1932

Abstract

Bacterial diseases are a constant threat to crop production globally. Current management strategies rely on an array of tactics, including improved cultural practices; application of bactericides, plant activators, and biocontrol agents; and use of resistant varieties when available. However, effective management remains a challenge, as the longevity of deployed tactics is threatened by constantly changing bacterial populations. Increased scrutiny of the impact of pesticides on human and environmental health underscores the need for alternative solutions that are durable, sustainable, accessible to farmers, and environmentally friendly. In this review, we discuss the strengths and shortcomings of existing practices and dissect recent advances that may shape the future of bacterial disease management. We conclude that disease resistance through genome modification may be the most effective arsenal against bacterial diseases. Nonetheless, more research is necessary for developing novel bacterial disease management tactics to meet the food demand of a growing global population.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021621-121806
2022-08-26
2024-12-11
Loading full text...

Full text loading...

/deliver/fulltext/phyto/60/1/annurev-phyto-021621-121806.html?itemId=/content/journals/10.1146/annurev-phyto-021621-121806&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abrahamian P, Jones JB, Vallad GE. 2019. Efficacy of copper and copper alternatives for management of bacterial spot on tomato under transplant and field production. Crop Prot 126:104919
    [Google Scholar]
  2. 2.
    Abrahamian P, Sharma A, Jones JB, Vallad GE. 2020. Dynamics and spread of bacterial spot epidemics in tomato transplants grown for field production. Plant Dis 105:3566–75
    [Google Scholar]
  3. 3.
    Agrios GN. 2005. Control of plant diseases. Plant Pathology293–353 San Diego, CA: Academic. , 5th ed..
    [Google Scholar]
  4. 4.
    Ahn I-P, Lee S-W, Suh S-C. 2007. Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1. Mol. Plant-Microbe Interact. 20:7759–68
    [Google Scholar]
  5. 5.
    Alonso-Gato M, Astray G, Mejuto JC, Simal-Gandara J. 2021. Essential oils as antimicrobials in crop protection. Antibiotics 10:134
    [Google Scholar]
  6. 6.
    Anderson JC, Bartels S, Besteiro MAG, Shahollari B, Ulm R, Peck SC. 2011. Arabidopsis MAP kinase phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria. Plant J 67:2258–68
    [Google Scholar]
  7. 7.
    Antoniou PP, Tjamos EC, Andreou MT, Panagopoulos CG. 1995. Effectiveness, modes of action and commercial application of soil solarization for control of Clavibacter michiganensis subsp. michiganensis of tomatoes. Acta Hortic. 382:119–28
    [Google Scholar]
  8. 8.
    Bajpai VK, Kang S-R, Xu H, Lee S-G, Baek K-H, Kang S-C. 2011. Potential roles of essential oils on controlling plant pathogenic bacteria Xanthomonas species: a review. Plant Pathol. J. 27:3207–24
    [Google Scholar]
  9. 9.
    Balaji V, Smart CD. 2012. Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Res. 21:123–37
    [Google Scholar]
  10. 10.
    Baldassarre F, Tatulli G, Vergaro V, Mariano S, Scala V et al. 2020. Sonication-assisted production of Fosetyl-Al nanocrystals: investigation of human toxicity and in vitro antibacterial efficacy against Xylella fastidiosa. Nanomaterials 10:61174
    [Google Scholar]
  11. 11.
    Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A et al. 2003. Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis. 87:8949–54
    [Google Scholar]
  12. 12.
    Barragan AC, Weigel D. 2021. Plant NLR diversity: the known unknowns of pan-NLRomes. Plant Cell 33:4814–31
    [Google Scholar]
  13. 13.
    Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. 2020. Plant pan-genomes are the new reference. Nat. Plants. 6:8914–20
    [Google Scholar]
  14. 14.
    Behlau F, Gochez AM, Jones JB. 2020. Diversity and copper resistance of Xanthomonas affecting citrus. Trop. Plant Pathol. 45:3200–12
    [Google Scholar]
  15. 15.
    Bektas Y, Eulgem T. 2015. Synthetic plant defense elicitors. Front. Plant Sci. 5:804
    [Google Scholar]
  16. 16.
    Bentham AR, De la Concepcion JC, Mukhi N, Zdrzałek R, Draeger M et al. 2020. A molecular roadmap to the plant immune system. J. Biol. Chem. 295:4414916–35
    [Google Scholar]
  17. 17.
    Bernal P, Allsopp LP, Filloux A, Llamas MA. 2017. The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J 11:4972–87
    [Google Scholar]
  18. 18.
    Bian C, Duan Y, Wang J, Xiu Q, Wang J et al. 2020. Validamycin A induces broad-spectrum resistance involving salicylic acid and jasmonic acid/ethylene signaling pathways. Mol. Plant-Microbe Interact. 33:121424–37
    [Google Scholar]
  19. 19.
    Blanvillain-Baufumé S, Reschke M, Solé M, Auguy F, Doucoure H et al. 2017. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol. J. 15:3306–17
    [Google Scholar]
  20. 20.
    Blaustein RA, Lorca GL, Teplitski M. 2018. Challenges for managing Candidatus Liberibacter spp. (huanglongbing disease pathogen): current control measures and future directions. Phytopathology 108:4424–35
    [Google Scholar]
  21. 21.
    Boller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406
    [Google Scholar]
  22. 22.
    Boscariol-Camargo RL, Takita MA, Machado MA. 2016. Bacterial resistance in AtNPR1 transgenic sweet orange is mediated by priming and involves EDS1 and PR2. Trop. Plant Pathol. 41:6341–49
    [Google Scholar]
  23. 23.
    Boschi F, Schvartzman C, Murchio S, Ferreira V, Siri MI et al. 2017. Enhanced bacterial wilt resistance in potato through expression of Arabidopsis EFR and introgression of quantitative resistance from Solanum commersonii. Front. Plant Sci. 8:1642
    [Google Scholar]
  24. 24.
    Boutrot F, Zipfel C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55:257–86
    [Google Scholar]
  25. 25.
    Burr TJ. 2001. Future development of chemical and biological controls for bacterial diseases of plants. Plant Pathogenic Bacteria: Proceedings of the 10th International Conference on Plant Pathogenic Bacteria, Charlottetown, Prince Edward Island, Canada, July 23–27, 2000 SH De Boer 19–23 Dordrecht, Neth.: Springer
    [Google Scholar]
  26. 26.
    Burrill TJ. 1881. Bacteria as a cause of disease in plants. Am. Nat. 15:7527–31
    [Google Scholar]
  27. 27.
    Buttimer C, McAuliffe O, Ross RP, Hill C, O'Mahony J, Coffey A. 2017. Bacteriophages and bacterial plant diseases. Front. Microbiol. 8:34
    [Google Scholar]
  28. 28.
    Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W. 2018. Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front. Microbiol. 9:790
    [Google Scholar]
  29. 29.
    Cai R, Lewis J, Yan S, Liu H, Clarke CR et al. 2011. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLOS Pathog 7:8e1002130
    [Google Scholar]
  30. 30.
    Canteros BI. 1990. Diversity of plasmids and plasmid-encoded phenotypic traits in Xanthomonas campestris pv. vesicatoria PhD Diss. Univ. Fla. Gainesville:
    [Google Scholar]
  31. 31.
    Carroll J, Robinson T, Burr T, Hoying S, Cox K. 2010. Evaluation of pruning techniques and bactericides to manage bacterial canker of sweet cherry. New York Fruit Q. 18:19–15
    [Google Scholar]
  32. 32.
    Carvalho R, Duman K, Jones JB, Paret ML. 2019. Bactericidal activity of copper-zinc hybrid nanoparticles on copper-tolerant Xanthomonas perforans. Sci. Rep. 9:120124
    [Google Scholar]
  33. 33.
    Caserta R, Picchi SC, Takita MA, Tomaz JP, Pereira WEL et al. 2014. Expression of Xylella fastidiosa RpfF in citrus disrupts signaling in Xanthomonas citri subsp. citri and thereby its virulence. Mol. Plant-Microbe Interact. 27:111241–52
    [Google Scholar]
  34. 34.
    Caserta R, Souza-Neto RR, Takita MA, Lindow SE, De Souza AA. 2017. Ectopic expression of Xylella fastidiosa rpfF conferring production of diffusible signal factor in transgenic tobacco and citrus alters pathogen behavior and reduces disease severity. Mol. Plant-Microbe Interact. 30:11866–75
    [Google Scholar]
  35. 35.
    Castiblanco LF, Sundin GW. 2016. New insights on molecular regulation of biofilm formation in plant-associated bacteria. J. Integr. Plant Biol. 58:4362–72
    [Google Scholar]
  36. 36.
    Champoiseau PG, Jones JB, Allen C. 2009. Ralstonia solanacearum race 3 biovar 2 causes tropical losses and temperate anxieties. Plant Health Progr 10:135
    [Google Scholar]
  37. 37.
    Chellemi DO, Olson SM, Mitchell DJ, Secker I, McSorley R. 1997. Adaptation of soil solarization to the integrated management of soilborne pests of tomato under humid conditions. Phytopathology 87:3250–58
    [Google Scholar]
  38. 38.
    Chen J, Mao S, Xu Z, Ding W. 2019. Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Adv 9:73788–99
    [Google Scholar]
  39. 39.
    Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:7323527–32
    [Google Scholar]
  40. 40.
    Chen Y, Yan F, Chai Y, Liu H, Kolter R et al. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 15:3848–64
    [Google Scholar]
  41. 41.
    Cohen R, Dombrovsky A, Louws FJ. 2017. Grafting as agrotechnology for reducing disease damage. Vegetable Grafting: Principles and Practices G Colla, F Pérez-Alfocea, D Schwarz 155–70 Wallingford, UK: CABI
    [Google Scholar]
  42. 42.
    Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M et al. 2014. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Mol. Plant-Microbe Interact. 27:111186–98
    [Google Scholar]
  43. 43.
    Colombi E, Straub C, Künzel S, Templeton MD, McCann HC, Rainey PB. 2017. Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids. Environ. Microbiol. 19:2819–32
    [Google Scholar]
  44. 44.
    Crété R, Pires RN, Barbetti MJ, Renton M. 2020. Rotating and stacking genes can improve crop resistance durability while potentially selecting highly virulent pathogen strains. Sci. Rep. 10:119752
    [Google Scholar]
  45. 45.
    Dandekar AM, Jacobson A, Ibáñez AM, Gouran H, Dolan DL et al. 2019. Trans-graft protection against Pierce's disease mediated by transgenic grapevine rootstocks. Front. Plant Sci. 10:84
    [Google Scholar]
  46. 46.
    Dangl JL, Horvath DM, Staskawicz BJ. 2013. Pivoting the plant immune system from dissection to deployment. Science 341:6147746–51
    [Google Scholar]
  47. 47.
    Das A. 2003. Citrus canker: a review. J. Appl. Hortic. 5:152–60
    [Google Scholar]
  48. 48.
    De Boer SH, Boucher A. 2011. Prospect for functional eradication of the bacterial ring rot disease of potato. Can. J. Plant Pathol. 33:3297–307
    [Google Scholar]
  49. 49.
    Delwaide A-C, Nalley LL, Dixon BL, Danforth DM, Nagya RM Jr. et al. 2015. Revisiting GMOs: Are there differences in European consumers’ acceptance and valuation for cisgenically versus transgenically bred rice?. PLOS ONE 10:5e0126060
    [Google Scholar]
  50. 50.
    Díaz-Tatis PA, Ochoa JC, García L, Chavarriaga P, Bernal AJ, López CE. 2019. Interfamily transfer of Bs2 from pepper to cassava (Manihot esculenta Crantz). Trop. Plant Pathol. 44:3225–37
    [Google Scholar]
  51. 51.
    Donati I, Buriani G, Cellini A, Mauri S, Costa G, Spinelli F. 2014. New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). J. Berry Res. 4:253–67
    [Google Scholar]
  52. 52.
    Dong OX, Ronald PC. 2019. Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiol 180:126–38
    [Google Scholar]
  53. 53.
    Donsì F, Ferrari G. 2016. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 233:106–20
    [Google Scholar]
  54. 54.
    Du H, Wen C, Zhang X, Xu X, Yang J et al. 2019. Identification of a major QTL (qRRs-10.1) that confers resistance to Ralstonia solanacearum in pepper (Capsicum annuum) using SLAF-BSA and QTL mapping. Int. J. Mol. Sci. 20:235887
    [Google Scholar]
  55. 55.
    El Kasmi F, Horvath D, Lahaye T. 2018. Microbial effectors and the role of water and sugar in the infection battle ground. Curr. Opin. Plant Biol. 44:98–107
    [Google Scholar]
  56. 56.
    Elmer W, White JC. 2018. The future of nanotechnology in plant pathology. Annu. Rev. Phytopathol. 56:111–33
    [Google Scholar]
  57. 57.
    EPPO 2021. EPPO A1/A2 lists of pests recommended for regulation as quarantine pests. EPPO Stand. PM 1/2(30) Eur. Mediterr. Plant Prot. Organ. Paris, France: https://www.eppo.int/ACTIVITIES/invasive_alien_plants/iap_lists#a1
    [Google Scholar]
  58. 58.
    Eur. Food Saf. Auth. (EFSA) Paraskevopoulos K, Federici S. 2021. Overview of EFSA and European national authorities’ scientific opinions on the risk assessment of plants developed through new genomic techniques. EFSA J 19:4e06314
    [Google Scholar]
  59. 59.
    Fan S, Tian F, Fang L, Yang C-H, He C. 2019. Transcriptional responses of Xanthomonas oryzae pv. oryzae to type III secretion system inhibitor ortho-coumaric acid. BMC Microbiol 19:1163
    [Google Scholar]
  60. 60.
    Fayette J, Jones JB, Pernezny K, Roberts PD, Raid R. 2018. Survival of Xanthomonas campestris pv. vitians on lettuce in crop debris, irrigation water, and weeds in south Florida. Eur. J. Plant Pathol. 151:2341–53
    [Google Scholar]
  61. 61.
    Flaherty JE, Somodi GC, Jones JB, Harbaugh BK, Jackson LE. 2000. Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. HortScience 35:5882–84
    [Google Scholar]
  62. 62.
    Frenkel O, Bornestein M, Shulhani R, Sharabani G, Sofer M et al. 2015. Secondary spread of Clavibacter michiganensis subsp. michiganensis in nurseries and the conditions leading to infection of tomato seedlings. Eur. J. Plant Pathol. 144:3569–79
    [Google Scholar]
  63. 63.
    Fürst U, Zeng Y, Albert M, Witte AK, Fliegmann J, Felix G. 2020. Perception of Agrobacterium tumefaciens flagellin by FLS2XL confers resistance to crown gall disease. Nat. Plants 6:122–27
    [Google Scholar]
  64. 64.
    Gayder S, Parcey M, Nesbitt D, Castle AJ, Svircev AM. 2020. Population dynamics between Erwinia amylovora, Pantoea agglomerans and bacteriophages: exploiting synergy and competition to improve phage cocktail efficacy. Microorganisms 8:91449
    [Google Scholar]
  65. 65.
    Gitaitis R, Walcott R. 2007. The epidemiology and management of seedborne bacterial diseases. Annu. Rev. Phytopathol. 45:371–97
    [Google Scholar]
  66. 66.
    Goodman RE, Tripathi L, Tripathi J. 2021. Controlling banana Xanthomonas wilt disease in east Africa. Open Access Gov. https://www.openaccessgovernment.org/controlling-banana-xanthomonas-wilt-disease-in-east-africa/117771/
    [Google Scholar]
  67. 67.
    Gottwald T, Timmer LW. 1995. The efficacy of windbreaks in reducing the spread of citrus canker caused by Xanthomonas campestris pv. Trop. Agric. 72:3194–201
    [Google Scholar]
  68. 68.
    Graham JH, Johnson EG, Myers ME, Young M, Rajasekaran P et al. 2016. Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Dis 100:122442–47
    [Google Scholar]
  69. 69.
    Graham JH, Myers ME. 2011. Soil application of SAR inducers imidacloprid, thiamethoxam, and acibenzolar-S-methyl for citrus canker control in young grapefruit trees. Plant Dis 95:6725–28
    [Google Scholar]
  70. 70.
    Gutiérrez-Pacheco MM, Bernal-Mercado AT, Vázquez-Armenta FJ, Martínez-Tellez MA, González-Aguilar GA et al. 2019. Quorum sensing interruption as a tool to control virulence of plant pathogenic bacteria. Physiol. Mol. Plant Pathol. 106:281–91
    [Google Scholar]
  71. 71.
    Haas D, Défago G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:4307–19
    [Google Scholar]
  72. 72.
    Hajeri S, Killiny N, El-Mohtar C, Dawson WO, Gowda S. 2014. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (huanglongbing). J. Biotechnol. 176:42–49
    [Google Scholar]
  73. 73.
    Hao G, Pitino M, Duan Y, Stover E. 2016. Reduced susceptibility to Xanthomonas citri in transgenic citrus expressing the FLS2 receptor from Nicotiana benthamiana. Mol. Plant-Microbe Interact. 29:2132–42
    [Google Scholar]
  74. 74.
    Hao G, Stover E, Gupta G. 2016. Overexpression of a modified plant thionin enhances disease resistance to citrus canker and huanglongbing (HLB). Front. Plant Sci. 7:1078
    [Google Scholar]
  75. 75.
    Hao G, Zhang S, Stover E. 2017. Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus. PLOS ONE 12:10e0186810
    [Google Scholar]
  76. 76.
    Heil M, Baldwin IT. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 7:261–67
    [Google Scholar]
  77. 77.
    Holtappels D, Fortuna K, Lavigne R, Wagemans J. 2021. The future of phage biocontrol in integrated plant protection for sustainable crop production. Curr. Opin. Biotechnol. 68:60–71
    [Google Scholar]
  78. 78.
    Hong JC, Momol MT, Jones JB, Ji P, Olson SM et al. 2008. Detection of Ralstonia solanacearum in irrigation ponds and aquatic weeds associated with the ponds in north Florida. Plant Dis 92:121674–82
    [Google Scholar]
  79. 79.
    Hu Y, Zhang J, Jia H, Sosso D, Li T et al. 2014. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. PNAS 111:4E521–29
    [Google Scholar]
  80. 80.
    Hummel AW, Doyle EL, Bogdanove AJ. 2012. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytol 195:4883–93
    [Google Scholar]
  81. 81.
    Innerebner G, Knief C, Vorholt JA. 2011. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77:103202–10
    [Google Scholar]
  82. 82.
    Innes RW. 2015. Exploiting combinatorial interactions to expand NLR specificity. Cell Host Microbe 18:3265–67
    [Google Scholar]
  83. 83.
    IPPC 2020. Ralstonia solanacearum race 3 biovar 2: detection in a United States greenhouse Pest Rep. USA-202/1 Int. Plant Prot. Conv. Rome:
    [Google Scholar]
  84. 84.
    IPPC 2021. Eradication of Xanthomonas citri subsp. citri (citrus canker) from Australia Pest Rep. AUS-100/1 Int. Plant Prot. Conv. Rome:
    [Google Scholar]
  85. 85.
    Iriarte FB, Balogh B, Momol MT, Smith LM, Wilson M, Jones JB. 2007. Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl. Environ. Microbiol. 73:61704–11
    [Google Scholar]
  86. 86.
    Ishikawa R, Suzuki-Nishimoto M, Fukuchi A, Matsuura K. 2004. Effective control of cabbage black rot by validamycin A and its effect on extracellular polysaccharide-production of Xanthomonas campestris pv. campestris. J. Pestic. Sci. 29:3209–13
    [Google Scholar]
  87. 87.
    Iyer AS, McCouch SR. 2004. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol. Plant-Microbe Interact. 17:121348–54
    [Google Scholar]
  88. 88.
    Jia H, Zhang Y, Orbović V, Xu J, White FF et al. 2017. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 15:7817–23
    [Google Scholar]
  89. 89.
    Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT. 2007. Bacteriophages for plant disease control. Annu. Rev. Phytopathol. 45:245–62
    [Google Scholar]
  90. 90.
    Jones JB, Svircev AM, Obradović AŽ. 2021. Crop use of bacteriophages. Bacteriophages: Biology, Technology, Therapy DR Harper, ST Abedon, BH Burrowes, ML McConville 839–56 Cham, Switz: Springer
    [Google Scholar]
  91. 91.
    Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:7117323–29
    [Google Scholar]
  92. 92.
    Jones RA, Barbetti MJ. 2012. Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. Plant Sci. Rev. 22:1–33
    [Google Scholar]
  93. 93.
    Joshi JR, Khazanov N, Charkowski A, Faigenboim A, Senderowitz H, Yedidia I. 2021. Interkingdom signaling interference: the effect of plant-derived small molecules on quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 59:153–90
    [Google Scholar]
  94. 94.
    Jupe F, Witek K, Verweij W, Śliwka J, Pritchard L et al. 2013. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J 76:3530–44
    [Google Scholar]
  95. 95.
    Khokhani D, Zhang C, Li Y, Wang Q, Zeng Q et al. 2013. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora. Appl. Environ. Microbiol. 79:185424–36
    [Google Scholar]
  96. 96.
    Kim DS, Hwang BK. 2012. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation. Plant J 72:5843–55
    [Google Scholar]
  97. 97.
    Kim DS, Hwang BK. 2014. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J. Exp. Bot. 65:92295–306
    [Google Scholar]
  98. 98.
    Kim J-G, Park BK, Kim S-U, Choi D, Nahm BH et al. 2006. Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan Horse antibiotic that controls crown gall. PNAS 103:238846–51
    [Google Scholar]
  99. 99.
    Kiss GB, Szabó Z, Iliescu EC, Balough M. 2014. Identification of a Xanthomonas euvesicatoria resistance gene from pepper (Capsicum annuum) and method for generating plants with resistance WO Patent 2014/068346A2
    [Google Scholar]
  100. 100.
    Klarzynski O, Plesse B, Joubert J-M, Yvin J-C, Kopp M et al. 2000. Linear β-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol 124:31027–38
    [Google Scholar]
  101. 101.
    Klessig DF, Choi HW, Dempsey DA. 2018. Systemic acquired resistance and salicylic acid: past, present, and future. Mol. Plant-Microbe Interact. 31:9871–88
    [Google Scholar]
  102. 102.
    Köhl J, Kolnaar R, Ravensberg WJ. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. 10:845
    [Google Scholar]
  103. 103.
    Kourelis J, van der Hoorn RAL. 2018. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30:2285–99
    [Google Scholar]
  104. 104.
    Kůdela V. 2010. Potential impact of climate change on geographic distribution of plant pathogenic bacteria in Central Europe. Plant Prot. Sci. 45:Spec. IssueS27–S32
    [Google Scholar]
  105. 105.
    Kumari S, Kumaraswamy RV, Choudhary RC, Sharma SS, Pal A et al. 2018. Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Sci. Rep. 8:16650
    [Google Scholar]
  106. 106.
    Kunkel BN, Bent AF, Dahlbeck D, Innes RW, Staskawicz BJ. 1993. RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5:8865–75
    [Google Scholar]
  107. 107.
    Kunwar S, Iriarte F, Fan Q, Evaristo da Silva E, Ritchie L et al. 2018. Transgenic expression of EFR and Bs2 genes for field management of bacterial wilt and bacterial spot of tomato. Phytopathology 108:121402–11
    [Google Scholar]
  108. 108.
    Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D et al. 2010. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 28:4365–69
    [Google Scholar]
  109. 109.
    Langner T, Kamoun S, Belhaj K. 2018. CRISPR crops: plant genome editing toward disease resistance. Annu. Rev. Phytopathol. 56:479–512
    [Google Scholar]
  110. 110.
    Leng J, Tu W, Hou Y, Cui H. 2021. Temperature-inducible transgenic EDS1 and PAD4 in Arabidopsis confer an enhanced disease resistance at elevated temperature. Plants 10:61258
    [Google Scholar]
  111. 111.
    Li J, Pang Z, Duan S, Lee D, Kolbasov VG, Wang N. 2019. The in planta effective concentration of oxytetracycline against ‘Candidatus Liberibacter asiaticus’ for suppression of citrus huanglongbing. Phytopathology 109:122046–54
    [Google Scholar]
  112. 112.
    Li J, Wang N. 2014. Foliar application of biofilm formation-inhibiting compounds enhances control of citrus canker caused by Xanthomonas citri subsp. citri. Phytopathology 104:2134–42
    [Google Scholar]
  113. 113.
    Li S, Wu F, Duan Y, Singerman A, Guan Z. 2020. Citrus greening: management strategies and their economic impact. HortScience 55:5604–12
    [Google Scholar]
  114. 114.
    Li T, Liu B, Spalding MH, Weeks DP, Yang B. 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30:5390–92
    [Google Scholar]
  115. 115.
    Li W, Deng Y, Ning Y, He Z, Wang G-L. 2020. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu. Rev. Plant Biol. 71:575–603
    [Google Scholar]
  116. 116.
    Li Y, Hutchins W, Wu X, Liang C, Zhang C et al. 2015. Derivative of plant phenolic compound inhibits the type III secretion system of Dickeya dadantii via HrpX/HrpY two-component signal transduction and Rsm systems. Mol. Plant Pathol. 16:2150–63
    [Google Scholar]
  117. 117.
    Liao YY, Strayer-Scherer A, White JC, De La Torre-Roche R, Ritchie L et al. 2019. Particle-size dependent bactericidal activity of magnesium oxide against Xanthomonas perforans and bacterial spot of tomato. Sci. Rep. 9:118530
    [Google Scholar]
  118. 118.
    Lin W-C, Lu C-F, Wu J-W, Cheng M-L, Lin Y-M et al. 2004. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13:6567–81
    [Google Scholar]
  119. 119.
    Lindow S, Newman K, Chatterjee S, Baccari C, Iavarone AT, Ionescu M. 2014. Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of pierce's disease. Mol. Plant-Microbe Interact. 27:3244–54
    [Google Scholar]
  120. 120.
    Liu J, Chen X, Liang X, Zhou X, Yang F et al. 2016. Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense. Plant Physiol 171:21427–42
    [Google Scholar]
  121. 121.
    Liu X, Cai J, Chen H, Zhong Q, Hou Y et al. 2020. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog. 141:103980
    [Google Scholar]
  122. 122.
    Louws FJ, Wilson M, Campbell HL, Cuppels DA, Jones JB et al. 2001. Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis 85:5481–88
    [Google Scholar]
  123. 123.
    Ma Y-N, Chen L, Si N-G, Jiang W-J, Zhou Z-G, et al. 2019. Identification of benzyloxy carbonimidoyl dicyanide derivatives as novel type III secretion system inhibitors via high-throughput screening. Front. Plant Sci. 10:1059
    [Google Scholar]
  124. 124.
    Manickam R, Chen J-R, Sotelo-Cardona P, Kenyon L, Srinivasan R. 2021. Evaluation of different bacterial wilt resistant eggplant rootstocks for grafting tomato. Plants 10:175
    [Google Scholar]
  125. 125.
    Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M et al. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:6614–29
    [Google Scholar]
  126. 126.
    Marco GM, Stall R. 1983. Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv. vesicatoria that differ in sensitivity to copper. Plant Dis 67:779–81
    [Google Scholar]
  127. 127.
    McAvoy T, Freeman JH, Rideout SL, Olson SM, Paret ML. 2012. Evaluation of grafting using hybrid rootstocks for management of bacterial wilt in field tomato production. HortScience 47:5621–25
    [Google Scholar]
  128. 128.
    McKenna M. 2019. Antibiotics set to flood Florida's troubled orange orchards. Nature 567:7748302–3
    [Google Scholar]
  129. 129.
    McManus P, Stockwell V. 2000. Antibiotics for plant diseases control: silver bullets or rusty sabers?. APSnet Features. https://www.apsnet.org/edcenter/apsnetfeatures/Pages/AntibioticsForPlants.aspx
    [Google Scholar]
  130. 130.
    Messiha NAS, van Diepeningen AD, Wenneker M, van Beuningen AR, Janse JD et al. 2007. Biological soil disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. Eur. J. Plant Pathol. 117:4403–15
    [Google Scholar]
  131. 131.
    Millardet A, Gayon LU. 1885. Traitement du mildiou par le mélange de sulphate de cuivre et chaux. J. Agric. Prat. 49:2707–10
    [Google Scholar]
  132. 132.
    Miller T, Schroth M. 1972. Monitoring the epiphytic population of Erwinia amylovora. Phytopathology 62:1175–82
    [Google Scholar]
  133. 133.
    Minsavage GV, Canteros BI, Stall RE. 1990. Plasmid-mediated resistance to streptomycin in Xanthomonas campestris pv. vesicatoria. Phytopathology 80:8719–23
    [Google Scholar]
  134. 134.
    Minsavage GV, Dahlbeck D, Whalen M, Kearney B, Bonas U et al. 1990. Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria–pepper interactions. Mol. Plant-Microbe Interact. 3:141–47
    [Google Scholar]
  135. 135.
    Mitre LK, Teixeira-Silva NS, Rybak K, Magalhães DM, de Souza-Neto RR et al. 2021. The Arabidopsis immune receptor EFR increases resistance to the bacterial pathogens Xanthomonas and Xylella in transgenic sweet orange. Plant Biotechnol. J. 19:71294–96
    [Google Scholar]
  136. 136.
    Momma N. 2008. Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Jpn. Agric. Res. Q. 42:17–12
    [Google Scholar]
  137. 137.
    Mora V, Ramasamy M, Damaj MB, Irigoyen S, Ancona V et al. 2021. Potato zebra chip: an overview of the disease, control strategies, and prospects. Front. Microbiol. 12: 2064.
    [Google Scholar]
  138. 138.
    Moyers BT, Morrell PL, McKay JK. 2018. Genetic costs of domestication and improvement. J. Hered. 109:2103–16
    [Google Scholar]
  139. 139.
    Murneek A. 1952. Thiolutin as a possible inhibitor of fire blight. Phytopathology 42:57
    [Google Scholar]
  140. 140.
    Nakato V, Mahuku G, Coutinho T. 2018. Xanthomonas campestris pv. musacearum: a major constraint to banana, plantain and enset production in central and east Africa over the past decade. Mol. Plant Pathol. 19:3525–36
    [Google Scholar]
  141. 141.
    Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. 2018. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 19:121–33
    [Google Scholar]
  142. 142.
    Nouri M, Baghaee-Ravari S, Emadzadeh B. 2021. Nano-emulsified savory and thyme formulation show limited efficacy to suppress Pectobacterium carotovorum subsp. carotovorum compared with pure oil. Ind. Crops Prod. 161:113216
    [Google Scholar]
  143. 143.
    Obradovic A, Jones JB, Momol MT, Olson SM, Jackson LE et al. 2005. Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis 89:7712–16
    [Google Scholar]
  144. 144.
    Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN et al. 2001. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51:11933–38
    [Google Scholar]
  145. 145.
    Ortigosa A, Gimenez-Ibanez S, Leonhardt N, Solano R. 2019. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol. J. 17:3665–73
    [Google Scholar]
  146. 146.
    Osdaghi E, Young AJ, Harveson RM. 2020. Bacterial wilt of dry beans caused by Curtobacterium flaccumfaciens pv. flaccumfaciens: a new threat from an old enemy. Mol. Plant Pathol. 21:5605–21
    [Google Scholar]
  147. 147.
    Palmer AG, Streng E, Blackwell HE. 2011. Attenuation of virulence in pathogenic bacteria using synthetic quorum-sensing modulators under native conditions on plant hosts. ACS Chem. Biol. 6:121348–56
    [Google Scholar]
  148. 148.
    Parke JL, Grünwald NJ. 2012. A systems approach for management of pests and pathogens of nursery crops. Plant Dis 96:91236–44
    [Google Scholar]
  149. 149.
    Peng A, Chen S, Lei T, Xu L, He Y et al. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 15:121509–19
    [Google Scholar]
  150. 150.
    Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347–75
    [Google Scholar]
  151. 151.
    Pinto C, Gomes AC. 2016. Vitis vinifera microbiome: from basic research to technological development. BioControl 61:3243–56
    [Google Scholar]
  152. 152.
    Poland J, Rutkoski J. 2016. Advances and challenges in genomic selection for disease resistance. Annu. Rev. Phytopathol. 54:79–98
    [Google Scholar]
  153. 153.
    Poltronieri P, Brutus A, Reca IB, Francocci F, Cheng X, Stigliano E. 2020. Engineering plant leucine rich repeat-receptors for enhanced pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Applied Plant Biotechnology for Improving Resistance to Biotic Stress P Poltronieri, Y Hong 1–31 Cambridge, MA: Academic
    [Google Scholar]
  154. 154.
    Pompili V, Dalla Costa L, Piazza S, Pindo M, Malnoy M. 2020. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotechnol. J. 18:3845–58
    [Google Scholar]
  155. 155.
    Porter SS, Sachs JL. 2020. Agriculture and the disruption of plant-microbial symbiosis. Trends Ecol. Evol. 35:5426–39
    [Google Scholar]
  156. 156.
    Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB et al. 2018. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1:8441–46
    [Google Scholar]
  157. 157.
    Puigvert M, Solé M, López-Garcia B, Coll NS, Beattie KD et al. 2019. Type III secretion inhibitors for the management of bacterial plant diseases. Mol. Plant Pathol. 20:120–32
    [Google Scholar]
  158. 158.
    Qiao K, Liu Q, Huang Y, Xia Y, Zhang S. 2020. Management of bacterial spot of tomato caused by copper-resistant Xanthomonas perforans using a small molecule compound carvacrol. Crop Prot 132:105114
    [Google Scholar]
  159. 159.
    Qiao K, Liu Q, Xia Y, Zhang S. 2021. Evaluation of a small-molecule compound, N-acetylcysteine, for the management of bacterial spot of tomato caused by copper-resistant Xanthomonas perforans. Plant Dis 105:1108–13
    [Google Scholar]
  160. 160.
    Raymaekers K, Ponet L, Holtappels D, Berckmans B, Cammue BPA. 2020. Screening for novel biocontrol agents applicable in plant disease management: a review. Biol. Control 144:104240
    [Google Scholar]
  161. 161.
    Renaut S, Rieseberg LH. 2015. The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflowers and other Compositae crops. Mol. Biol. Evol. 32:92273–83
    [Google Scholar]
  162. 162.
    Rimbaud L, Fabre F, Papaïx J, Moury B, Lannou C et al. 2021. Models of plant resistance deployment. Annu. Rev. Phytopathol. 59:125–52
    [Google Scholar]
  163. 163.
    Rodríguez J, Martín MJ, Ruiz MA, Clares B. 2016. Current encapsulation strategies for bioactive oils: from alimentary to pharmaceutical perspectives. Food Res. Int. 83:41–59
    [Google Scholar]
  164. 164.
    Sahu SK, Zheng P, Yao N. 2018. Niclosamide blocks rice leaf blight by inhibiting biofilm formation of Xanthomonas oryzae. Front. Plant Sci. 9:408
    [Google Scholar]
  165. 165.
    Scheben A, Wolter F, Batley J, Puchta H, Edwards D. 2017. Towards CRISPR/Cas crops: bringing together genomics and genome editing. New Phytol 216:3682–98
    [Google Scholar]
  166. 166.
    Schornack S, Moscou MJ, Ward ER, Horvath DM. 2013. Engineering plant disease resistance based on TAL effectors. Annu. Rev. Phytopathol. 51:383–406
    [Google Scholar]
  167. 167.
    Schultink A, Qi T, Bally J, Staskawicz B. 2019. Using forward genetics in Nicotiana benthamiana to uncover the immune signaling pathway mediating recognition of the Xanthomonas perforans effector XopJ4. New Phytol 221:21001–9
    [Google Scholar]
  168. 168.
    Schwessinger B, Bahar O, Thomas N, Holton N, Nekrasov V et al. 2015. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses. PLOS Pathog 11:3e1004809
    [Google Scholar]
  169. 169.
    Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM. 2015. Disease resistance gene analogs (RGAs) in plants. Int. J. Mol. Sci. 16:819248–90
    [Google Scholar]
  170. 170.
    Sendín LN, Orce IG, Gómez RL, Enrique R, Grellet Bournonville CF et al. 2017. Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease. Plant Mol. Biol. 93:6607–21
    [Google Scholar]
  171. 171.
    Šević M, Gašić K, Ignjatov M, Mijatović M, Prokić A, Obradović A. 2019. Integration of biological and conventional treatments in control of pepper bacterial spot. Crop Prot 119:46–51
    [Google Scholar]
  172. 172.
    Shantharaj D, Römer P, Figueiredo JFL, Minsavage GV, Krönauer C et al. 2017. An engineered promoter driving expression of a microbial avirulence gene confers recognition of TAL effectors and reduces growth of diverse Xanthomonas strains in citrus. Mol. Plant Pathol. 18:7976–89
    [Google Scholar]
  173. 173.
    Sharlach M, Dahlbeck D, Liu L, Chiu J, Jiménez-Gómez JM et al. 2013. Fine genetic mapping of RXopJ4, a bacterial spot disease resistance locus from Solanum pennellii LA716. Theor. Appl. Genet. 126:3601–9
    [Google Scholar]
  174. 174.
    Sharma A, Ference CM, Shantharaj D, Baldwin EA, Manthey JA, Jones JB. 2021. Transcriptomic analysis of changes in Citrus×microcarpa gene expression post Xanthomonas citri subsp. citri infection. Eur. J. Plant Pathol. 162:163–81
    [Google Scholar]
  175. 175.
    Sharma A, Jones JB, White FF. 2019. Recent advances in developing disease resistance in plants. F1000Res 8: 1934.
    [Google Scholar]
  176. 176.
    Sharma A, Timilsina S, Abrahamian P, Minsavage GV, Colee J et al. 2021. Need for speed: bacterial effector XopJ2 is associated with increased dispersal velocity of Xanthomonas perforans. Environ. Microbiol. 23:105850–65
    [Google Scholar]
  177. 177.
    Sicard A, Zeilinger AR, Vanhove M, Schartel TE, Beal DJ et al. 2018. Xylella fastidiosa: insights into an emerging plant pathogen. Annu. Rev. Phytopathol. 56:181–202
    [Google Scholar]
  178. 178.
    Silva KJP, Mahna N, Mou Z, Folta KM. 2018. NPR1 as a transgenic crop protection strategy in horticultural species. Hortic. Res. 5:15
    [Google Scholar]
  179. 179.
    Song GC, Sim H-J, Kim S-G, Ryu C-M. 2016. Root-mediated signal transmission of systemic acquired resistance against above-ground and below-ground pathogens. Ann. Bot. 118:4821–31
    [Google Scholar]
  180. 180.
    Stall RE, Jones JB, Minsavage GV. 2009. Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot. Annu. Rev. Phytopathol. 47:265–84
    [Google Scholar]
  181. 181.
    Stall RE, Loschke DC, Jones JB. 1986. Linkage of copper resistance and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pv. vesicatoria. Phytopathology 76:2240–43
    [Google Scholar]
  182. 182.
    Strange RN, Scott PR. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43:83–116
    [Google Scholar]
  183. 183.
    Strayer-Scherer A, Liao YY, Young M, Ritchie L, Vallad GE et al. 2018. Advanced copper composites against copper-tolerant Xanthomonas perforans and tomato bacterial spot. Phytopathology 108:2196–205
    [Google Scholar]
  184. 184.
    Suchoff DH, Louws FJ, Gunter CC. 2019. Yield and disease resistance for three bacterial wilt-resistant tomato rootstocks. HortTechnology 29:3330–37
    [Google Scholar]
  185. 185.
    Sundin GW, Castiblanco LF, Yuan X, Zeng Q, Yang C-H. 2016. Bacterial disease management: challenges, experience, innovation and future prospects. Mol. Plant Pathol. 17:91506–18
    [Google Scholar]
  186. 186.
    Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R et al. 1999. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. PNAS 96:2414153–58
    [Google Scholar]
  187. 187.
    Takken FL, Goverse A. 2012. How to build a pathogen detector: structural basis of NB-LRR function. Curr. Opin. Plant Biol. 15:4375–84
    [Google Scholar]
  188. 188.
    Thayer P, Stall R. 1962. The survey of Xanthomonas vesicatoria resistance to streptomycin. Fla. Agric. Exp. Stn. J. Ser. 1523:163–65
    [Google Scholar]
  189. 189.
    Thelin GP, Stone WW. 2013. Estimation of annual agricultural pesticide use for counties of the conterminous United States, 1992–2009 Sci. Investig. Rep. 2013–5009 US Geol. Surv. Reston, VA: https://pubs.usgs.gov/sir/2013/5009/pdf/sir20135009.pdf
    [Google Scholar]
  190. 190.
    Thomas NC, Hendrich CG, Gill US, Allen C, Hutton SF, Schultink A. 2020. The immune receptor Roq1 confers resistance to the bacterial pathogens Xanthomonas, Pseudomonas syringae, and Ralstonia in tomato. Front. Plant Sci. 11:463
    [Google Scholar]
  191. 191.
    Tripathi JN, Ntui VO, Shah T, Tripathi L. 2021. CRISPR/Cas9-mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnol. J. 19:71291–93
    [Google Scholar]
  192. 192.
    Tripathi L, Mwaka H, Tripathi JN, Tushemereirwe WK. 2010. Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum. Mol. Plant Pathol. 11:6721–31
    [Google Scholar]
  193. 193.
    Turnbull C, Lillemo M, Hvoslef-Eide TAK. 2021. Global regulation of genetically modified crops amid the gene edited crop boom: a review. Front. Plant Sci. 12:258
    [Google Scholar]
  194. 194.
    USDA 2021. Select agents and toxins list. Federal Select Agent Program https://www.selectagents.gov
    [Google Scholar]
  195. 195.
    USDA APHIS 2021. Petitions for determination of nonregulated status. USDA Animal and Plant Health Inspection Service. https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/permits-notifications-petitions/petitions/petition-status
    [Google Scholar]
  196. 196.
    USGS NAQWA 2017. Estimated annual agricultural pesticide use. National Water-Quality Assessment Project https://doi.org/10.5066/F7NP22KM
    [Crossref] [Google Scholar]
  197. 197.
    Vallad GE, Goodman RM. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:61920–34
    [Google Scholar]
  198. 198.
    van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B. 2010. Genetic erosion in crops: concept, research results and challenges. Plant Genet. Res. 8:11–15
    [Google Scholar]
  199. 199.
    van Schie CCN, Takken FLW. 2014. Susceptibility genes 101: how to be a good host. Annu. Rev. Phytopathol. 52:551–81
    [Google Scholar]
  200. 200.
    Varympopi A, Dimopoulou A, Theologidis I, Karamanidou T, Kaldeli Kerou A et al. 2020. Bactericides based on copper nanoparticles restrain growth of important plant pathogens. Pathogens 9:12 1024.
    [Google Scholar]
  201. 201.
    Walcott RR. 2008. Integrated pest management of bacterial fruit blotch of cucurbits. Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria A Ciancio, KG Mukerji 191–209 Dordrecht, Neth.: Springer
    [Google Scholar]
  202. 202.
    Walker JC. 1950. Disease control through exclusion and eradication. Plant Pathology599–624 New York: McGraw Hill. , 1st ed..
    [Google Scholar]
  203. 203.
    Walker JC. 1950. Disease control through protection. Plant Pathology625–69 New York: McGraw Hill. , 1st ed..
    [Google Scholar]
  204. 204.
    Walter DR. 2018. Advances in disease-resistant varieties of soybean. Achieving Sustainable Cultivation of Soybeans H Nguyen 105–43 London: Burleigh Dodds. , 1st ed..
    [Google Scholar]
  205. 205.
    Walters DR, Ratsep J, Havis ND. 2013. Controlling crop diseases using induced resistance: challenges for the future. J. Exp. Bot. 64:51263–80
    [Google Scholar]
  206. 206.
    Waltz E. 2016. Gene-edited CRISPR mushroom escapes US regulation. Nature 532:7599293
    [Google Scholar]
  207. 207.
    Wang G, Roux B, Feng F, Guy E, Li L et al. 2015. The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18:3285–95
    [Google Scholar]
  208. 208.
    Wang L, Chen S, Peng A, Xie Z, He Y, Zou X. 2019. CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck). Plant Biotechnol. Rep. 13:5501–10
    [Google Scholar]
  209. 209.
    Wang Y, Dang F, Liu Z, Wang X, Eulgem T et al. 2013. CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection. Mol. Plant Pathol. 14:2131–44
    [Google Scholar]
  210. 210.
    Wei Y, Balaceanu A, Rufian JS, Segonzac C, Zhao A et al. 2020. An immune receptor complex evolved in soybean to perceive a polymorphic bacterial flagellin. Nat. Commun. 11:1 3763.
    [Google Scholar]
  211. 211.
    White FF, Yang B. 2009. Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiol 150:41677–86
    [Google Scholar]
  212. 212.
    Worthington RJ, Rogers SA, Huigens RW, Melander C, Ritchie DF. 2012. Foliar-applied small molecule that suppresses biofilm formation and enhances control of copper-resistant Xanthomonas euvesicatoria on pepper. Plant Dis 96:111638–44
    [Google Scholar]
  213. 213.
    Wu J, Reca I-B, Spinelli F, Lironi D, De Lorenzo G et al. 2019. An EFR-Cf-9 chimera confers enhanced resistance to bacterial pathogens by SOBIR1- and BAK1-dependent recognition of elf18. Mol. Plant Pathol. 20:6751–64
    [Google Scholar]
  214. 214.
    Wuriyanghan H, Falk BW. 2013. RNA interference towards the potato psyllid, Bactericera cockerelli, is induced in plants infected with recombinant Tobacco mosaic virus (TMV). PLOS ONE 8:6e66050
    [Google Scholar]
  215. 215.
    Xu G, Yuan M, Ai C, Liu L, Zhuang E et al. 2017. uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 545:7655491–94
    [Google Scholar]
  216. 216.
    Yang F, Korban SS, Pusey PL, Elofsson M, Sundin GW, Zhao Y. 2014. Small-molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora. Mol. Plant Pathol. 15:144–57
    [Google Scholar]
  217. 217.
    Yang L, Ding W, Xu Y, Wu D, Li S et al. 2016. New insights into the antibacterial activity of hydroxycoumarins against Ralstonia solanacearum. Molecules 21:4468
    [Google Scholar]
  218. 218.
    Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI et al. 2017. Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiol. 8:1895
    [Google Scholar]
  219. 219.
    Yasmin S, Zaka A, Imran A, Zahid MA, Yousaf S et al. 2016. Plant growth promotion and suppression of bacterial leaf blight in rice by inoculated bacteria. PLOS ONE 11:8e0160688
    [Google Scholar]
  220. 220.
    Ying X, Redfern B, Gmitter FG, Deng Z. 2020. Heterologous expression of the constitutive disease resistance 2 and 8 genes from Poncirus trifoliata restored the hypersensitive response and resistance of Arabidopsis cdr1 mutant to bacterial pathogen Pseudomonas syringae. Plants 9:7821
    [Google Scholar]
  221. 221.
    Yoshihara A, Shimatani M, Sakata M, Takemura C, Senuma W et al. 2020. Quorum sensing inhibition attenuates the virulence of the plant pathogen Ralstonia solanacearum species complex. ACS Chem. Biol. 15:113050–59
    [Google Scholar]
  222. 222.
    Yuan X, Yu M, Yang C-H. 2020. Innovation and application of the type III secretion system inhibitors in plant pathogenic bacteria. Microorganisms 8:121956
    [Google Scholar]
  223. 223.
    Zaidi SS-A, Mukhtar MS, Mansoor S. 2018. Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol 36:9898–906
    [Google Scholar]
  224. 224.
    Zimny T, Eriksson D. 2020. Exclusion or exemption from risk regulation?. EMBO Rep 21:12e51061
    [Google Scholar]
  225. 225.
    Zipfel C. 2009. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 12:4414–20
    [Google Scholar]
  226. 226.
    Zou X, Jiang X, Xu L, Lei T, Peng A et al. 2017. Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to huanglongbing. Plant Mol. Biol. 93:4341–53
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021621-121806
Loading
/content/journals/10.1146/annurev-phyto-021621-121806
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error