1932

Abstract

Peptide signaling is an emerging paradigm in molecular plant–microbe interactions with vast implications for our understanding of plant–nematode interactions and beyond. Plant-like peptide hormones, first discovered in cyst nematodes, are now recognized as an important class of peptide effectors mediating several different types of pathogenic and symbiotic interactions. Here, we summarize what has been learned about nematode-secreted CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptide effectors since the last comprehensive review on this topic a decade ago. We also highlight new discoveries of a diverse array of peptide effectors that go beyond the CLE peptide effector family in not only phytonematodes but in organisms beyond the phylum Nematoda.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021621-115932
2022-08-26
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/phyto/60/1/annurev-phyto-021621-115932.html?itemId=/content/journals/10.1146/annurev-phyto-021621-115932&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abarca A, Franck CM, Zipfel C. 2021. Family-wide evaluation of RAPID ALKALINIZATION FACTOR peptides. Plant Physiol 187:996–1010
    [Google Scholar]
  2. 2.
    Alenda C, Gallot-Legrand A, Fouville D, Grenier E. 2013. Sequence polymorphism of nematode effectors highlights molecular differences among the subspecies of the tobacco cyst nematode complex. Physiol. Mol. Plant Pathol. 84:107–14
    [Google Scholar]
  3. 3.
    Amano Y, Tsubouchi H, Shinohara H, Ogawa M, Matsubayashi Y. 2007. Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. PNAS 104:18333–38
    [Google Scholar]
  4. 4.
    Baines RC, Miyakawa T, Cameron JW, Small RH. 1969. Infectivity of two biotypes of the citrus nematode on citrus and on some other hosts. J. Nematol. 1:150–59
    [Google Scholar]
  5. 5.
    Belkhadir Y, Yang L, Hetzel J, Dangl JL, Chory J. 2014. The growth-defense pivot: crisis management in plants mediated by LRR-RK surface receptors. Trends Biochem. Sci. 39:447–56
    [Google Scholar]
  6. 6.
    Bernard EC, Handoo ZA, Powers TO, Donald PA, Heinz RD. 2010. Vittatidera zeaphila (Nematoda: Heteroderidae), a new genus and species of cyst nematode parasitic on corn (Zea mays). J. Nematol. 42:139–50
    [Google Scholar]
  7. 7.
    Bird DM, Jones JT, Opperman CH, Kikuchi T, Danchin EG. 2015. Signatures of adaptation to plant parasitism in nematode genomes. Parasitology 142:Suppl. 1S71–S84
    [Google Scholar]
  8. 8.
    Bobay BG, DiGennaro P, Scholl E, Imin N, Djordjevic MA, Mck Bird D. 2013. Solution NMR studies of the plant peptide hormone CEP inform function. FEBS Lett 587:3979–85
    [Google Scholar]
  9. 9.
    Butenko MA, Simon R. 2015. Beyond the meristems: similarities in the CLAVATA3 and INFLORESCENCE DEFICIENT IN ABSCISSION peptide mediated signalling pathways. J. Exp. Bot. 66:5195–203
    [Google Scholar]
  10. 10.
    Caillaud MC, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecomte P et al. 2008. Root-knot nematodes manipulate plant cell functions during a compatible interaction. J. Plant Physiol. 165:104–13
    [Google Scholar]
  11. 11.
    Campbell L, Turner SR. 2017. A comprehensive analysis of RALF proteins in green plants suggests there are two distinct functional groups. Front. Plant Sci. 8:37
    [Google Scholar]
  12. 12.
    Cao J, Shi F. 2012. Evolution of the RALF gene family in plants: gene duplication and selection patterns. Evol. Bioinform. Online 8:271–92
    [Google Scholar]
  13. 13.
    Chen S, Lang P, Chronis D, Zhang S, De Jong WS et al. 2015. In planta processing and glycosylation of a nematode CLAVATA3/ENDOSPERM SURROUNDING REGION-like effector and its interaction with a host CLAVATA2-like receptor to promote parasitism. Plant Physiol. 167:262–72First demonstration of in planta processing and glycosylation of cyst nematode CLE-like effectors.
    [Google Scholar]
  14. 14.
    Cho SK, Larue CT, Chevalier D, Wang H, Jinn TL et al. 2008. Regulation of floral organ abscission in Arabidopsis thaliana. PNAS 105:15629–34
    [Google Scholar]
  15. 15.
    Cock JM, McCormick S. 2001. A large family of genes that share homology with CLAVATA3. Plant Physiol 126:939–42
    [Google Scholar]
  16. 16.
    Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res 14:1188–90
    [Google Scholar]
  17. 17.
    Davis EL, Hussey RS, Baum TJ, Bakker J, Schots A et al. 2000. Nematode parasitism genes. Annu. Rev. Phytopathol. 38:365–96
    [Google Scholar]
  18. 18.
    Davis EL, Hussey RS, Mitchum MG, Baum TJ. 2008. Parasitism proteins in nematode-plant interactions. Curr. Opin. Plant Biol. 11:360–66
    [Google Scholar]
  19. 19.
    de Almeida Engler J, Gheysen G. 2013. Nematode-induced endoreduplication in plant host cells: why and how?. Mol. Plant-Microbe Interact. 26:17–24
    [Google Scholar]
  20. 20.
    De Meutter J, Tytgat T, Witters E, Gheysen G, Van Onckelen H, Gheysen G. 2003. Identification of cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita. Mol. Plant Pathol. 4:271–77
    [Google Scholar]
  21. 21.
    De Rybel B, Audenaert D, Vert G, Rozhon W, Mayerhofer J et al. 2009. Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem. Biol. 16:594–604
    [Google Scholar]
  22. 22.
    Decraemer W, Hunt DJ. 2013. Structure and classification. Plant Nematology RN Perry, M Moens 3–32 Wallingford, UK: CABI
    [Google Scholar]
  23. 23.
    Di Pietro A, Garcia-MacEira FI, Meglecz E, Roncero MI. 2001. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol. Microbiol. 39:1140–52
    [Google Scholar]
  24. 24.
    DiGennaro P, Grienenberger E, Dao TQ, Jun JH, Fletcher JC. 2018. Peptide signaling molecules CLE5 and CLE6 affect Arabidopsis leaf shape downstream of leaf patterning transcription factors and auxin. Plant Direct 2:e00103
    [Google Scholar]
  25. 25.
    Dinh PT, Zhang L, Mojtahedi H, Brown CR, Elling AA. 2015. Broad Meloidogyne resistance in potato based on RNA interference of effector gene 16D10. J. Nematol. 47:71–78
    [Google Scholar]
  26. 26.
    Dropkin VH. 1969. Cellular responses of plants to nematode infections. Annu. Rev. Phytopathol. 7:101–22
    [Google Scholar]
  27. 27.
    Dunser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J. 2019. Extracellular matrix sensing by FERONIA and leucine-rich repeat extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J 38:7e100353
    [Google Scholar]
  28. 28.
    Endo BY. 1987. Ultrastructure of esophageal gland secretory granules in juveniles of Heterodera glycines. J. Nematol. 19:469–83
    [Google Scholar]
  29. 29.
    Endo BY. 1993. Ultrastructure of subventral gland secretory granules in parasitic juveniles of the soybean cyst nematode, Heterodera glycines. J. Helminthol. Soc. Wash. 60:22–34
    [Google Scholar]
  30. 30.
    Etchells JP, Provost CM, Mishra L, Turner SR. 2013. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140:2224–34
    [Google Scholar]
  31. 31.
    Etchells JP, Smit ME, Gaudinier A, Williams CJ, Brady SM. 2016. A brief history of the TDIF-PXY signalling module: balancing meristem identity and differentiation during vascular development. New Phytol 209:2474–84
    [Google Scholar]
  32. 32.
    Eves-Van Den Akker S, Lilley CJ, Yusup HB, Jones JT, Urwin PE. 2016. Functional C-TERMINALLY ENCODED PEPTIDE (CEP) plant hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis. Mol. Plant Pathol. 17:1265–75First functional demonstration of a CEP-like effector from the reniform nematode Rotylenchulus reniformis.
    [Google Scholar]
  33. 33.
    Fletcher JC. 2020. Recent advances in Arabidopsis CLE peptide signaling. Trends Plant Sci 25:1005–16
    [Google Scholar]
  34. 34.
    Frei Dit Frey N, Favery B. 2021. Plant-parasitic nematode secreted peptides hijack a plant secretory pathway. New Phytol 229:11–13
    [Google Scholar]
  35. 35.
    Fuglsang AT, Kristensen A, Cuin TA, Schulze WX, Persson J et al. 2014. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane. Plant J 80:951–64
    [Google Scholar]
  36. 36.
    Fusconi A. 2014. Regulation of root morphogenesis in arbuscular mycorrhizae: What role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?. Ann. Bot. 113:19–33
    [Google Scholar]
  37. 37.
    Gardner M, Dhroso A, Johnson N, Davis EL, Baum TJ et al. 2018. Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines. Sci. Rep. 8:2505
    [Google Scholar]
  38. 38.
    Gheysen G, de Almeida Engler J, van Montagu M 1997. Cell cycle regulation in nematode feeding sites. Cellular and Molecular Aspects of Plant-Nematode Interactions C Fenoll, FMW Grundler, SA Ohl 120–32 Dordrecht, Neth: Springer
    [Google Scholar]
  39. 39.
    Gheysen G, Fenoll C. 2002. Gene expression in nematode feeding sites. Annu. Rev. Phytopathol. 40:191–219
    [Google Scholar]
  40. 40.
    Gheysen G, Mitchum MG. 2011. How nematodes manipulate plant development pathways for infection. Curr. Opin. Plant Biol. 14:415–21
    [Google Scholar]
  41. 41.
    Gheysen G, Mitchum MG. 2019. Phytoparasitic nematode control of plant hormone pathways. Plant Physiol 179:1212–26
    [Google Scholar]
  42. 42.
    Goellner M, Wang X, Davis EL 2001. Endo-beta-1,4-glucanase expression in compatible plant-nematode interactions. Plant Cell 13:2241–55
    [Google Scholar]
  43. 43.
    Golden AM 1986. Morphology and identification of cyst nematodes. Cyst Nematodes F Lamberti, CE Taylor 23–45 Boston, MA: Springer
    [Google Scholar]
  44. 44.
    Goverse A, Bird D 2011. The role of plant hormones in nematode feeding cell formation. Genomics and Molecular Genetics of Plant-Nematode Interactions J Jones, G Gheysen, C Fenoll 325–47 Dordrecht, Neth: Springer
    [Google Scholar]
  45. 45.
    Goverse A, Smant G. 2014. The activation and suppression of plant innate immunity by parasitic nematodes. Annu. Rev. Phytopathol. 52:243–65
    [Google Scholar]
  46. 46.
    Grynberg P, Coiti Togawa R, Dias de Freitas L, Antonino JD, Rancurel C et al. 2020. Comparative genomics reveals novel target genes towards specific control of plant-parasitic nematodes. Genes 11:1347
    [Google Scholar]
  47. 47.
    Guo X, Chronis D, De La Torre CM, Smeda J, Wang X, Mitchum MG 2015. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors. Plant Biotechnol. J. 13:801–10
    [Google Scholar]
  48. 48.
    Guo X, Wang J, Gardner M, Fukuda H, Kondo Y et al. 2017. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation. PLOS Pathog 13:e1006142First identification and functional demonstration of B-type CLE peptide effectors from cyst nematode.
    [Google Scholar]
  49. 49.
    Guo Y, Ni J, Denver R, Wang X, Clark SE 2011. Mechanisms of molecular mimicry of plant CLE peptide ligands by the parasitic nematode Globodera rostochiensis. Plant Physiol 157:476–84
    [Google Scholar]
  50. 50.
    Gutjahr C, Paszkowski U. 2013. Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front. Plant Sci. 4:204
    [Google Scholar]
  51. 51.
    Han S, Cho H, Noh J, Qi J, Jung HJ et al. 2018. BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth. Nat. Plants 4:605–14
    [Google Scholar]
  52. 52.
    Hewezi T, Baum TJ. 2013. Manipulation of plant cells by cyst and root-knot nematode effectors. Mol. Plant-Microbe Interact. 26:9–16
    [Google Scholar]
  53. 53.
    Hirakawa Y, Sawa S. 2019. Diverse function of plant peptide hormones in local signaling and development. Curr. Opin. Plant Biol. 51:81–87
    [Google Scholar]
  54. 54.
    Holterman M, Karegar A, Mooijman P, van Megen H, van den Elsen S et al. 2017. Disparate gain and loss of parasitic abilities among nematode lineages. PLOS ONE 12:e0185445
    [Google Scholar]
  55. 55.
    Hu C, Zhu Y, Cui Y, Cheng K, Liang W et al. 2018. A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nat. Plants 4:205–11
    [Google Scholar]
  56. 56.
    Huang G, Allen R, Davis EL, Baum TJ, Hussey RS. 2006. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. PNAS 103:14302–6
    [Google Scholar]
  57. 57.
    Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS 2006. A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol. Plant-Microbe Interact. 19:463–70
    [Google Scholar]
  58. 58.
    Hussey RS. 1989. Disease-inducing secretions of plant-parasitic nematodes. Annu. Rev. Phytopathol. 27:123–41
    [Google Scholar]
  59. 59.
    Hussey RS, Davis EL, Baum TJ 2002. Secrets in secretions: genes that control nematode parasitism of plants. Braz. J. Plant Physiol. 14:11
    [Google Scholar]
  60. 60.
    Hussey RS, Davis EL, Ray C 1994. Meloidogyne stylet secretions. Advances in Molecular Plant Nematology F Lamberti, C De Giorgi, DM Bird 233–49 Boston, MA: Springer
    [Google Scholar]
  61. 61.
    Ito Y. 2006. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–45
    [Google Scholar]
  62. 62.
    Je BI, Xu F, Wu Q, Liu L, Meeley R et al. 2018. The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. eLife 7:e35673
    [Google Scholar]
  63. 63.
    Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ. 2010. WOX4 promotes procambial development. Plant Physiol 152:1346–56
    [Google Scholar]
  64. 64.
    Johnson N, Hassdenteufel S, Theis M, Paton AW, Paton JC et al. 2013. The signal sequence influences post-translational ER translocation at distinct stages. PLOS ONE 8:e75394
    [Google Scholar]
  65. 65.
    Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J et al. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14:946–61
    [Google Scholar]
  66. 66.
    Jones MGK, Goto DB 2011. Root-knot nematodes and giant cells. Genomics and Molecular Genetics of Plant-Nematode Interactions J Jones, G Gheysen, C Fenoll 83–100 Dordrecht, Neth: Springer
    [Google Scholar]
  67. 67.
    Jun J, Fiume E, Roeder AHK, Meng L, Sharma VK et al. 2010. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. Plant Physiol 154:1721–36
    [Google Scholar]
  68. 68.
    Kim J, Yang R, Chang C, Park Y, Tucker ML. 2018. The root-knot nematode Meloidogyne incognita produces a functional mimic of the Arabidopsis INFLORESCENCE DEFICIENT IN ABSCISSION signaling peptide. J. Exp. Bot. 69:3009–21First functional demonstration of IDA-like effectors in root-knot nematode.
    [Google Scholar]
  69. 69.
    Kondo T, Nakamura T, Yokomine K, Sakagami Y. 2008. Dual assay for MCLV3 activity reveals structure-activity relationship of CLE peptides. Biochem. Biophys. Res. Commun. 377:312–16
    [Google Scholar]
  70. 70.
    Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M et al. 2014. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling. Nat. Commun. 5:3504
    [Google Scholar]
  71. 71.
    Kumpf RP, Shi CL, Larrieu A, Sto IM, Butenko MA et al. 2013. Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. PNAS 110:5235–40
    [Google Scholar]
  72. 72.
    Le Marquer M, Becard G, Frei Dit Frey N. 2019. Arbuscular mycorrhizal fungi possess a CLAVATA3/embryo surrounding region-related gene that positively regulates symbiosis. New Phytol 222:1030–42First identification and functional demonstration of CLE-like effectors outside the plant and animal kingdoms.
    [Google Scholar]
  73. 73.
    Li Z, Chakraborty S, Xu G. 2017. Differential CLE peptide perception by plant receptors implicated from structural and functional analyses of TDIF-TDR interactions. PLOS ONE 12:e0175317
    [Google Scholar]
  74. 74.
    Lu SW, Chen S, Wang J, Yu H, Chronis D et al. 2009. Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis. Mol. Plant-Microbe Interact. 22:1128–42
    [Google Scholar]
  75. 75.
    Luu DD, Joe A, Chen Y, Parys K, Bahar O et al. 2019. Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor. PNAS 116:8525–34
    [Google Scholar]
  76. 76.
    Masachis S, Segorbe D, Turra D, Leon-Ruiz M, Furst U et al. 2016. A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat. Microbiol. 1:16043
    [Google Scholar]
  77. 77.
    Mejias J, Truong NM, Abad P, Favery B, Quentin M. 2019. Plant proteins and processes targeted by parasitic nematode effectors. Front. Plant Sci. 10:970
    [Google Scholar]
  78. 78.
    Meng L, Ruth KC, Fletcher JC, Feldman L. 2010. The roles of different CLE domains in Arabidopsis CLE polypeptide activity and functional specificity. Mol. Plant 3:760–72
    [Google Scholar]
  79. 79.
    Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA et al. 2013. Nematode effector proteins: an emerging paradigm of parasitism. New Phytol 199:879–94
    [Google Scholar]
  80. 80.
    Mitchum MG, Wang X, Davis EL 2008. Diverse and conserved roles of CLE peptides. Curr. Opin. Plant Biol. 11:75–81
    [Google Scholar]
  81. 81.
    Mitchum MG, Wang X, Wang J, Davis EL 2012. Role of nematode peptides and other small molecules in plant parasitism. Annu. Rev. Phytopathol. 50:175–95
    [Google Scholar]
  82. 82.
    Morita J, Kato K, Nakane T, Kondo Y, Fukuda H et al. 2016. Crystal structure of the plant receptor-like kinase TDR in complex with the TDIF peptide. Nat. Commun. 7:12383
    [Google Scholar]
  83. 83.
    Mosher S, Kemmerling B. 2013. PSKR1 and PSY1R-mediated regulation of plant defense responses. Plant Signal. Behav. 8:e24119
    [Google Scholar]
  84. 84.
    Mosher S, Seybold H, Rodriguez P, Stahl M, Davies KA et al. 2013. The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner. Plant J 73:469–82
    [Google Scholar]
  85. 85.
    Niblack TL, Lambert KN, Tylka GL. 2006. A model plant pathogen from the kingdom Animalia: Heterodera glycines, the soybean cyst nematode. Annu. Rev. Phytopathol. 44:283–303
    [Google Scholar]
  86. 86.
    Notaguchi M, Okamoto S. 2015. Dynamics of long-distance signaling via plant vascular tissues. Front. Plant Sci. 6:161
    [Google Scholar]
  87. 87.
    Oelkers K, Goffard N, Weiller GF, Gresshoff PM, Mathesius U, Frickey T. 2008. Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biol 8:1
    [Google Scholar]
  88. 88.
    Olsen AN, Skriver K. 2003. Ligand mimicry? Plant-parasitic nematode polypeptide with similarity to CLAVATA3. Trends Plant Sci 8:55–57
    [Google Scholar]
  89. 89.
    Olsson V, Joos L, Zhu S, Gevaert K, Butenko MA, De Smet I. 2019. Look closely, the beautiful may be small: precursor-derived peptides in plants. Annu. Rev. Plant Biol. 70:153–86
    [Google Scholar]
  90. 90.
    Palomares-Rius JE, Escobar C, Cabrera J, Vovlas A, Castillo P. 2017. Anatomical alterations in plant tissues induced by plant-parasitic nematodes. Front. Plant Sci. 8:1987
    [Google Scholar]
  91. 91.
    Pearce G, Yamaguchi Y, Munske G, Ryan CA. 2010. Structure-activity studies of RALF, rapid alkalinization factor, reveal an essential–YISY–motif. Peptides 31:1973–77
    [Google Scholar]
  92. 92.
    Pokhare SS, Thorpe P, Hedley P, Morris J, Habash SS et al. 2020. Signatures of adaptation to a monocot host in the plant-parasitic cyst nematode Heterodera sacchari. Plant J 103:1263–74First identification of CLE-like effectors from a monocot-infecting cyst nematode and evidence of CLE effector evolution in host plant adaptation.
    [Google Scholar]
  93. 93.
    Price JA, Coyne D, Blok VC, Jones JT. 2021. Potato cyst nematodes Globodera rostochiensis and G. pallida. Mol. Plant Pathol. 22:495–507
    [Google Scholar]
  94. 94.
    Pruitt RN, Joe A, Zhang W, Feng W, Stewart V et al. 2017. A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone. New Phytol 215:725–36
    [Google Scholar]
  95. 95.
    Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F et al. 2015. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci. Adv. 1:e1500245
    [Google Scholar]
  96. 96.
    Qian P, Song W, Yokoo T, Minobe A, Wang G et al. 2018. The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors. Nat. Plants 4:1071–81
    [Google Scholar]
  97. 97.
    Quentin M, Abad P, Favery B. 2013. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Front. Plant Sci. 4:53
    [Google Scholar]
  98. 98.
    Replogle A, Wang J, Bleckmann A, Hussey RS, Baum TJ et al. 2011. Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. Plant J. 65:430–40First demonstrated involvement of plant CLE receptors in cyst nematode infection.
    [Google Scholar]
  99. 99.
    Replogle AJ, Wang J, Paolillo V, Smeda J, Kinoshita A et al. 2012. Synergistic interaction of CLAVATA1, CLAVATA2, and RECEPTOR-LIKE PROTEIN KINASE 2 in cyst nematode parasitism of Arabidopsis. Mol. Plant-Microbe Interact. 26:87–96
    [Google Scholar]
  100. 100.
    Robinson AF. 2007. Reniform in U.S. cotton: when, where, why, and some remedies. Annu. Rev. Phytopathol. 45:263–88
    [Google Scholar]
  101. 101.
    Robinson AF, Inserra RN, Caswell-Chen EP, Vovlas N, Troccoli A. 1997. Review: Rotylenchulus species: identification, distribution, host ranges, and crop plant resistance. Nematropica 27:127–80
    [Google Scholar]
  102. 102.
    Rodiuc N, Vieira P, Banora MY, de Almeida Engler J. 2014. On the track of transfer cell formation by specialized plant-parasitic nematodes. Front. Plant Sci. 5:160
    [Google Scholar]
  103. 103.
    Ronald P, Joe A 2018. Molecular mimicry modulates plant host responses to pathogens. Ann. Bot. 121:17–23
    [Google Scholar]
  104. 104.
    Rutter WB, Hewezi T, Maier TR, Mitchum MG, Davis EL et al. 2014. Members of the Meloidogyne avirulence protein family contain multiple plant ligand-like motifs. Phytopathology 104:879–85
    [Google Scholar]
  105. 105.
    Saito M, Kondo Y, Fukuda H. 2018. BES1 and BZR1 redundantly promote phloem and xylem differentiation. Plant Cell Physiol 59:590–600
    [Google Scholar]
  106. 106.
    Schneider TD, Stephens RM. 1990. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–100
    [Google Scholar]
  107. 107.
    Shi CL, Stenvik GE, Vie AK, Bones AM, Pautot V et al. 2011. Arabidopsis class I KNOTTED-like homeobox proteins act downstream in the IDA-HAE/HSL2 floral abscission signaling pathway. Plant Cell 23:2553–67
    [Google Scholar]
  108. 108.
    Shinohara H, Matsubayashi Y. 2015. Reevaluation of the CLV3-receptor interaction in the shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding point of view. Plant J 82:328–36
    [Google Scholar]
  109. 109.
    Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH. 2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–34
    [Google Scholar]
  110. 110.
    Siddiqi MR. 2000. Tylenchida: Parasites of Plants and Insects Wallingford, UK: CABI
    [Google Scholar]
  111. 111.
    Siddique S, Radakovic ZS, De La Torre CM, Chronis D, Novak O et al. 2015. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. PNAS 112:12669–74
    [Google Scholar]
  112. 112.
    Siddique S, Sobczak M, Tenhaken R, Grundler FM, Bohlmann H. 2012. Cell wall ingrowths in nematode induced syncytia require UGD2 and UGD3. PLOS ONE 7:e41515
    [Google Scholar]
  113. 113.
    Sijmons PC, Grundler FMW, von Mende N, Burrows PR, Wyss U. 1991. Arabidopsis thaliana as a new model host for plant-parasitic nematodes. Plant J 1:245–54
    [Google Scholar]
  114. 114.
    Smetana O, Makila R, Lyu M, Amiryousefi A, Sanchez Rodriguez F et al. 2019. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565:485–89
    [Google Scholar]
  115. 115.
    Smit ME, McGregor SR, Sun H, Gough C, Bagman AM et al. 2020. A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis. Plant Cell 32:319–35
    [Google Scholar]
  116. 116.
    Sobczak M, Golinowski W 2011. Cyst nematodes and syncytia. Genomics and Molecular Genetics of Plant-Nematode Interactions J Jones, G Gheysen, C Fenoll 61–82 Dordrecht, Neth: Springer
    [Google Scholar]
  117. 117.
    Song WY, Wang GL, Chen LL, Kim HS, Pi LY et al. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–6
    [Google Scholar]
  118. 118.
    Steele AE. 1965. The host range of the sugar beet nematode, Heterodera schachtii Schmidt. J. Sugarbeet Res. 13:573–603
    [Google Scholar]
  119. 119.
    Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A et al. 2017. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355:287–89
    [Google Scholar]
  120. 120.
    Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W et al. 2008. The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 20:1805–17
    [Google Scholar]
  121. 121.
    Strabala TJ. 2006. Gain-of-function phenotypes of many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain. Plant Physiol 140:1331–44
    [Google Scholar]
  122. 122.
    Taleski M, Imin N, Djordjevic MA. 2018. CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. J. Exp. Bot. 69:1829–36
    [Google Scholar]
  123. 123.
    Thynne E, Saur IML, Simbaqueba J, Ogilvie HA, Gonzalez-Cendales Y et al. 2017. Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Mol. Plant Pathol. 18:811–24
    [Google Scholar]
  124. 124.
    Tucker ML, Burke A, Murphy CA, Thai VK, Ehrenfried ML. 2007. Gene expression profiles for cell wall-modifying proteins associated with soybean cyst nematode infection, petiole abscission, root tips, flowers, apical buds, and leaves. J. Exp. Bot. 58:3395–406
    [Google Scholar]
  125. 125.
    Tucker ML, Murphy CA, Yang R 2011. Gene expression profiling and shared promoter motif for cell wall-modifying proteins expressed in soybean cyst nematode-infected roots. Plant Physiol 156:319–29
    [Google Scholar]
  126. 126.
    Tucker ML, Yang R 2013. A gene encoding a peptide with similarity to the plant IDA signaling peptide (AtIDA) is expressed most abundantly in the root-knot nematode (Meloidogyne incognita) soon after root infection. Exp. Parasitol. 134:165–70
    [Google Scholar]
  127. 127.
    Urwin PE, Levesley A, McPherson MJ, Atkinson HJ. 2000. Transgenic resistance to the nematode Rotylenchulus reniformis conferred by Arabidopsis thaliana plants expressing proteinase inhibitors. Mol. Breed. 6:257–64
    [Google Scholar]
  128. 128.
    van Steenbrugge JJM, van den Elsen S, Holterman M, Sterken MG, Thorpe P et al. 2021. Comparative genomics of two inbred lines of the potato cyst nematode Globodera rostochiensis reveals disparate effector family-specific diversification patterns. BMC Genom. 22:611
    [Google Scholar]
  129. 129.
    Vie AK, Najafi J, Winge P, Cattan E, Wrzaczek M et al. 2017. The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana. J. Exp. Bot. 68:3557–71
    [Google Scholar]
  130. 130.
    Vieira P, Danchin EG, Neveu C, Crozat C, Jaubert S et al. 2011. The plant apoplasm is an important recipient compartment for nematode secreted proteins. J. Exp. Bot. 62:1241–53
    [Google Scholar]
  131. 131.
    Vieira P, Gleason C. 2019. Plant-parasitic nematode effectors: insights into their diversity and new tools for their identification. Curr. Opin. Plant Biol. 50:37–43
    [Google Scholar]
  132. 132.
    Wang J, Dhroso A, Liu X, Baum TJ, Hussey RS et al. 2021. Phytonematode peptide effectors exploit a host post-translational trafficking mechanism to the ER using a novel translocation signal. New Phytol. 229:563–74First demonstration of post-translational endoplasmic reticulum translocation mediated by VD-T of cyst nematode CLE effectors.
    [Google Scholar]
  133. 133.
    Wang J, Joshi S, Korkin D, Mitchum MG. 2010. Variable domain I of nematode CLEs directs post-translational targeting of CLE peptides to the extracellular space. Plant Signal. Behav. 5:1633–35First demonstrated function of the cyst nematode CLE VD-I in post-translational secretion.
    [Google Scholar]
  134. 134.
    Wang J, Lee C, Replogle A, Joshi S, Korkin D et al. 2010. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins. New Phytol 187:1003–17
    [Google Scholar]
  135. 135.
    Wang J, Replogle A, Hussey R, Baum T, Wang X et al. 2011. Identification of potential host plant mimics of CLAVATA3/ESR (CLE)-like peptides from the plant-parasitic nematode Heterodera schachtii. Mol. Plant Pathol. 12:177–86
    [Google Scholar]
  136. 136.
    Wang X, Allen R, Ding X, Goellner M, Maier T et al. 2001. Signal peptide-selection of cDNA cloned directly from the esophageal gland cells of the soybean cyst nematode Heterodera glycines. Mol. Plant-Microbe Interact. 14:536–44
    [Google Scholar]
  137. 137.
    Wang X, Chung KP, Lin W, Jiang L 2017. Protein secretion in plants: conventional and unconventional pathways and new techniques. J. Exp. Bot. 69:21–37
    [Google Scholar]
  138. 138.
    Wang X, Mitchum MG, Gao B, Li C, Diab H et al. 2005. A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Mol. Plant Pathol. 6:187–91
    [Google Scholar]
  139. 139.
    Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P. 2008. Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. PNAS 105:18625–30
    [Google Scholar]
  140. 140.
    Wieczorek K, Golecki B, Gerdes L, Heinen P, Szakasits D et al. 2006. Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana. Plant J 48:98–112
    [Google Scholar]
  141. 141.
    Wu Y, Xun Q, Guo Y, Zhang J, Cheng K et al. 2016. Genome-wide expression pattern analyses of the Arabidopsis leucine-rich repeat receptor-like kinases. Mol. Plant 9:289–300
    [Google Scholar]
  142. 142.
    Wubben MJ, Gavilano L, Baum TJ, Davis EL. 2015. Sequence and spatiotemporal expression analysis of CLE-motif containing genes from the reniform nematode (Rotylenchulus reniformis Linford & Oliveira). J. Nematol. 47:159–65
    [Google Scholar]
  143. 143.
    Yamaguchi YL, Suzuki R, Cabrera J, Nakagami S, Sagara T et al. 2017. Root-knot and cyst nematodes activate procambium-associated genes in Arabidopsis roots. Front. Plant Sci. 8:1195
    [Google Scholar]
  144. 144.
    Yang Y, Jittayasothorn Y, Chronis D, Wang X, Cousins P, Zhong GY. 2013. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots. PLOS ONE 8:e69463
    [Google Scholar]
  145. 145.
    Yuan N, Furumizu C, Zhang B, Sawa S. 2021. Database mining of plant peptide homologues. Plant Biotechnol 38:137–43
    [Google Scholar]
  146. 146.
    Zhang H, Lin X, Han Z, Qu LJ, Chai J. 2016. Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. Cell Res 26:543–55
    [Google Scholar]
  147. 147.
    Zhang H, Lin X, Han Z, Wang J, Qu LJ, Chai J. 2016. SERK family receptor-like kinases function as co-receptors with PXY for plant vascular development. Mol. Plant 9:1406–14
    [Google Scholar]
  148. 148.
    Zhang X, Peng H, Zhu S, Xing J, Li X et al. 2020. Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase. Mol. Plant 13:1434–54First identification and functional demonstration of RALF-like effectors from root-knot nematodes.
    [Google Scholar]
  149. 149.
    Zhang X, Yang Z, Wu D, Yu F 2020. RALF-FERONIA signaling: linking plant immune response with cell growth. Plant Commun 1:100084
    [Google Scholar]
  150. 150.
    Zhang Z, Liu L, Kucukoglu M, Tian D, Larkin RM et al. 2020. Predicting and clustering plant CLE genes with a new method developed specifically for short amino acid sequences. BMC Gen 21:709
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021621-115932
Loading
/content/journals/10.1146/annurev-phyto-021621-115932
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error