1932

Abstract

The bacterium re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy. The current threat to Europe and the Mediterranean basin, as well as other world regions, has increased as multiple genotypes have now been detected in Italy, France, and Spain. Although has been studied in the Americas for more than a century, there are no therapeutic solutions to suppress disease development in infected plants. Furthermore, because is an obligatory plant and insect vector colonizer, the epidemiology and dynamics of each pathosystem are distinct. They depend on the ecological interplay of plant, pathogen, and vector and on how interactions are affected by biotic and abiotic factors, including anthropogenic activities and policy decisions. Our goal with this review is to stimulate discussion and novel research by contextualizing available knowledge on and how it may be applicable to emerging diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-045849
2018-08-25
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080417-045849.html?itemId=/content/journals/10.1146/annurev-phyto-080417-045849&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Aide TM, Grau HR 2004. Globalization, migration, and Latin American ecosystems. Science 305:1915–16
    [Google Scholar]
  2. 2.  Almeida RPP, Blua MJ, Lopes JRS, Purcell AH 2005. Vector transmission of Xylella fastidiosa: applying fundamental knowledge to generate disease management strategies. Ann. Entomol. Soc. Am. 98:775–86
    [Google Scholar]
  3. 3.  Almeida RPP, Nascimento FE, Chau J, Prado SS, Tsai C-W et al. 2008. Genetic structure and biology of Xylella fastidiosa strains causing disease in citrus and coffee in Brazil. Appl. Environ. Microbiol. 74:3690–701
    [Google Scholar]
  4. 4.  Almeida RPP, Nunney L 2015. How do plant diseases caused by Xylella fastidiosa emerge?. Plant Dis 99:1457–67
    [Google Scholar]
  5. 5.  Almeida RPP, Purcell AH 2003. Transmission of Xylella fastidiosa to grapevines by Homalodisca coagulata (Hemiptera: Cicadellidae). J. Econ. Entomol. 96:264–71
    [Google Scholar]
  6. 6.  Almeida RPP, Purcell AH 2006. Patterns of Xylella fastidiosa colonization on the precibarium of sharpshooter vectors relative to transmission to plants. Ann. Entomol. Soc. Am. 99:884–90
    [Google Scholar]
  7. 7.  Andersen PC, Brodbeck BV, Mizell RF 1992. Feeding by the leafhopper, Homalodisca coagulata, in relation to xylem fluid chemistry and tension. J. Insect Physiol. 38:611–22
    [Google Scholar]
  8. 8.  Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:535–44
    [Google Scholar]
  9. 9.  Auricoste J, Claquin P, Denancé N, Jacques M-A, de Jerphanion P et al. 2017. Xylella fastidiosa en Francia en ornamentales y otras especies. See Ref. 82 211–29
  10. 10.  Baccari C, Lindow SE 2011. Assessment of the process of movement of Xylella fastidiosa within susceptible and resistant grape cultivars. Phytopathology 101:77–84
    [Google Scholar]
  11. 11.  Benning TL, LaPointe D, Atkinson CT, Vitousek PM 2002. Interactions of climate change with biological invasions and land use in the Hawaiian Islands: modeling the fate of endemic birds using a geographic information system. PNAS 99:14246–49
    [Google Scholar]
  12. 12.  Bergsma-Vlami M, van de Bilt JLJ, Tjou-Tam-Sin NNA, Helderman CM, Gorkink-Smits PPMA et al. 2017. Assessment of the genetic diversity of Xylella fastidiosa in imported ornamental Coffea arabica plants. Plant Pathol 66:1065–74
    [Google Scholar]
  13. 13.  Blua MJ, Morgan DJW 2003. Dispersion of Homalodisca coagulata (Hemiptera: Cicadellidae), a vector of Xylella fastidiosa, into vineyards in southern California. J. Econ. Entomol. 96:1369–74
    [Google Scholar]
  14. 14.  Blua MJ, Phillips PA, Redak RA 1999. A new sharpshooter threatens both crops and ornamentals. Calif. Agric. 53:22–25
    [Google Scholar]
  15. 15.  Bosso L, Di Febbraro M, Cristinzio G, Zoina A, Russo D 2016. Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biol. Invasions 18:1759–68
    [Google Scholar]
  16. 16.  Bosso L, Russo D, Di Febbraro M, Cristinzio G, Zoina A 2016. Potential distribution of Xylella fastidiosa in Italy: a maximum entropy model. Phytopathol. Mediterr. 55:62–72
    [Google Scholar]
  17. 17.  Brlansky RH 1983. Colonization of the sharpshooter vectors, Oncometopia nigricans and Homalodisca coagulata, by xylem-limited bacteria. Phytopathology 73:530–35
    [Google Scholar]
  18. 18.  Browning JA, Frey KJ 1969. Multiline cultivars as a means of disease control. Annu. Rev. Phytopathol. 7:355–82
    [Google Scholar]
  19. 19.  Burbank LP, Van Horn CR 2017. Conjugative plasmid transfer in Xylella fastidiosa is dependent on tra and trb operon functions. J. Bacteriol. 199:e00388–17
    [Google Scholar]
  20. 20.  Chagnon M, Kreutzweiser D, Mitchell EAD, Morrissey CA, Noome DA, Van der Sluijs JP 2015. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ. Sci. Pollut. Res. Int. 22:1119–34
    [Google Scholar]
  21. 21.  Chang CJ, Garnier M, Zreik L, Rossetti V, Bové JM 1993. Culture and serological detection of the xylem-limited bacterium causing citrus variegated chlorosis and its identification as a strain of Xylella fastidiosa.Curr. . Microbiol 27:137–42
    [Google Scholar]
  22. 22.  Chatterjee S, Wistrom C, Lindow SE 2008. A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. . PNAS 105:2670–75
    [Google Scholar]
  23. 23.  Chen J, Groves R, Civerolo EL, Viveros M, Freeman M, Zheng Y 2005. Two Xylella fastidiosa genotypes associated with almond leaf scorch disease on the same location in California. Phytopathology 95:708–14
    [Google Scholar]
  24. 24.  Cohan FM, Koeppel AF 2008. The origins of ecological diversity in prokaryotes. Curr. Biol. 18:R1024–34
    [Google Scholar]
  25. 25.  Colella C 2016. Distrusting science on communication platforms: socio-anthropological aspects of the science-society dialectic within a phytosanitary emergency. Proceedings of the 2nd International Workshop on Social Media World Sensors, 10th International Conference on Language Resources and Evaluation L Di Caro, M Cataldi, C Schifanella 19–24 Portoroz, Slovenia: Eur. Lang. Res. Assoc.
    [Google Scholar]
  26. 26.  Coletta-Filho HD, Francisco CS, Almeida RPP 2014. Temporal and spatial scaling of the genetic structure of a vector-borne plant pathogen. Phytopathology 104:120–25
    [Google Scholar]
  27. 27.  Coletta-Filho HD, Francisco CS, Lopes JRS, De Oliveira AF, Da Silva LFDO 2016. First report of olive leaf scorch in Brazil, associated with Xylella fastidiosa subsp. pauca. Phytopathol. Mediterr. 55:130
    [Google Scholar]
  28. 28.  Coletta-Filho HD, Francisco CS, Lopes JRS, Muller C, Almeida RPP 2017. Homologous recombination and Xylella fastidiosa host-pathogen associations in South America. Phytopathology 107:305–12
    [Google Scholar]
  29. 29.  Cornara D, Cavalieri V, Dongiovanni C, Altamura G, Palmisano F et al. 2017. Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants. J. Appl. Entomol. 141:80–87
    [Google Scholar]
  30. 30.  Cornara D, Sicard A, Zeilinger AR, Porcelli F, Purcell AH, Almeida RPP 2016. Transmission of Xylella fastidiosa to grapevine by the meadow spittlebug. Phytopathology 106:1285–90
    [Google Scholar]
  31. 31.  Costa HS, Guzman A, Hernandez-Martinez R, Gispert C, Cooksey DA 2006. Detection and differentiation of Xylella fastidiosa strains acquired and retained by glassy-winged sharpshooters (Hemiptera: Cicadellidae) using a mixture of strain-specific primer sets. J. Econ. Entomol. 99:1058–64
    [Google Scholar]
  32. 32.  Crowl TA, Crist TO, Parmenter RR, Belovsky G, Lugo AE 2008. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 6:238–46
    [Google Scholar]
  33. 33.  Cryan JR, Svenson GJ 2010. Family-level relationships of the spittlebugs and froghoppers (Hemiptera: Cicadomorpha: Cercopoidea). Syst. Entomol. 35:393–415
    [Google Scholar]
  34. 34.  Daugherty MP, Almeida RPP 2009. Estimating Xylella fastidiosa transmission parameters: decoupling sharpshooter number and feeding period. Entomol. Exp. Appl. 132:84–92
    [Google Scholar]
  35. 35.  Daugherty MP, Bosco D, Almeida RPP 2009. Temperature mediates vector transmission efficiency: inoculum supply and plant infection dynamics. Ann. Appl. Biol. 155:361–69
    [Google Scholar]
  36. 36.  Daugherty MP, Lopes J, Almeida RPP 2010. Vector within-host feeding preference mediates transmission of a heterogeneously distributed pathogen. Ecol. Entomol. 35:360–66
    [Google Scholar]
  37. 37.  Daugherty MP, O'Neill S, Byrne F, Zeilinger AR 2015. Is vector control sufficient to limit pathogen spread in vineyards?. Environ. Entomol. 44:789–97
    [Google Scholar]
  38. 38.  Daugherty MP, Rashed A, Almeida RPP, Perring TM 2011. Vector preference for hosts differing in infection status: sharpshooter movement and Xylella fastidiosa transmission. Ecol. Entomol. 36:654–62
    [Google Scholar]
  39. 39.  Daugherty MP, Zeilinger AR, Almeida RPP 2017. Conflicting effects of climate and vector behavior on the spread of a plant pathogen. Phytobiomes 1:46–53
    [Google Scholar]
  40. 40.  Davis MJ, Purcell AH, Thomson SV 1978. Pierce's disease of grapevines: isolation of the causal bacterium. Science 199:75–77
    [Google Scholar]
  41. 41.  De La Fuente L, Burr TJ, Hoch HC 2007. Mutations in type I and type IV pilus biosynthetic genes affect twitching motility rates in Xylella fastidiosa. J. . Bacteriol 189:7507–10
    [Google Scholar]
  42. 42.  De La Fuente L, Chacón-Diaz C, Almeida RPP 2017. Enfermedades causadas por Xylella fastidiosa en Estados Unidos y Costa Rica. See Ref. 82 149–76
  43. 43.  de Mello Varani A, Souza RC, Nakaya HI, de Lima WC, Paula de Almeida LG et al. 2008. Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation. PLOS ONE 3:e4059
    [Google Scholar]
  44. 44.  Denancé N, Legendre B, Briand M, Olivier V, de Boisseson C et al. 2017. Several subspecies and sequence types are associated with the emergence of Xylella fastidiosa in natural settings in France. Plant Pathol 66:1054–64
    [Google Scholar]
  45. 45.  Dileone JA, Mundt CC 1994. Effect of wheat cultivar mixtures on populations of Puccinia striiformis races. Plant Pathol 43:917–30
    [Google Scholar]
  46. 46.  Dionisio F, Conceição IC, Marques ACR, Fernandes L, Gordo I 2005. The evolution of a conjugative plasmid and its ability to increase bacterial fitness. Biol. Lett. 1:250–52
    [Google Scholar]
  47. 47.  Doddapaneni H, Francis M, Yao J, Lin H, Civerolo EL 2007. Genome-wide analysis of Xylella fastidiosa: implications for detection and strain relationships. Afr. J. Biotechnol. 6:055–066
    [Google Scholar]
  48. 48.  Doddapaneni H, Yao J, Lin H, Walker MA, Civerolo EL 2006. Analysis of the genome-wide variations among multiple strains of the plant pathogenic bacterium Xylella fastidiosa. . BMC Genom 7:225
    [Google Scholar]
  49. 49.  Dukes JS, Mooney HA 1999. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14:135–39
    [Google Scholar]
  50. 50.  Panel Plant Health EFSA 2015. Scientific opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J 13:3989
    [Google Scholar]
  51. 51.  Elena SF, Fraile A, Garcia-Arenal F 2014. Evolution and emergence of plant viruses. Adv. Virus Res. 88:161–91
    [Google Scholar]
  52. 52. Eur. Food Saf. Auth. 2016. Update of a database of host plants of Xylella fastidiosa: 20 November 2015. EFSA J 14:4378
    [Google Scholar]
  53. 53.  Feil H, Feil WS, Purcell AH 2003. Effects of date of inoculation on the within-plant movement of Xylella fastidiosa and persistence of Pierce's disease within field grapevines. Phytopathology 93:244–51
    [Google Scholar]
  54. 54.  Feil H, Purcell AH 2001. Temperature-dependent growth and survival of Xylella fastidiosa in vitro and in potted grapevines. Plant Dis 85:1230–34
    [Google Scholar]
  55. 55.  Fernández-López R, Garcillán-Barcia MP, Revilla C, Lázaro M, Vielva L, de la Cruz F 2006. Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol. Rev. 30:942–66
    [Google Scholar]
  56. 56.  Francisco CS, Ceresini PC, Almeida RPP, Coletta-Filho HD 2017. Spatial genetic structure of coffee-associated Xylella fastidiosa populations indicates that cross infection does not occur with sympatric citrus orchards. Phytopathology 107:395–402
    [Google Scholar]
  57. 57.  Frazier NW 1965. Xylem viruses and their insect vectors. Proceedings of the International Conference on Virus and Vector on Perennial Hosts, with Special Reference to Vitis WB Hewitt 91–99 Davis, CA: Div. Agric. Sci. Univ. Calif.
    [Google Scholar]
  58. 58.  Freitag JH 1951. Host range of the Pierce's disease virus of grapes as determined by insect transmission. Phytopathology 41:920–34
    [Google Scholar]
  59. 59.  Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE 2006. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44:489–509
    [Google Scholar]
  60. 60.  Giampetruzzi A, Saponari M, Loconsole G, Boscia D, Savino VN et al. 2017. Genome-wide analysis provides evidence on the genetic relatedness of the emergent Xylella fastidiosa genotype in Italy to isolates from Central America. Phytopathology 107:816–27
    [Google Scholar]
  61. 61.  Gruber BR, Daugherty MP 2013. Understanding the effects of multiple sources of seasonality on the risk of pathogen spread to vineyards: vector pressure, natural infectivity, and host recovery. Plant Pathol 62:194–204
    [Google Scholar]
  62. 62.  Haelterman RM, Tolocka PA, Roca ME, Guzmán FA, Fernández FD, Otero ML 2015. First presumptive diagnosis of Xylella fastidiosa causing olive scorch in Argentina. J. Plant Pathol. 97:393
    [Google Scholar]
  63. 63.  Harris JL, Balci Y 2015. Population structure of the bacterial pathogen Xylella fastidiosa among street trees in Washington D.C. PLOS ONE 10:e0121297
    [Google Scholar]
  64. 64.  Hartung JS 1994. Citrus variegated chlorosis bacterium: axenic culture, pathogenicity, and serological relationships with other strains of Xylella fastidiosa. . Phytopathology 84:591–97
    [Google Scholar]
  65. 65.  Harvell CD 2002. Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–62
    [Google Scholar]
  66. 66.  Hendson M, Purcell AH, Chen D, Smart C, Guilhabert M, Kirkpatrick B 2001. Genetic diversity of Pierce's disease strains and other pathotypes of Xylella fastidiosa.Appl. Environ. . Microbiol 67:895–903
    [Google Scholar]
  67. 67.  Hewitt WB, Frazier NW, Freitag JH, Winkler AJ 1949. Pierce's disease investigations. Hilgardia 19:207–64
    [Google Scholar]
  68. 68.  Hewitt WB, Houston B, Frazier NW, Freitag JH 1946. Leafhopper transmission of the virus causing Pierce's disease of grape and dwarf of alfalfa. Phytopathology 36:117–28
    [Google Scholar]
  69. 69.  Hill BL, Purcell AH 1995. Acquisition and retention of Xylella fastidiosa by an efficient vector. Graphocephala atropunctata. Phytopathology 85:209–12
    [Google Scholar]
  70. 70.  Hill BL, Purcell AH 1997. Populations of Xylella fastidiosa in plants required for transmission by an efficient vector. Phytopathology 87:1197–201
    [Google Scholar]
  71. 71.  Hoddle MS 2004. The potential adventive geographic range of glassy-winged sharpshooter, Homalodisca coagulata and the grape pathogen Xylella fastidiosa: implications for California and other grape growing regions of the world. Crop Prot 23:691–99
    [Google Scholar]
  72. 72.  Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ et al. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change New York: Cambridge Univ. Press
    [Google Scholar]
  73. 73.  Jacques M-A, Denancé N, Legendre B, Morel E, Briand M et al. 2016. New coffee plant-infecting Xylella fastidiosa variants derived via homologous recombination. Appl. Environ. Microbiol. 82:1556–68
    [Google Scholar]
  74. 74.  Jin S, Bluemling B, Mol APJ 2015. Information, trust and pesticide overuse: interactions between retailers and cotton farmers in China. NJAS 72–73:23–32
    [Google Scholar]
  75. 75.  Kandel PP, Almeida RPP, Cobine PA, De La Fuente L 2017. Natural competence rates are variable among Xylella fastidiosa strains and homologous recombination occurs in vitro between subspecies fastidiosa and multiplex. Mol. . Plant-Microbe Interact 30:589–600
    [Google Scholar]
  76. 76.  Killiny N, Almeida RPP 2009. Xylella fastidiosa afimbrial adhesins mediate cell transmission to plants by leafhopper vectors. Appl. Environ. Microbiol. 75:521–28
    [Google Scholar]
  77. 77.  Krell RK, Boyd EA, Nay JE, Park YL, Perring TM 2007. Mechanical and insect transmission of Xylella fastiosa to Vitis vinifera. Am. J. Enol. . Vitic 58:211–16
    [Google Scholar]
  78. 78.  Krugner R, Hagler JR, Groves RL, Sisterson MS, Morse JG, Johnson MW 2012. Plant water stress effects on the net dispersal rate of the insect vector Homalodisca vitripennis (Hemiptera: Cicadellidae) and movement of its egg parasitoid, Gonatocerus ashmeadi (Hymenoptera: Mymaridae). Environ. Entomol. 41:1279–89
    [Google Scholar]
  79. 79.  Kung SH, Almeida RPP 2011. Natural competence and recombination in the plant pathogen Xylella fastidiosa. Appl. Environ. . Microbiol 77:5278–84
    [Google Scholar]
  80. 80.  Kung SH, Retchless AC, Kwan JY, Almeida RPP 2013. Effects of DNA size on transformation and recombination efficiencies in Xylella fastidiosa. Appl. Environ. . Microbiol 79:1712–17
    [Google Scholar]
  81. 81.  Labroussaa F, Ionescu M, Zeilinger AR, Lindow SE, Almeida RPP 2017. A chitinase is required for Xylella fastidiosa colonization of its insect and plant hosts. Microbiology 163:502–9
    [Google Scholar]
  82. 82.  Landa BB, Marco-Noales E, Milagros López M, eds. 2017. Enfermedades Causadas por la Bacteria Xylella fastidiosa Almeria, Spain: Cajamar Caja Rural
    [Google Scholar]
  83. 83.  Laranjeira FF, Bergamin Filho A, Amorim L, Berger R, Gottwald TR 2003. Dinâmica temporal da Clorose Variegada dos Citros em três regiões do Estado de São Paulo. Fitopatol. Bras. 28:481–88
    [Google Scholar]
  84. 84.  Ledbetter CA, Chen J, Livingston S, Groves RL 2009. Winter curing of Prunus dulcis cv ‘Butte,’ P. webbii and their interspecific hybrid in response to Xylella fastidiosa infections. Euphytica 169:113–22
    [Google Scholar]
  85. 85.  Lei BR, Olival KJ 2014. Contrasting patterns in mammal-bacteria coevolution: Bartonella and Leptospira in bats and rodents. PLOS Negl. Trop. Dis. 8:e2738
    [Google Scholar]
  86. 86.  Lieth JH, Meyer MM, Yeo K-H, Kirkpatrick BC 2011. Modeling cold curing of Pierce's disease in Vitis vinifera ‘Pinot Noir’ and ‘Cabernet Sauvignon’ grapevines in California. Phytopathology 101:1492–500
    [Google Scholar]
  87. 87.  Loconsole G, Saponari M, Boscia D, D'Attoma G, Morelli M et al. 2016. Intercepted isolates of Xylella fastidiosa in Europe reveal novel genetic diversity. Eur. J. Plant Pathol. 146:85–94
    [Google Scholar]
  88. 88.  Lopes JRS, Daugherty MP, Almeida RPP 2009. Context-dependent transmission of a generalist plant pathogen: host species and pathogen strain mediate insect vector competence. Entomol. Exp. Appl. 131:216–24
    [Google Scholar]
  89. 89.  Marcelletti S, Scortichini M 2016. Genome-wide comparison and taxonomic relatedness of multiple Xylella fastidiosa strains reveal the occurrence of three subspecies and a new Xylella species. Arch. Microbiol. 198:803–12
    [Google Scholar]
  90. 90.  Marcelletti S, Scortichini M 2016. Xylella fastidiosa CoDiRO strain associated with the olive quick decline syndrome in southern Italy belongs to a clonal complex of the subspecies pauca that evolved in Central America. Microbiology 162:2087–98
    [Google Scholar]
  91. 91.  Martelli GP 2016. The current status of the quick decline syndrome of olive in southern Italy. Phytoparasitica 44:1–10
    [Google Scholar]
  92. 92.  Marucci RC, Lopes JRS, Vendramim JD, Corrente JE 2005. Influence of Xylella fastidiosa infection of citrus on host selection by leafhopper vectors. Entomol. Exp. Appl. 117:95–103
    [Google Scholar]
  93. 93.  McElrone AJ, Sherald JL, Forseth IN 2001. Effects of water stress on symptomatology and growth of Parthenocissus quinquefolia infected by Xylella fastidiosa. . Plant Dis 85:1160–64
    [Google Scholar]
  94. 94.  Meng Y, Li Y, Galvani CD, Hao G, Turner JN et al. 2005. Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J. Bacteriol. 187:5560–67
    [Google Scholar]
  95. 95.  Newman KL, Almeida RPP, Purcell AH, Lindow SE 2003. Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera.Appl. Environ. . Microbiol 69:7319–27
    [Google Scholar]
  96. 96.  Newman KL, Almeida RPP, Purcell AH, Lindow SE 2004. Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants. PNAS 101:1737–42
    [Google Scholar]
  97. 97. Natl. Res. Council. 1996. Understanding Risk: Informing Decisions in a Democratic Society Washington, DC: Natl. Acad. Press
  98. 98.  Nunes LR, Rosato YB, Muto NH, Yanai GM, da Silva VS et al. 2003. Microarray analyses of Xylella fastidiosa provide evidence of coordinated transcription control of laterally transferred elements. Genome Res 13:570–78
    [Google Scholar]
  99. 99.  Nunney L, Hopkins DL, Morano LD, Russell SE, Stouthamer R 2014. Intersubspecific recombination in Xylella fastidiosa strains native to the United States: infection of novel hosts associated with an unsuccessful invasion. Appl. Environ. Microbiol. 80:1159–69
    [Google Scholar]
  100. 100.  Nunney L, Schuenzel EL, Scally M, Bromley RE, Stouthamer R 2014. Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry. Appl. Environ. Microbiol. 80:3025–33
    [Google Scholar]
  101. 101.  Nunney L, Vickerman DB, Bromley RE, Russell SA, Hartman JR et al. 2013. Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States. Appl. Environ. Microbiol. 79:2189–200
    [Google Scholar]
  102. 102.  Nunney L, Yuan X, Bromley R, Hartung J, Montero-Astúa M et al. 2010. Population genomic analysis of a bacterial plant pathogen: novel insight into the origin of Pierce's disease of grapevine in the U.S. PLOS ONE 5:e15488
    [Google Scholar]
  103. 103.  Nunney L, Yuan X, Bromley RE, Stouthamer R 2012. Detecting genetic introgression: high levels of intersubspecific recombination found in Xylella fastidiosa in Brazil. Appl. Environ. Microbiol. 78:4702–14
    [Google Scholar]
  104. 104.  Olmo D, Nieto A, Adrover F, Urbano A, Beidas O et al. 2017. First detection of Xylella fastidiosa infecting cherry (Prunus avium) and Polygala myrtifolia plants, in Mallorca Island, Spain. Plant Dis 101:1820
    [Google Scholar]
  105. 105.  Olmo D, Nieto A, Borràs D, Montesinos M, Adrover F et al. 2017. X. fastidiosa en las Islas Baleares. See Ref. 82 231–61
  106. 106.  Paião FG, Meneguim AA, Casagrande EC, Leite RP Jr 2002. Envolvimento de cigarras (Homoptera, Cicadidae) na transmissão de Xylella fastidiosa em cafeeiro. Fitopatol. Bras. 27:67
    [Google Scholar]
  107. 107.  Parker IM, Saunders M, Bontrager M, Weitz AP, Hendricks R et al. 2015. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520:542–44
    [Google Scholar]
  108. 108.  Parry M, Gibson GJ, Parnell S, Gottwald TR, Irey MS et al. 2014. Bayesian inference for an emerging arboreal epidemic in the presence of control. PNAS 111:6258–62
    [Google Scholar]
  109. 109.  Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M et al. 2004. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ. Health Perspect. 112:1092–98
    [Google Scholar]
  110. 110.  Perring TM, Farrar CA, Blua MJ 2001. Proximity to citrus influences Pierce's disease in Temecula Valley vineyards. Calif. Agric. 55:13–18
    [Google Scholar]
  111. 111.  Pierce NB 1892. The California Vine Disease: A Preliminary Report of Investigations Washington, DC: Gov. Print. Off.
  112. 112.  Potere O, Susca L, Loconsole G, Saponari M, Boscia D et al. 2015. Survey for the presence of Xylella fastidiosa subsp. pauca strain CoDiRO in some forestry and ornamental species in the Salento peninsula. J. Plant Pathol. 97:373–76
    [Google Scholar]
  113. 113.  Purcell A 1982. Pierce's disease: progress and prognosis. Dev. Ind. Microbiol. 23:99–105
    [Google Scholar]
  114. 114.  Purcell A 1997. Xylella fastidiosa, a regional problem or global threat?. J. Plant Pathol. 79:99–105
    [Google Scholar]
  115. 115.  Purcell A 2013. Paradigms: examples from the bacterium Xylella fastidiosa.Annu.Rev. . Phytopathol 51:339–56
    [Google Scholar]
  116. 116.  Purcell AH 1977. Cold therapy of Pierce's disease grapevines. Plant Dis. Rep. 61:514–18
    [Google Scholar]
  117. 117.  Purcell AH, Finlay AH 1979. Evidence for noncirculative transmission of Pierce's disease bacterium by sharpshooter leafhoppers. Phytopathology 69:393–95
    [Google Scholar]
  118. 118.  Purcell AH, Finlay AH, McLean DL 1979. Pierce's disease bacterium: mechanism of transmission by leafhopper vectors. Science 206:839–41
    [Google Scholar]
  119. 119.  Purcell AH, Saunders SR 1999. Fate of Pierce's disease strains of Xylella fastidiosa in common riparian plants in California. Plant Dis 83:825–30
    [Google Scholar]
  120. 120.  Rashed A, Killiny N, Kwan J, Almeida RPP 2011. Background matching behaviour and pathogen acquisition: plant site preference does not predict the bacterial acquisition efficiency of vectors. Arthropod-Plant Interact 5:97–106
    [Google Scholar]
  121. 121.  Redak RA, Purcell AH, Lopes JRS, Blua MJ, Mizell RF III, Andersen PC 2004. The biology of xylem-fluid insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu. Rev. Entomol. 49:243–70
    [Google Scholar]
  122. 122.  Retchless AC, Labroussaa F, Shapiro L, Stenger DC, Lindow SE, Almeida RPP 2014. Genomic insights into Xylella fastidiosa interactions with plant and insect hosts. Genomics of Plant-Associated Bacteria DC Gross, A Lichens-Park, C Kole 177–202 Berlin/Heidelberg: Springer
    [Google Scholar]
  123. 123.  Rogers EE, Stenger DC 2012. A conjugative 38 kB plasmid is present in multiple subspecies of Xylella fastidiosa. . PLOS ONE 7:e52131
    [Google Scholar]
  124. 124.  Roselló M, Ferrer A, Peris-Peris C, Llopis JM, Rallo E et al. 2017. Xylella fastidiosa en la comunidad Valenciana. See Ref. 82 263–76
  125. 125.  Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E 2001. Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob. Change Hum. Health 2:90–104
    [Google Scholar]
  126. 126.  Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J et al. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32:305–32
    [Google Scholar]
  127. 127.  Saponari M, Boscia D, Altamura G, Loconsole G, Zicca S et al. 2017. Isolation and pathogenicity of Xylella fastidiosa associated to the olive quick decline syndrome in southern Italy. Sci. Rep. 7:17723
    [Google Scholar]
  128. 128.  Saponari M, Boscia D, Loconsole G, Palmisano F, Savino V et al. 2014. New hosts of Xylella fastidiosa strain CoDiRO in Apulia. J. Plant Pathol. 96:603–11
    [Google Scholar]
  129. 129.  Saponari M, Boscia D, Nigro F, Martelli GP 2013. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). J. Plant Pathol. 95:668
    [Google Scholar]
  130. 130.  Scally M, Schuenzel EL, Stouthamer R, Nunney L 2005. Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contributions of recombination and point mutation to clonal diversity. Appl. Environ. Microbiol. 71:8491–99
    [Google Scholar]
  131. 131.  Severin HHP 1950. Spittle-insect vectors of Pierce's disease virus: II. Life history and virus transmission. Hilgardia 19:357–82
    [Google Scholar]
  132. 132.  Simpson AJG, Reinach FC, Arruda P, Abreu FA, Acencio M et al. 2000. The genome sequence of the plant pathogen Xylella fastidiosa. . Nature 406:151–57
    [Google Scholar]
  133. 133.  Sisterson MS, Thammiraju SR, Lynn-Patterson K, Groves RL, Daane KM 2010. Epidemiology of diseases caused by Xylella fastidiosa in California: evaluation of alfalfa as a source of vectors and inocula. Plant Dis 94:827–34
    [Google Scholar]
  134. 134.  Smith KF, Sax DF, Gaines SD, Guernier V, Guégan J-F 2007. Globalization of human infectious disease. Ecology 88:1903–10
    [Google Scholar]
  135. 135.  Son Y, Groves RL, Daane KM, Morgan DJW, Johnson MW 2009. Influences of temperature on Homalodisca vitripennis (Hemiptera: Cicadellidae) survival under various feeding conditions. Environ. Entomol. 38:1485–95
    [Google Scholar]
  136. 136.  Son Y, Groves RL, Daane KM, Morgan DJW, Krugner R, Johnson MW 2010. Estimation of feeding threshold for Homalodisca vitripennis (Hemiptera: Cicadellidae) and its application to prediction of overwintering mortality. Environ. Entomol. 39:1264–75
    [Google Scholar]
  137. 137.  Sorensen JT, Gill RJ 1996. A range extension of Homalodisca coagulata (Say) (Hemiptera: Clypeorrhyncha: Cicadellidae) to southern California. Pan-Pac. Entomol. 72:160–61
    [Google Scholar]
  138. 138.  Stearns SC 1999. Evolution in Health and Disease New York: Oxford Univ. Press
  139. 139.  Stukenbrock EH, McDonald BA 2008. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. 46:75–100
    [Google Scholar]
  140. 140.  Su C-C, Chang C-J, Chang C-M, Shih H-T, Tzeng K-C et al. 2013. Pierce's disease of grapevines in Taiwan: isolation, cultivation and pathogenicity of Xylella fastidiosa. J. Phytopathol 161:389–96
    [Google Scholar]
  141. 141.  Tumber KP, Alston JM, Fuller KB 2014. Pierce's disease costs California $104 million per year. Calif. Agric. 68:20–29
    [Google Scholar]
  142. 142.  Van Sluys MA, de Oliveira MC, Monteiro-Vitorello CB, Miyaki CY, Furlan LR et al. 2003. Comparative analyses of the complete genome sequences of Pierce's disease and citrus variegated chlorosis strains of Xylella fastidiosa. J. Bacteriol 185:1018–26
    [Google Scholar]
  143. 143.  Wells JM, Raju BC, Hung H-Y, Weisburg WG, Mandelco-Paul L, Brenner DJ 1987. Xylella fastidiosa gen. nov., sp. nov: gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int. J. Syst. Bacteriol. 37:136–43
    [Google Scholar]
  144. 144.  White MA, Diffenbaugh NS, Jones GV, Pal JS, Giorgi F 2006. Extreme heat reduces and shifts United States premium wine production in the 21st century. PNAS 103:11217–22
    [Google Scholar]
  145. 145.  Wolfe MS 1985. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol. 23:251–73
    [Google Scholar]
  146. 146.  Woolhouse MEJ, Haydon DT, Antia R 2005. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol. Evol. 20:238–44
    [Google Scholar]
  147. 147.  Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR 2002. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat. Genet. 32:569–77
    [Google Scholar]
  148. 148.  Yuan X, Morano L, Bromley R, Spring-Pearson S, Stouthamer R, Nunney L 2010. Multilocus sequence typing of Xylella fastidiosa causing Pierce's disease and oleander leaf scorch in the United States. Phytopathology 100:601–11
    [Google Scholar]
  149. 149.  Zhu Y, Chen H, Fan J, Wang Y, Li Y et al. 2000. Genetic diversity and disease control in rice. Nature 406:718–22
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-045849
Loading
/content/journals/10.1146/annurev-phyto-080417-045849
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error