Pak K, Hammond-Kosack KE. 2015. The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genom 16:544
    [Google Scholar]
  75. 75. 
    Kosiak EB, Holst-Jensen A, Rundberget T, Jaen MTG, Torp M. 2005. Morphological, chemical and molecular differentiation of Fusarium equiseti isolated from Norwegian cereals. Int. J. Food Microbiol. 99:195–206
    [Google Scholar]
  76. 76. 
    Kouri K, Lemmens M, Lemmens-Gruber R. 2003. Beauvericin-induced channels in ventricular myocytes and liposomes. Biochim. Biophys. Acta 1609:203–10
    [Google Scholar]
  77. 77. 
    Lamprecht SC, Tewoldemedhin YT, Botha WJ, Calitz FJ. 2011. Fusarium graminearum species complex associated with maize crowns and roots in the KwaZulu-Natal province of South Africa. Plant Dis 95:1153–58
    [Google Scholar]
  78. 78. 
    Laraba I, McCormick SP, Vaughan MM, Geiser DM, O'Donnell K. 2021. Phylogenetic diversity, trichothecene potential, and pathogenicity within Fusarium sambucinum species complex. PLOS ONE 16:e0245037
    [Google Scholar]
  79. 79. 
    Lattanzio VMT, Ciasca B, Haidukowski M, Infantino A, Visconti A, Pascale M. 2013. Mycotoxin profile of Fusarium langsethiae isolated from wheat in Italy: production of type-A trichothecenes and relevant glucosyl derivatives. J. Mass Spectrom. 48:1291–98
    [Google Scholar]
  80. 80. 
    Laurence MH, Summerell BA, Burgess LW, Liew ECY. 2014. Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biol 118:374–84
    [Google Scholar]
  81. 81. 
    Leslie JF, Summerell BA. 2006. The Fusarium Laboratory Manual Ames, IA: Blackwell Publ.
    [Google Scholar]
  82. 82. 
    Liang JM, Xayamongkhon H, Broz K, Dong Y, McCormick SP et al. 2014. Temporal dynamics and population genetic structure of Fusarium graminearum in the upper Midwestern United States. Fungal Genet. Biol. 73:83–92
    [Google Scholar]
  83. 83. 
    Logrieco A, Bottalico A, Mule G, Moretti A, Perrone G. 2003. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur. J. Plant Pathol. 109:645–67
    [Google Scholar]
  84. 84. 
    Logrieco A, Moretti A, Castella G, Kostecki M, Golinski P et al. 1998. Beauvericin production by Fusarium species. Appl. Environ. Microbiol. 64:3084–88
    [Google Scholar]
  85. 85. 
    Logrieco A, Mulè G, Moretti A, Bottalico A. 2002. Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur. J. Plant Pathol. 108:597–609
    [Google Scholar]
  86. 86. 
    Lombard L, Van Doorn R, Crous PW. 2019. Neotypification of Fusarium chlamydosporum: a reappraisal of a clinically important species complex. Fungal Syst. Evol. 4:183–200
    [Google Scholar]
  87. 87. 
    Lopez-Berges MS, Hera C, Sulyok M, Schaefer K, Capilla J et al. 2013. The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol. Microbiol. 87:49–65
    [Google Scholar]
  88. 88. 
    Lysøe E, Frandsen RJN, Divon HH, Terzi V, Orrù L et al. 2016. Draft genome sequence and chemical profiling of Fusarium langsethiae, an emerging producer of type A trichothecenes. Int. J. Food Microbiol. 221:29–36
    [Google Scholar]
  89. 89. 
    Lysøe E, Harris LJ, Walkowiak S, Subramaniam R, Divon HH et al. 2014. The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLOS ONE 9:e112703
    [Google Scholar]
  90. 90. 
    Ma LJ, Geiser DM, Proctor RH, Rooney AP, O'Donnell K et al. 2013. Fusarium pathogenomics. Annu. Rev. Microbiol. 67:399–416
    [Google Scholar]
  91. 91. 
    Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–73
    [Google Scholar]
  92. 92. 
    Makun HA, Dutton MF, Njobeh PB, Mwanza M, Kabiru AY. 2011. Natural multi-occurrence of mycotoxins in rice from Niger State, Nigeria. Mycotoxin Res 27:97–104
    [Google Scholar]
  93. 93. 
    Marasas WFO, Nelson PE, Toussoun TA. 1984. Toxigenic Fusarium Species: Identity and Mycotoxicology University Park, PA: Penn State Univ. Press
    [Google Scholar]
  94. 94. 
    Marasas WFO, Riley RT, Hendricks KA, Stevens VL, Sadler TW et al. 2004. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J. Nutr. 134:711–16
    [Google Scholar]
  95. 95. 
    Marin P, Moretti A, Ritieni A, Jurado M, Vazquez C, Gonzalez-Jaen MT. 2012. Phylogenetic analyses and toxigenic profiles of Fusarium equiseti and Fusarium acuminatum isolated from cereals from southern Europe. Food Microbiol 31:229–37
    [Google Scholar]
  96. 96. 
    McCormick SP, Harris LJ, Alexander NJ, Ouellet T, Saparno A et al. 2004. Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl. Environ. Microbiol. 70:2044–51
    [Google Scholar]
  97. 97. 
    McCormick SP, Stanley AM, Stover NA, Alexander NJ. 2011. Trichothecenes: from simple to complex mycotoxins. Toxins 3:802–14
    [Google Scholar]
  98. 98. 
    Meek IB, Peplow AW, Ake C, Phillips TD, Beremand MN. 2003. Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Appl. Environ. Microbiol. 69:1607–13
    [Google Scholar]
  99. 99. 
    Meissonnier GM, Bracarense AP, Bertin G, Galtier P, Oswald IP 2008. Toxic properties of type-A trichothecenes in farm animals. Mycotoxins in Farm Animals IP Oswald, I Taranu 131–54 Trivandrum, India: Transworld Res. Netw.
    [Google Scholar]
  100. 100. 
    Miller JD, MacKenzie S 2000. Secondary metabolites of Fusarium venenatum strains with deletions in the Tri5 gene encoding trichodiene synthetase. Mycologia 92:764–71
    [Google Scholar]
  101. 101. 
    Minervini F, Dell'Aquila ME. 2008. Zearalenone and reproductive function in farm animals. Int. J. Mol. Sci. 9:2570–84
    [Google Scholar]
  102. 102. 
    Monds RD, Cromey MG, Lauren DR, di Menna M, Marshall J 2005. Fusarium graminearum, F. cortaderiae and F. pseudograminearum in New Zealand: molecular phylogenetic analysis, mycotoxin chemotypes and co-existence of species. Mycol. Res. 109:410–20
    [Google Scholar]
  103. 103. 
    Moolhuijzen PM, Manners JM, Wilcox SA, Bellgard MI, Gardiner DM. 2013. Genome sequences of six wheat-infecting Fusarium species isolates. Genome Announc 1:e00670–13
    [Google Scholar]
  104. 104. 
    Morcia C, Tumino G, Ghizzoni R, Badeck FW, Lattanzio VM et al. 2016. Occurrence of Fusarium langsethiae and T-2 and HT-2 toxins in Italian malting barley. Toxins 8:247
    [Google Scholar]
  105. 105. 
    Moretti A, Ferracane L, Somma S, Ricci V, Mule G et al. 2010. Identification, mycotoxin risk and pathogenicity of Fusarium species associated with fig endosepsis in Apulia, Italy. Food Addit. Contam. A 27:718–28
    [Google Scholar]
  106. 106. 
    Moretti A, Mule G, Ritieni A, Laday M, Stubnya V et al. 2008. Cryptic subspecies and beauvericin production by Fusarium subglutinans from Europe. Int. J. Food Microbiol. 127:312–15
    [Google Scholar]
  107. 107. 
    Moretti A, Mule G, Ritieni A, Logrieco A. 2007. Further data on the production of beauvericin, enniatins and fusaproliferin and toxicity to Artemia salina by Fusarium species of Gibberella fujikuroi species complex. Int. J. Food Microbiol. 118:158–63
    [Google Scholar]
  108. 108. 
    Moretti A, Mule G, Susca A, Gonzalez-Jaen MT, Logrieco A 2004. Toxin profile, fertility and AFLP analysis of Fusarium verticillioides from banana fruits. Eur. J. Plant Pathol. 110:601–9
    [Google Scholar]
  109. 109. 
    Munkvold GP 2017. Fusarium species and their associated mycotoxins. Mycotoxigenic Fungi: Methods and Protocols A Moretti, A Susca 51–106 Dordrecht, Neth: Springer
    [Google Scholar]
  110. 110. 
    Munkvold GP, Arias S, Taschl I, Gruber-Dorninger C. 2019. Mycotoxins in corn: cccurrence, impacts, and management. Corn: Chemistry and Technology SO Serna-Saldivar 235–87 Cambridge, MA: Elsevier. , 3rd ed..
    [Google Scholar]
  111. 111. 
    Munkvold GP, Desjardins AE. 1997. Fumonisins in maize: Can we reduce their occurrence?. Plant Dis 81:556–65
    [Google Scholar]
  112. 112. 
    Nelson PE, Plattner RD, Shackelford DD, Desjardins AE. 1992. Fumonisin B1 production by Fusarium species other than F. moniliforme in section Liseola and by some related species. Appl. Environ. Microbiol. 58:984–89
    [Google Scholar]
  113. 113. 
    Nelson PE, Toussoun TA, Marasas WFO. 1983. Fusarium Species: An Illustrated Manual for Identification University Park, PA: Penn State Univ. Press
    [Google Scholar]
  114. 114. 
    Nichea MJ. 2015. Mycotoxin profile of Fusarium armeniacum isolated from natural grasses intended for cattle feed. World Mycotoxin J 8:451–57
    [Google Scholar]
  115. 115. 
    Niehaus EM, Munsterkotter M, Proctor RH, Brown DW, Sharon A et al. 2016. Comparative “omics” of the Fusarium fujikuroi species complex highlights differences in genetic potential and metabolite synthesis. Genome Biol. Evol. 8:3574–99
    [Google Scholar]
  116. 116. 
    O'Donnell K, Al-Hatmi AMS, Aoki T, Brankovics B, Cano-Lira JF et al. 2020. No to Neocosmospora: phylogenomic and practical reasons for continued inclusion of the Fusarium solani species complex in the genus Fusarium. mSphere https://doi.org/10.1128/mSphere.00810-20
    [Crossref] [Google Scholar]
  117. 117. 
    O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. PNAS 95:2044–49
    [Google Scholar]
  118. 118. 
    O'Donnell K, McCormick SP, Busman M, Proctor RH, Ward TJ et al. 2018. Marasas et al. 1984 “Toxigenic Fusarium species: identity and mycotoxicology” revisited. Mycologia 110:1058–80
    [Google Scholar]
  119. 119. 
    O'Donnell K, Rooney AP, Proctor RH, Brown DW, McCormick SP et al. 2013. Phylogenetic analyses of RPB1 and RPB2 strongly support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet. Biol. 52:20–31
    [Google Scholar]
  120. 120. 
    O'Donnell K, Sink S, Libeskind-Hadas R, Hulcr J, Kasson MT et al. 2015. Discordant phylogenies suggest repeated host shifts in the Fusarium-Euwallacea ambrosia beetle mutualism. Fungal Genet. Biol. 82:277–90
    [Google Scholar]
  121. 121. 
    O'Donnell K, Sutton DA, Rinaldi MG, Gueidan C, Crous PW, Geiser DM. 2009. Novel multilocus sequence typing scheme reveals high genetic diversity of human pathogenic members of the Fusarium inacrnatum-F. equiseti and F. chlamydosporum species complexes within the United States. J. Clin. Microbiol. 47:3851–61
    [Google Scholar]
  122. 122. 
    O'Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T. 2004. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet. Biol. 41:600–23
    [Google Scholar]
  123. 123. 
    O'Donnell K, Ward TJ, Robert VARG, Crous PW, Geiser DM, Kang S. 2015. DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica 43:583–95
    [Google Scholar]
  124. 124. 
    Paciolla C, Dipierro N, Mule G, Logrieco A, Dipierro S. 2004. The mycotoxins beauvericin and T-2 induce cell death and alteration to the ascorbate metabolism in tomato protoplasts. Physiol. Mol. Plant Pathol. 65:49–56
    [Google Scholar]
  125. 125. 
    Paris MPK, Schweiger W, Hametner C, Stueckler R, Muehlbauer GJ et al. 2014. Zearalenone-16-O-glucoside: a new masked mycotoxin. J. Agric. Food Chem. 62:1181–89
    [Google Scholar]
  126. 126. 
    Pavlovkin J, Mistrikova I, Jaskova K, Tamas L 2012. Impact of beauvericin on membrane properties of young initial leaves of maize with different susceptibility to Fusarium. Plant Soil Environ 58:205–10
    [Google Scholar]
  127. 127. 
    Peplow AW, Meek IB, Wiles MC, Phillips TD, Beremand MN. 2003. Tri16 is required for esterification of position C-8 during trichothecene mycotoxin production by Fusarium sporotrichioides. Appl. Environ. Microbiol. 69:5935–40
    [Google Scholar]
  128. 128. 
    Pérez-Hernández A, Rocha LO, Porcel-Rodríguez E, Summerell BA, Liew ECY, Gómez-Vázquez JM. 2020. Pathogenic, morphological, and phylogenetic characterization of Fusarium solani f. sp. cucurbitae isolates from cucurbits in Almería Province, Spain. Plant Dis 104:1465–76
    [Google Scholar]
  129. 129. 
    Pestka JJ. 2007. Deoxynivalenol: toxicity, mechanisms and animal health risks. Anim. Feed Sci. Technol. 137:283–98
    [Google Scholar]
  130. 130. 
    Pestka JJ. 2010. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 84:663–79
    [Google Scholar]
  131. 131. 
    Ploetz RC 2001. Significant diseases in the tropics that are caused by species of Fusarium. Fusarium: Paul E. Nelson Memorial Symposium BA Summerell, JF Leslie, D Backhouse, WL Bryden 295–309 St. Paul, MN: APS Press
    [Google Scholar]
  132. 132. 
    Proctor RH, Desjardins AE, Moretti A 2010. Biological and chemical complexity of Fusarium proliferatum. Role of Plant Pathology in Food Safety and Food Security R Strange, M Gullino 97–111 Dordrecht, Neth: Springer
    [Google Scholar]
  133. 133. 
    Proctor RH, Hohn TM, McCormick SP. 1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol. Plant-Microbe Interact. 8:593–601
    [Google Scholar]
  134. 134. 
    Proctor RH, McCormick SP, Alexander NJ, Desjardins AE. 2009. Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Mol. Microbiol. 74:1128–42
    [Google Scholar]
  135. 135. 
    Proctor RH, McCormick SP, Kim HS, Cardoza RE, Stanley AM et al. 2018. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLOS Pathog 14:e1006946
    [Google Scholar]
  136. 136. 
    Proctor RH, Plattner RD, Brown DW, Seo JA, Lee YW. 2004. Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol. Res. 108:815–22
    [Google Scholar]
  137. 137. 
    Proctor RH, Van Hove F, Susca A, Stea G, Busman M et al. 2013. Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium. Mol. Microbiol. 90:290–306
    [Google Scholar]
  138. 138. 
    Prosperini A, Berrada H, Jose Ruiz M, Caloni F, Coccini T et al. 2017. A review of the mycotoxin enniatin B. Front. Public Health 5:304
    [Google Scholar]
  139. 139. 
    Rheeder JP, Marasas WFO, Thiel PG, Sydenham EW, Shephard GS, Vanschalkwyk DJ. 1992. Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkei. Phytopathology 82:353–57
    [Google Scholar]
  140. 140. 
    Rheeder JP, Marasas WFO, Vismer HF. 2002. Production of fumonisin analogs by Fusarium species. Appl. Environ. Microbiol. 68:2101–5
    [Google Scholar]
  141. 141. 
    Righetti L, Koerber T, Ralli E, Galaverna G, Suman M et al. 2019. Plant biotransformation of T2 and HT2 toxin in cultured organs of Triticum durum Desf. Sci. Rep 9:14320
    [Google Scholar]
  142. 142. 
    Ritieni A, Fogliano V, Randazzo G, Scarallo A, Logrieco A et al. 1995. Isolation and characterization of fusaproliferin, a new toxic metabolite from Fusarium proliferatum. Nat. Toxins 3:17–20
    [Google Scholar]
  143. 143. 
    Ritieni A, Moretti A, Logrieco A, Bottalico A, Randazzo G et al. 1997. Occurrence of fusaproliferin, fumonisin B-1, and beauvericin in maize from Italy. J. Agric. Food Chem. 45:4011–16
    [Google Scholar]
  144. 144. 
    Rocha LO, Laurence MH, Proctor RH, McCormick SP, Summerell BA, Liew EC. 2015. Variation in type A trichothecene production and trichothecene biosynthetic genes in Fusarium goolgardi from natural ecosystems of Australia. Toxins 7:4577–94
    [Google Scholar]
  145. 145. 
    Rocha O, Ansari K, Doohan FM. 2005. Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit. Contam. A 22:369–78
    [Google Scholar]
  146. 146. 
    Sampietro DA, Aristimuno Ficoseco ME, Jimenez CM, Vattuone MA, Catalan CA 2012. Trichothecene genotypes and chemotypes in Fusarium graminearum complex strains isolated from maize fields of northwest Argentina. Int. J. Food Microbiol. 153:229–33
    [Google Scholar]
  147. 147. 
    Sampietro DA, Diaz CG, Gonzalez V, Vattuone MA, Ploper LD et al. 2011. Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina. Int. J. Food Microbiol. 145:359–64
    [Google Scholar]
  148. 148. 
    Sandoval-Denis M, Crous PW. 2018. Removing chaos from confusion: assigning names to common human and animal pathogens in Neocosmospora. Persoonia 41:109–29
    [Google Scholar]
  149. 149. 
    Sandoval-Denis M, Swart WJ, Crous PW 2018. New Fusarium species from the Kruger National Park, South Africa. MycoKeys 34:63–92
    [Google Scholar]
  150. 150. 
    Sarver BA, Ward TJ, Gale LR, Broz K, Kistler HC et al. 2011. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet. Biol. 48:1096–107
    [Google Scholar]
  151. 151. 
    Scauflaire J, Gourgue M, Munaut F. 2011. Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans. Mycologia 103:586–97
    [Google Scholar]
  152. 152. 
    Schöneberg T, Jenny E, Wettstein FE, Bucheli TD, Mascher F et al. 2018. Occurrence of Fusarium species and mycotoxins in Swiss oats—impact of cropping factors. Eur. J. Agron. 92:123–32
    [Google Scholar]
  153. 153. 
    Skovgaard K, Rosendahl S, O'Donnell K, Nirenberg HI 2003. Fusarium commune is a new species identified by morphological and molecular phylogenetic data. Mycologia 95:630–36
    [Google Scholar]
  154. 154. 
    Smith GW, Constable PD, Foreman JH, Eppley RM, Waggoner AL et al. 2002. Cardiovascular changes associated with intravenous administration of fumonisin B1 in horses. Am. J. Vet. Res. 63:538–45
    [Google Scholar]
  155. 155. 
    Snyder WC, Hansen HN. 1945. The species concept in Fusarium with reference to Discolor and other sections. Am. J. Bot. 32:657–66
    [Google Scholar]
  156. 156. 
    Snyder WC, Hansen HN. 1948. Classification and identification in Fusarium. Phytopathology 38:23–24
    [Google Scholar]
  157. 157. 
    Snyder WC, Hansen HN. 1954. Variation and speciation in the genus Fusarium. Ann. N. Y. Acad. Sci. 60:16–23
    [Google Scholar]
  158. 158. 
    Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R. 2010. Deoxynivalenol and its toxicity. Interdiscip. Toxicol. 3:94–99
    [Google Scholar]
  159. 159. 
    Somma S, Petruzzella AL, Logrieco AF, Meca G, Cacciola OS, Moretti A. 2014. Phylogenetic analyses of Fusarium graminearum strains from cereals in Italy, and characterisation of their molecular and chemical chemotypes. Crop Pasture Sci 65:52–60
    [Google Scholar]
  160. 160. 
    Spolti P, Barros NC, Gomes LB, dos Santos J, Del Ponte EM. 2012. Phenotypic and pathogenic traits of two species of the Fusarium graminearum complex possessing either 15-ADON or NIV genotype. Eur. J. Plant Pathol. 133:621–29
    [Google Scholar]
  161. 161. 
    Srivastava SK, Huang X, Brar HK, Fakhoury AM, Bluhm BH, Bhattacharyya MK. 2014. The genome sequence of the fungal pathogen Fusarium virguliforme that causes sudden death syndrome in soybean. PLOS ONE 9:e81832
    [Google Scholar]
  162. 162. 
    Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC et al. 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 44:1191–204
    [Google Scholar]
  163. 163. 
    Steenkamp ET, Coutinho TA, Desjardins AE, Wingfield BD, Marasas WFO, Wingfield MJ. 2001. Gibberella fujikuroi mating population E is associated with maize and teosinte. Mol. Plant Pathol. 2:215–21
    [Google Scholar]
  164. 164. 
    Steenkamp ET, Wingfield BD, Desjardins AE, Marasas WFO, Wingfield MJ. 2002. Cryptic speciation in Fusarium subglutinans. Mycologia 94:1032–43
    [Google Scholar]
  165. 165. 
    Stipanovic RD, Puckhaber LS, Liu J, Bell AA. 2011. Phytotoxicity of fusaric acid and analogs to cotton. Toxicon 57:176–78
    [Google Scholar]
  166. 166. 
    Sultana S, Kitajima M, Kobayashi H, Nakagawa H, Shimizu M et al. 2019. A natural variation of fumonisin gene cluster associated with fumonisin production difference in Fusarium fujikuroi. Toxins 11:4200
    [Google Scholar]
  167. 167. 
    Summerell BA. 2019. Resolving Fusarium: current status of the genus. Annu. Rev. Phytopathol. 57:323–39
    [Google Scholar]
  168. 168. 
    Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM et al. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31:21–32
    [Google Scholar]
  169. 169. 
    Tiemann U, Bruessow KP, Kuechenmeister U, Jonas L, Kohlschein P et al. 2006. Influence of diets with cereal grains contaminated by graded levels of two Fusarium toxins on selected enzymatic and histological parameters of liver in gilts. Food Chem. Toxicol. 44:1228–35
    [Google Scholar]
  170. 170. 
    Tittlemier SA, Blagden R, Chan J, Roscoe M, Pleskach K 2020. A multi-year survey of mycotoxins and ergosterol in Canadian oats. Mycotoxin Res 36:103–14
    [Google Scholar]
  171. 171. 
    Torp M, Nirenberg HI. 2004. Fusarium langsethiae sp. nov. on cereals in Europe. Int. J. Food Microbiol. 95:247–56
    [Google Scholar]
  172. 172. 
    Toth B, Kaszonyi G, Bartok T, Varga J, Mesterhazy A. 2008. Common resistance of wheat to members of the Fusarium graminearum species complex and F. culmorum. Plant Breed 127:1–8
    [Google Scholar]
  173. 173. 
    Toth B, Mesterhazy A, Horvath Z, Bartok T, Varga M, Varga J. 2005. Genetic variability of central European isolates of the Fusarium graminearum species complex. Eur. J. Plant Pathol. 113:35–45
    [Google Scholar]
  174. 174. 
    Ueno Y, Iijima K, Wang SD, Sugiura Y, Sekijima M et al. 1997. Fumonisins as a possible contributory risk factor for primary liver cancer: a 3-year study of corn harvested in Haimen, China, by HPLC and ELISA. Food Chem. Toxicol. 35:1143–50
    [Google Scholar]
  175. 175. 
    Umpierrez-Failache M, Garmendia G, Pereyra S, Rodriguez-Haralambides A, Ward TJ, Vero S. 2013. Regional differences in species composition and toxigenic potential among Fusarium head blight isolates from Uruguay indicate a risk of nivalenol contamination in new wheat production areas. Int. J. Food Microbiol. 166:135–40
    [Google Scholar]
  176. 176. 
    Urban M, King R, Andongabo A, Maheswari U, Pedro H et al. 2016. First draft genome sequence of a UK strain (UK99) of Fusarium culmorum. Genome Announc 4:e00771–16
    [Google Scholar]
  177. 177. 
    van Dam P, de Sain M, ter Horst A, van der Gragt M, Rep M. 2018. Use of comparative genomics-based markers for discrimination of host specificity in Fusarium oxysporum. Appl. Environ. Microbiol. 84:e01868–17
    [Google Scholar]
  178. 178. 
    van Dam P, Fokkens L, Ayukawa Y, van der Gragt M, ter Horst A et al. 2017. A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species. Sci. Rep. 7:9042
    [Google Scholar]
  179. 179. 
    van der Lee T, Zhang H, van Diepeningen A, Waalwijk C. 2015. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit. Contam. A 32:453–60
    [Google Scholar]
  180. 180. 
    Van Hove F, Waalwijk C, Logrieco A, Munaut F, Moretti A. 2011. Gibberella musae (Fusarium musae) sp. nov., a recently discovered species from banana is sister to F. verticillioides. Mycologia 103:570–85
    [Google Scholar]
  181. 181. 
    Vanheule A, Audenaert K, Warris S, van de Geest H, Schijlen E et al. 2016. Living apart together: crosstalk between the core and supernumerary genomes in a fungal plant pathogen. BMC Genom 17:670
    [Google Scholar]
  182. 182. 
    Varga E, Wiesenberger G, Hametner C, Ward TJ, Dong Y et al. 2015. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ. Microbiol. 17:2588–600
    [Google Scholar]
  183. 183. 
    Vesonder RF, Ciegler A, Jensen AH. 1973. Isolation of emetic principle from Fusarium-infected corn. Appl. Microbiol. 26:1008–10
    [Google Scholar]
  184. 184. 
    Villani A, Moretti A, De Saeger S, Han Z, Di Mavungu JD et al. 2016. A polyphasic approach for characterization of a collection of cereal isolates of the Fusarium incarnatum-equiseti species complex. Int. J. Food Microbiol. 234:24–35
    [Google Scholar]
  185. 185. 
    Villani A, Proctor RH, Kim HS, Brown DW, Logrieco AF et al. 2019. Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genom 20:314
    [Google Scholar]
  186. 186. 
    Voss KA, Smith GW, Haschek WM. 2007. Fumonisins: toxicokinetics, mechanism of action and toxicity. Anim. Feed Sci. Technol. 137:299–325
    [Google Scholar]
  187. 187. 
    Walkowiak S, Rowland O, Rodrigue N, Subramaniam R. 2016. Whole genome sequencing and comparative genomics of closely related Fusarium head blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum. BMC Genom 17:1014
    [Google Scholar]
  188. 188. 
    Wang MM, Chen Q, Diao YZ, Duan WJ, Cai L. 2019. Fusarium incarnatum-equiseti complex from China. Persoonia 43:70–89
    [Google Scholar]
  189. 189. 
    Warth B, Fruhmann P, Wiesenberger G, Kluger B, Sarkanj B et al. 2015. Deoxynivalenol-sulfates: identification and quantification of novel conjugated (masked) mycotoxins in wheat. Anal. Bioanal. Chem. 407:1033–39
    [Google Scholar]
  190. 190. 
    Wilson JP. 2002. Fungi associated with the stalk rot complex of pearl millet. Plant Dis 86:833–39
    [Google Scholar]
  191. 191. 
    Wingfield BD, Barnes I, de Beer ZW, De Vos L, Duong TA et al. 2015. Draft genome sequences of Ceratocystis eucalypticola, Chrysoporthe cubensis, C. deuterocubensis, Davidsoniella virescens, Fusarium temperatum, Graphilbum fragrans, Penicillium nordicum, and Thielaviopsis musarum. IMA Fungus 6:493–506
    [Google Scholar]
  192. 192. 
    Wipfler R, McCormick SP, Proctor R, Teresi J, Hao G et al. 2019. Synergistic phytotoxic effects of culmorin and trichothecene mycotoxins. Toxins 11:10555
    [Google Scholar]
  193. 193. 
    Wollenweber HW, Reinking OA. 1935. The Fusaria: Their Description, Injurious Effects, and Control Berlin, Ger: Paul Parey
    [Google Scholar]
  194. 194. 
    Wu F, Munkvold GP. 2008. Mycotoxins in ethanol co-products: modeling economic impacts on the livestock industry and management strategies. J. Agric. Food Chem. 56:3900–11
    [Google Scholar]
  195. 195. 
    Xia JW, Sandoval-Denis M, Crous PW, Zhang XG, Lombard L. 2019. Numbers to names: restyling the Fusarium incarnatum-equiseti species complex. Persoonia 43:186–221
    [Google Scholar]
  196. 196. 
    Xue AG, Chen Y, Seifert K, Guo W, Blackwell BA et al. 2019. Prevalence of Fusarium species causing head blight of spring wheat, barley and oat in Ontario during 2001–2017. Can. J. Plant Pathol. 41:392–402
    [Google Scholar]
  197. 197. 
    Yli-Mattila T, Ward TJ, O'Donnell K, Proctor RH, Burkin AA et al. 2011. Fusarium sibiricum sp. nov, a novel type A trichothecene-producing Fusarium from northern Asia closely related to F. sporotrichioides and F. langsethiae. Int. J. Food Microbiol. 147:58–68
    [Google Scholar]
  198. 198. 
    Yoshizawa T, Morooka N. 1973. Deoxynivalenol and its monoacetate: new mycotoxins from Fusarium roseum and moldy barley. Agric. Biol. Chem. 37:2933–34
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-020620-102825
Loading
/content/journals/10.1146/annurev-phyto-020620-102825
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error