1932

Abstract

The evolution of resistance poses an ongoing threat to crop protection. Fungicide resistance provides a selective advantage under fungicide selection, but resistance-conferring mutations may also result in fitness penalties, resulting in an evolutionary trade-off. These penalties may result from the functional constraints of an evolving target site or from the resource allocation costs of overexpression or active transport. The extent to which such fitness penalties are present has important implications for resistance management strategies, determining whether resistance persists or declines between treatments, and for resistance risk assessments for new modes of action. Experimental results have proven variable, depending on factors such as temperature, nutrient status, osmotic or oxidative stress, and pathogen life-cycle stage. Functional genetics tools allow pathogen genetic background to be controlled, but this in turn raises the question of epistatic interactions. Combining fitness penalties under various conditions into a field-realistic scenario poses an important future challenge.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-050012
2018-08-25
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080417-050012.html?itemId=/content/journals/10.1146/annurev-phyto-080417-050012&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Allen RC, Engelstädter J, Bonhoeffer S, McDonald BA, Hall AR 2017. Reversing resistance: different routes and common themes across pathogens. Proc. R. Soc. B 284:20171619
    [Google Scholar]
  2. 2.  Almughrabi KI, Gray AB 1995. Competition between triadimefon-sensitive and triadimefon-resistant isolates of Erysiphe graminis f.sp. tritici. Plant Dis. 79:709–12
    [Google Scholar]
  3. 3.  Amiri A, Heath SM, Peres NA 2014. Resistance to fluopyram, fluxapyroxad, and penthiopyrad in Botrytis cinerea from strawberry. Plant Dis 98:532–39
    [Google Scholar]
  4. 4.  Andersson DI, Hughes D 2010. Antibiotic resistance and its cost: Is it possible to reverse resistance?. Nat. Rev. Microbiol. 8:260–71
    [Google Scholar]
  5. 5.  Arabiat S, Khan MFR, Bolton M, Secor G 2017. Stability of tetraconazole-resistant isolates of Cercospora beticola after exposure to different temperature and time treatments. J. Plant Pathol. 99:177–84
    [Google Scholar]
  6. 6.  Avenot H, Sellam A, Michailides T 2009. Characterization of mutations in the membrane-anchored subunits AaSDHC and AaSDHD of succinate dehydrogenase from Alternaria alternata isolates conferring field resistance to the fungicide boscalid. Plant Pathol 58:1134–43
    [Google Scholar]
  7. 7.  Avenot HF, Michailides TJ 2010. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Prot 29:643–51
    [Google Scholar]
  8. 8.  Avila-Adame C, Köller W 2003. Characterization of spontaneous mutants of Magnaporthe grisea expressing stable resistance to the Qo-inhibiting fungicide azoxystrobin. Curr. Genet. 42:332–38
    [Google Scholar]
  9. 9.  Baraldi E, Mari M, Chierici E, Pondrelli M, Bertolini P, Pratella GC 2003. Studies on thiabendazole resistance of Penicillium expansum of pears: pathogenic fitness and genetic characterization. Plant Pathol 52:362–70
    [Google Scholar]
  10. 10.  Barres B, Micoud A, Corio-Costet MF, Debieu D, Fillinger S et al. 2016. Trends and challenges in pesticide resistance detection. Trends Plant Sci 21:834–53
    [Google Scholar]
  11. 11.  Bean TP, Cools HJ, Lucas JA, Hawkins ND, Ward JL et al. 2009. Sterol content analysis suggests altered eburicol 14α-demethylase (CYP51) activity in isolates of Mycosphaerella graminicola adapted to azole fungicides. FEMS Microbiol. Lett. 296:266–73
    [Google Scholar]
  12. 12.  Becher R, Hettwer U, Karlovsky P, Deising HB, Wirsel SGR 2010. Adaptation of Fusarium graminearum to tebuconazole yielded descendants diverging for levels of fitness, fungicide resistance, virulence and mycotoxin production. Phytopathology 100:444–53
    [Google Scholar]
  13. 13.  Bell G, MacLean C 2018. The search for ‘evolution-proof’ antibiotics. Trends Microbiol 26:471–83
    [Google Scholar]
  14. 14.  Billard A, Fillinger S, Leroux P, Lachaise H, Beffa R, Debieu D 2012. Strong resistance to the fungicide fenhexamid entails a fitness cost in Botrytis cinerea, as shown by comparisons of isogenic strains. Pest Manag. Sci. 68:684–91
    [Google Scholar]
  15. 15.  Bittner RJ, Sweigard JA, Mila AL 2017. Assessing the resistance potential of Phytophthora nicotianae, the causal agent of black shank of tobacco, to oxathiopropalin with laboratory mutants. Crop Prot 102:63–71
    [Google Scholar]
  16. 16.  Brasseur G, Saribas AS, Daldal F 1996. A compilation of mutations located in the cytochrome b subunit of the bacterial and mitochondrial bc1 complex. Biochim. Biophys. Acta 1275:61–69
    [Google Scholar]
  17. 17.  Brent KJ, Hollomon DW 2007. Fungicide Resistance in Crop Pathogens: How Can it be Managed? Brussels, Belg.: FRAC
    [Google Scholar]
  18. 18.  Brent KJ, Hollomon DW 2007. Fungicide Resistance: The Assessment of Risk Brussels, Belg.: FRAC
    [Google Scholar]
  19. 19.  Brown MC, Taylor GS, Epton HAS 1984. Carbendazim resistance in the eyespot pathogen Pseudocercosporella herpotrichoides. . Plant Pathol 33:101–11
    [Google Scholar]
  20. 20.  Brunner PC, Stefanato FL, McDonald BA 2008. Evolution of the CYP51 gene in Mycosphaerella graminicola: evidence for intragenic recombination and selective replacement. Mol. Plant Pathol. 9:305–16
    [Google Scholar]
  21. 21.  Brunner PC, Torriani SFF, Croll D, Stukenbrock EH, McDonald BA 2014. Hitchhiking selection is driving intron gain in a pathogenic fungus. Mol. Biol. Evol. 31:1741–49
    [Google Scholar]
  22. 22.  Cai M, Lin D, Chen L, Bi Y, Xiao L, Liu XL 2015. M233I mutation in the β-tubulin of Botrytis cinerea confers resistance to zoxamide. Sci. Rep. 5:13
    [Google Scholar]
  23. 23.  Canas-Gutierrez GP, Angarita-Velasquez MJ, Restrepo-Florez JM, Rodriguez P, Moreno CX, Arango R 2009. Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis. Pest Manag. Sci. 65:892–99
    [Google Scholar]
  24. 24.  Carter HE, Fraaije BA, West JS, Kelly SL, Mehl A et al. 2014. Alterations in the predicted regulatory and coding regions of the sterol 14α-demethylase gene (CYP51) confer decreased azole sensitivity in the oilseed rape pathogen Pyrenopeziza brassicae. Mol. Plant Pathol. 15:513–22
    [Google Scholar]
  25. 25.  Chapara V, Taylor RJ, Pasche JS, Gudmestad NC 2011. Competitive parasitic fitness of mefenoxam-sensitive and -resistant isolates of Phytophthora erythroseptica under fungicide selection pressure. Plant Dis 95:691–96
    [Google Scholar]
  26. 26.  Chapman KS, Sundin GW, Beckerman JL 2011. Identification of resistance to multiple fungicides in field populations of Venturia inaequalis. . Plant Dis 95:921–26
    [Google Scholar]
  27. 27.  Chau AS, Gurnani M, Hawkinson R, Laverdiere M, Cacciapuoti A, McNicholas PM 2005. Inactivation of sterol Δ5,6-desaturase attenuates virulence in Candida albicans. Antimicrob. Agents Chemother. 49:3646–51
    [Google Scholar]
  28. 28.  Chen C, Wang J, Luo Q, Yuan S, Zhou M 2007. Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Manag. Sci. 63:1201–7
    [Google Scholar]
  29. 29.  Chen F, Liu X, Schnabel G 2013. Field strains of Monilinia fructicola resistant to both MBC and DMI fungicides isolated from stone fruit orchards in the eastern United States. Plant Dis 97:1063–68
    [Google Scholar]
  30. 30.  Chen FP, Fan JR, Zhou T, Liu XL, Liu JL, Schnabel G 2012. Baseline sensitivity of Monilinia fructicola from China to the DMI fungicide SYP-Z048 and analysis of DMI-resistant mutants. Plant Dis 96:416–22
    [Google Scholar]
  31. 31.  Chen SN, Luo CX, Hu MJ, Schnabel G 2016. Fitness and competitive ability of Botrytis cinerea isolates with resistance to multiple chemical classes of fungicides. Phytopathology 106:997–1005
    [Google Scholar]
  32. 32.  Chen SN, Shang Y, Wang Y, Schnabel G, Lin Y et al. 2014. Sensitivity of Monilinia fructicola from peach farms in China to four fungicides and characterization of isolates resistant to carbendazim and azoxystrobin. Plant Dis 98:1555–60
    [Google Scholar]
  33. 33.  Chen SN, Yuan NN, Schnabel G, Luo CX 2017. Function of the genetic element ‘Mona’ associated with fungicide resistance in Monilinia fructicola. Mol. Plant Pathol. 18:90–97
    [Google Scholar]
  34. 34.  Chin KM, Chavaillaz D, Kaesbohrer M, Staub T, Felsenstein FG 2001. Characterizing resistance risk of Erysiphe graminis f.sp. tritici to strobilurins. Crop Prot 20:87–96
    [Google Scholar]
  35. 35.  Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA 2012. Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype. Pest Manag. Sci. 68:1034–40
    [Google Scholar]
  36. 36.  Cools HJ, Hawkins NJ, Fraaije BA 2013. Constraints on the evolution of azole resistance in plant pathogenic fungi. Plant Pathol 62:36–42
    [Google Scholar]
  37. 37.  Cools HJ, Mullins JGL, Fraaije BA, Parker JE, Kelly DE et al. 2011. Impact of recently emerged sterol 14α-demethylase (CYP51) variants of Mycosphaerella graminicola on azole fungicide sensitivity. Appl. Environ. Microbiol. 77:3830–37
    [Google Scholar]
  38. 38.  Cools HJ, Parker JE, Kelly DE, Lucas JA, Fraaije BA, Kelly SL 2010. Heterologous expression of mutated eburicol 14α-demethylase (CYP51) proteins of Mycosphaerella graminicola to assess effects on azole fungicide sensitivity and intrinsic protein function. Appl. Environ. Microbiol. 76:2866–72
    [Google Scholar]
  39. 39.  Cowen LE, Kohn LM, Anderson JB 2001. Divergence in fitness and evolution of drug resistance in experimental populations of Candida albicans. J. Bacteriol. 183:2971–78
    [Google Scholar]
  40. 40.  Debieu D, Coriocostet MF, Steva H, Malosse C, Leroux P 1995. Sterol composition of the vine powdery mildew fungus, Uncinula necator: comparison of triadimenol-sensitive and resistant strains. Phytochemistry 39:293–300
    [Google Scholar]
  41. 41.  Delmas CEL, Dussert Y, Delière L, Couture C, Mazet ID et al. 2017. Soft selective sweeps in fungicide resistance evolution: recurrent mutations without fitness costs in grapevine downy mildew. Mol. Ecol. 26:1936–51
    [Google Scholar]
  42. 42.  Del Sorbo G, Schoonbeek HJ, De Waard MA 2000. Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet. Biol. 30:1–15
    [Google Scholar]
  43. 43.  Délye C, Laigret F, Corio-Costet MF 1997. A mutation in the 14α-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl. Environ. Microbiol. 63:2966–70
    [Google Scholar]
  44. 44.  Doukas EG, Markoglou AN, Vontas JG, Ziogas BN 2012. Effect of DMI-resistance mechanisms on cross-resistance patterns, fitness parameters and aflatoxin production in Aspergillus parasiticus Speare. Fungal Genet. Biol. 49:792–801
    [Google Scholar]
  45. 45.  Fan Z, Yang JH, Fan F, Luo CX, Schnabel G 2015. Fitness and competitive ability of Alternaria alternata field isolates with resistance to SDHI, QoI and MBC fungicides. Plant Dis 99:1744–50
    [Google Scholar]
  46. 46.  Fernández-Ortuño D, Chen FP, Schnabel G 2013. Resistance to cyprodinil and lack of fludioxonil resistance in Botrytis cinerea isolates from strawberry in North and South Carolina. Plant Dis 97:81–85
    [Google Scholar]
  47. 47.  Fernández-Ortuño D, Grabke A, Li X, Schnabel G 2014. Independent emergence of resistance to seven chemical classes of fungicides in Botrytis cinerea. . Phytopathology 105:424–32
    [Google Scholar]
  48. 48.  Fillinger S, Ajouz S, Nicot P, Leroux P, Bardin M 2012. Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. . PLOS ONE 7:8e52520
    [Google Scholar]
  49. 49.  Fisher N, Brown AC, Sexton G, Cook A, Windass J, Meunier B 2004. Modeling the Q(o) site of crop pathogens in Saccharomyces cerevisiae cytochrome b. Eur. J. Biochem. 271:2264–71
    [Google Scholar]
  50. 50.  Fraaije BA, Bayon C, Atkins S, Cools HJ, Lucas JA, Fraaije MW 2012. Risk assessment studies on succinate dehydrogenase inhibitors, the new weapons in the battle to control Septoria leaf blotch in wheat. Mol. Plant Pathol. 13:263–75
    [Google Scholar]
  51. 51.  Fuchs A, Drandarevski CA 1976. The likelihood of development of resistance to systemic fungicides which inhibit ergosterol biosynthesis. Neth. J. Plant Pathol. 82:85–87
    [Google Scholar]
  52. 52. Fungic. Resist. Action Comm. 2017. List of plant pathogenic organisms resistant to disease control agents. Fungicide Resistance Action Committee http://www.frac.info/publications/downloads
    [Google Scholar]
  53. 53.  Grimmer MK, van den Bosch F, Powers SJ, Paveley ND 2014. Evaluation of a matrix to calculate fungicide resistance risk. Pest Manag. Sci. 70:1008–16
    [Google Scholar]
  54. 54.  Gutiérrez-Alonso O, Hawkins NJ, Cools HJ, Shaw MW, Fraaije BA 2017. Dose-dependent selection drives lineage replacement during the experimental evolution of SDHI fungicide resistance in Zymoseptoria tritici. Evol. Appl. 10:1055–66
    [Google Scholar]
  55. 55.  Hagerty CH, Anderson NP, Mundt CC 2016. Temporal dynamics and spatial variation of azoxystrobin and propiconazole resistance in Zymoseptoria tritici: a hierarchical survey of commercial winter wheat fields in the Willamette Valley, Oregon. Phytopathology 107:345–52
    [Google Scholar]
  56. 56.  Hagerty CH, Graebner RC, Sackett KE, Mundt CC 2017. Variable competitive effects of fungicide resistance in field experiments with a plant pathogenic fungus. Ecol. Appl. 27:1305–16
    [Google Scholar]
  57. 57.  Hagerty CH, Mundt CC 2016. Reduced virulence of azoxystrobin-resistant Zymoseptoria tritici populations in greenhouse assays. Phytopathology 106:884–89
    [Google Scholar]
  58. 58.  Hawkins NJ, Cools HJ, Sierotzki H, Shaw MW, Knogge W et al. 2014. Paralog re-emergence: a novel, historically contingent mechanism in the evolution of antimicrobial resistance. Mol. Biol. Evol. 31:1793–802
    [Google Scholar]
  59. 59.  Hawkins NJ, Fraaije BA 2016. Predicting resistance by mutagenesis: lessons from 45 years of MBC resistance. Front. Microbiol. 7:1814
    [Google Scholar]
  60. 60.  Hellin P, Scauflaire J, Van Hese V Munaut F, Legreve A 2017. Sensitivity of Fusarium culmorum to triazoles: impact of trichothecene chemotypes, oxidative stress response and genetic diversity. Pest Manag. Sci. 73:1244–52
    [Google Scholar]
  61. 61.  Hollomon DW 2015. Fungicide resistance: facing the challenge. Plant Prot. Sci. 51:170–76
    [Google Scholar]
  62. 62.  Hsiang T, Chastagner GA 1990. Parasitic fitness of benzimidazole and dicarboximide resistant isolates of Botrytis cinerea, B. elliptica and B. tulipae. . Phytopathology 80:978
    [Google Scholar]
  63. 63.  Hsiang T, Yang L, Barton W 1998. Relative virulence of isolates of Sclerotinia homoeocarpa with varying sensitivity to propiconazole. Eur. J. Plant Pathol. 104:163–69
    [Google Scholar]
  64. 64.  Hu MJ, Ma QY, Li KB, Lin Y, Luo CX 2014. Exploring mechanism of resistance to isoprothiolane in Magnaporthe oryzae, the causal agent of rice blast. J. Plant Pathol. 96:249–59
    [Google Scholar]
  65. 65.  Jabs T, Cronshaw K, Freund A 2001. New strobilurin resistance mechanism in apple scab (Venturia inaequalis). Phytomedizin 31:15–16
    [Google Scholar]
  66. 66.  Jackson CJ, Lamb DC, Manning NJ, Kelly DE, Kelly SL 2003. Mutations in Saccharomyces cerevisiae sterol C5-desaturase conferring resistance to the CYP51 inhibitor fluconazole. Biochem. Biophys. Res. Commun. 309:999–1004
    [Google Scholar]
  67. 67.  Joseph-Horne T, Hollomon D, Loeffler RST, Kelly SL 1995. Altered P450 activity associated with direct selection for fungal azole resistance. FEBS Lett 374:174–78
    [Google Scholar]
  68. 68.  Jung MK, May GS, Oakley BR 1998. Mitosis in wild-type and β-tubulin mutant strains of Aspergillus nidulans. Fungal Genet. Biol. 24:146–60
    [Google Scholar]
  69. 69.  Karaoglanidis GS, Luo Y, Michailides TJ 2011. Competitive ability and fitness of Alternaria alternata isolates resistant to QoI fungicides. Plant Dis 95:178–82
    [Google Scholar]
  70. 70.  Karaoglanidis GS, Markoglou AN, Bardas GA, Doukas EG, Konstantinou S, Kalampokis JF 2011. Sensitivity of Penicillium expansum field isolates to tebuconazole, iprodione, fludioxonil and cyprodinil and characterization of fitness parameters and patulin production. Int. J. Food Microbiol. 145:195–204
    [Google Scholar]
  71. 71.  Karaoglanidis GS, Thanassoulopoulos CC, Ioannidis PM 2001. Fitness of Cercospora beticola field isolates – resistant and – sensitive to demethylation inhibitor fungicides. Eur. J. Plant Pathol. 107:337–47
    [Google Scholar]
  72. 72.  Keinath AP, Zitter TA 1998. Resistance to benomyl and thiophanate-methyl in Didymella bryoniae from South Carolina and New York. Plant Dis 82:479–84
    [Google Scholar]
  73. 73.  Kim SH, Park MR, Kim YC, Lee SW, Choi BR et al. 2010. Degradation of prochloraz by rice Bakanae disease pathogen Fusarium fujikuroi with differing sensitivity: a possible explanation for resistance mechanism. J. Korean Soc. Appl. Biol. Chem. 53:433–39
    [Google Scholar]
  74. 74.  Kim YS, Kim KD 2009. Evidence of a potential adaptation of Magnaporthe oryzae for increased phosphorothiolate-fungicide resistance on rice. Crop Prot 28:940–46
    [Google Scholar]
  75. 75.  Klosowski AC, Brahm L, Stammler G, De Mio LLM 2016. Competitive fitness of Phakopsora pachyrhizi isolates with mutations in the CYP51 and CYTB genes. Phytopathology 106:1278–84
    [Google Scholar]
  76. 76.  Köller W, Parker DM, Turechek WW, Avila-Adame C, Cronshaw K 2004. A two-phase resistance response of Venturia inaequalis populations to the QoI fungicides kresoxim-methyl and trifloxystrobin. Plant Dis 88:537–44
    [Google Scholar]
  77. 77.  Kretschmer M, Leroch M, Mosbach A, Walker A-S, Fillinger S et al. 2009. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. . PLOS Pathog 5:12e1000696
    [Google Scholar]
  78. 78.  Lalève A, Fillinger S, Walker AS 2014. Fitness measurement reveals contrasting costs in homologous recombinant mutants of Botrytis cinerea resistant to succinate dehydrogenase inhibitors. Fungal Genet. Biol. 67:24–36
    [Google Scholar]
  79. 79.  Landschoot S, Carrette J, Vandecasteele M, De Baets B, Höfte M et al. 2017. Boscalid-resistance in Alternaria alternata and Alternaria solani populations: an emerging problem in Europe. Crop Prot 92:49–59
    [Google Scholar]
  80. 80.  Leadbeater A 2011. The impact of the European regulations on the management of crop diseases. Modern Fungicides and Antifungal Compounds VI HW Dehne, HB Deising, U Gisi, KH Kuck, PE Russell, H Lyr 1–11 Braunschweig, Ger.: DPG Spectrum Phytomedizin
    [Google Scholar]
  81. 81.  Lendenmann MH, Croll D, McDonald BA 2015. QTL mapping of fungicide sensitivity reveals novel genes and pleiotropy with melanization in the pathogen Zymoseptoria tritici. Fungal Genet. Biol. 80:53–67
    [Google Scholar]
  82. 82.  Leroux P, Chapeland F, Arnold A, Gredt M 2000. New cases of negative cross-resistance between fungicides, including sterol biosynthesis inhibitors. J. Gen. Plant Pathol. 66:75–81
    [Google Scholar]
  83. 83.  Leroux P, Gredt M, Leroch M, Walker A-S 2010. Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Appl. Environ. Microbiol. 76:6615–30
    [Google Scholar]
  84. 84.  Leroux P, Gredt M, Remuson F, Micoud A, Walker A-S 2013. Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae. Pest Manag. Sci. 69:15–26
    [Google Scholar]
  85. 85.  Leroux P, Walker A-S 2013. Activity of fungicides and modulators of membrane drug transporters in field strains of Botrytis cinerea displaying multidrug resistance. Eur. J. Plant Pathol. 135:683–93
    [Google Scholar]
  86. 86.  Lichtemberg PSF, Luo Y, Morales RG, Muehlmann-Fischer JM, Michailides TJ, De Mio LLM 2017. The point mutation G461S in the MfCYP51 gene is associated with tebuconazole resistance in Monilinia fructicola populations in Brazil. Phytopathology 107:1507–14
    [Google Scholar]
  87. 87.  Löffler J, Einsele H, Hebart H, Schumacher U, Hrastnik C, Daum G 2000. Phospholipid and sterol analysis of plasma membranes of azole-resistant Candida albicans strains. FEMS Microbiol. Lett. 185:59–63
    [Google Scholar]
  88. 88.  Lohberger A, Coste AT, Sanglard D 2014. Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence. Eukaryot. Cell 13:127–42
    [Google Scholar]
  89. 89.  Lucas JA, Hawkins NJ, Fraaije BA 2015. The evolution of fungicide resistance. Adv. Appl. Microbiol. 90:29–92
    [Google Scholar]
  90. 90.  Luo CX, Schnabel G 2008. The cytochrome p450 lanosterol 14α-demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilinia fructicola field isolates from Georgia. Appl. Environ. Microbiol. 74:359–66
    [Google Scholar]
  91. 91.  Ma B, Uddin W 2009. Fitness and competitive ability of an azoxystrobin-resistant G143A mutant of Magnaporthe oryzae from perennial ryegrass. Plant Dis 93:1044–49
    [Google Scholar]
  92. 92.  Ma Z, Yoshimura MA, Holtz BA, Michailides TJ 2005. Characterization and PCR-based detection of benzimidazole-resistant isolates of Monilinia laxa in California. Pest Manag. Sci. 61:449–57
    [Google Scholar]
  93. 93.  Ma Z, Yoshimura MA, Michailides TJ 2003. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California. Appl. Environ. Microbiol. 69:7145–52
    [Google Scholar]
  94. 94.  Mair WJ, Deng W, Mullins JGL, West S, Wang P et al. 2016. Demethylase inhibitor fungicide resistance in Pyrenophora teres f. sp. teres associated with target site modification and inducible overexpression of Cyp51. Front. Microbiol. 7:1279
    [Google Scholar]
  95. 95.  Malandrakis A, Koukiasas N, Veloukas T, Karaoglanidis G, Markoglou A 2013. Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants. Crop Prot 46:13–17
    [Google Scholar]
  96. 96.  Malandrakis AA, Apostolidou ZA, Markoglou A, Flouri F 2015. Fitness and cross-resistance of Alternaria alternata field isolates with specific or multiple resistance to single site inhibitors and mancozeb. Eur. J. Plant Pathol. 142:489–99
    [Google Scholar]
  97. 97.  Malandrakis AA, Markoglou AN, Nikou DC, Vontas JG, Ziogas BN 2006. Biological and molecular characterization of laboratory mutants of Cercospora beticola resistant to Qo inhibitors. Eur. J. Plant Pathol. 116:155–66
    [Google Scholar]
  98. 98.  Malandrakis AA, Vattis KN, Markoglou AN, Karaoglanidis GS 2017. Characterization of boscalid-resistance conferring mutations in the SdhB subunit of respiratory complex II and impact on fitness and mycotoxin production in Penicillium expansum laboratory strains. Pestic. Biochem. Physiol. 138:97–103
    [Google Scholar]
  99. 99.  Markoglou AN, Doukas EG, Malandrakis AA 2011. Effect of anilinopyrimidine resistance on aflatoxin production and fitness parameters in Aspergillus parasiticus Speare. Int. J. Food Microbiol. 146:130–36
    [Google Scholar]
  100. 100.  Meini M-R, Tomatis PE, Weinreich DM, Vila AJ 2015. Quantitative description of a protein fitness landscape based on molecular features. Mol. Biol. Evol. 32:1774–87
    [Google Scholar]
  101. 101.  Mira PM, Meza JC, Nandipati A, Barlow M 2015. Adaptive landscapes of resistance genes change as antibiotic concentrations change. Mol. Biol. Evol. 32:2707–15
    [Google Scholar]
  102. 102.  Mosbach A, Edel D, Farmer AD, Widdison S, Barchietto T et al. 2017. Anilinopyrimidine resistance in Botrytis cinerea is linked to mitochondrial function. Front. Microbiol. 8:2361
    [Google Scholar]
  103. 103.  Nakaune R, Nakano M 2007. Benomyl resistance of Colletotrichum acutatum is caused by enhanced expression of β-tubulin 1 gene regulated by putative leucine zipper protein CaBEN1. Fungal Genet. Biol. 44:1324–35
    [Google Scholar]
  104. 104.  Nikou D, Malandrakis A, Konstantakaki M, Vontas J, Markoglou A, Ziogas B 2009. Molecular characterization and detection of overexpressed C-14α-demethylase-based DMI resistance in Cercospora beticola field isolates. Pestic. Biochem. Physiol. 95:18–27
    [Google Scholar]
  105. 105.  Oakley BR, Morris NR 1981. A β-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell 24:837–45
    [Google Scholar]
  106. 106.  Omrane S, Sghyer H, Audeon C, Lanen C, Duplaix C, Walker AS 2015. Fungicide efflux and the MgMFS1 transporter contribute to the MDR phenotype in Zymoseptoria tritici field isolates. Environ. Microbiol. 17:2805–23
    [Google Scholar]
  107. 107.  Parnell S, Gilligan CA, Lucas JA, Bock CH, van den Bosch F 2008. Changes in fungicide sensitivity and relative species abundance in Oculimacula yallundae and O. acuformis populations (eyespot disease of cereals) in Western Europe. Plant Pathol 57:509–17
    [Google Scholar]
  108. 108.  Peever TL, Milgroom MG 1994. Lack of correlation between fitness and resistance to sterol biosynthesis-inhibiting fungicides in Pyrenophora teres. . Phytopathology 84:515–19
    [Google Scholar]
  109. 109.  Piotrowska MJ, Fountaine JM, Ennos RA, Kaczmarek M, Burnett FJ 2017. Characterisation of Ramularia collo-cygni laboratory mutants resistant to succinate dehydrogenase inhibitors. Pest Manag. Sci. 73:1187–96
    [Google Scholar]
  110. 110.  Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ 2007. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445:383–86
    [Google Scholar]
  111. 111.  Rallos LEE, Johnson NG, Schmale DG, Prussin AJ, Baudoin AB 2014. Fitness of Erysiphe necator with G143A-based resistance to quinone outside inhibitors. Plant Dis 98:1494–502
    [Google Scholar]
  112. 112.  Raposo R, Gomez V, Urrutia T, Melgarejo P 2000. Fitness of Botrytis cinerea associated with dicarboximide resistance. Phytopathology 90:1246–49
    [Google Scholar]
  113. 113.  Ren W, Shao W, Han X, Zhou M, Chen C 2016. Molecular and biochemical characterization of laboratory and field mutants of Botrytis cinerea resistant to fludioxonil. Plant Dis 100:1414–23
    [Google Scholar]
  114. 114.  Romero RA, Sutton TB 1998. Characterization of benomyl resistance in Mycosphaerella fijiensis, cause of black sigatoka of banana, in Costa Rica. Plant Dis 82:931–34
    [Google Scholar]
  115. 115.  Russell PE 2005. Century review: a century of fungicide evolution. J. Agric. Sci. 143:11–25
    [Google Scholar]
  116. 116.  Saito S, Cadle-Davidson L, Wilcox WF 2013. Selection, fitness, and control of grape isolates of Botrytis cinerea variably sensitive to fenhexamid. Plant Dis 98:233–40
    [Google Scholar]
  117. 117.  Scalliet G, Bowler J, Luksch T, Kirchhofer-Allan L, Steinhauer D et al. 2012. Mutagenesis and functional studies with succinate dehydrogenase inhibitors in the wheat pathogen Mycosphaerella graminicola. . PLOS ONE 7:e35429
    [Google Scholar]
  118. 118.  Schoustra SE, Debets AJM, Slakhorst M, Hoekstra RF 2006. Reducing the cost of resistance; experimental evolution in the filamentous fungus Aspergillus nidulans. J. Evol. Biol. 19:1115–27
    [Google Scholar]
  119. 119.  Shi HJ, Wu HM, Zhang CQ, Shen X 2013. Monitoring and characterization of resistance development of strawberry Phomopsis leaf blight to fungicides. Eur. J. Plant Pathol. 135:655–60
    [Google Scholar]
  120. 120.  Sierotzki H, Frey R, Wullschleger J, Palermo S, Karlin S et al. 2007. Cytochrome b gene sequence and structure of Pyrenophora teres and P. tritici-repentis and implications for QoI resistance. Pest Manag. Sci. 63:225–33
    [Google Scholar]
  121. 121.  Sun H-Y, Lu C-Q, Li W, Deng Y-Y, Chen H-G 2017. Homozygous and heterozygous point mutations in succinate dehydrogenase subunits b, c and d of Rhizoctonia cerealis conferring resistance to thifluzamide. Pest Manag. Sci. 73:896–903
    [Google Scholar]
  122. 122.  Suzuki F, Yamaguchi J, Koba A, Nakajima T, Arai M 2010. Changes in fungicide resistance frequency and population structure of Pyricularia oryzae after discontinuance of MBI-D fungicides. Plant Dis 94:329–34
    [Google Scholar]
  123. 123.  Thomas JH, Neff NF, Botstein D 1985. Isolation and characterization of mutations in the β-tubulin gene of Saccharomyces cerevisiae. . Genetics 111:715–34
    [Google Scholar]
  124. 124.  Torriani SFF, Brunner PC, McDonald BA, Sierotzki H 2009. QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. Pest Manag. Sci. 65:155–62
    [Google Scholar]
  125. 125.  Trkulja N, Ivanović Ž, Pfaf-Dolovac E, Dolovac N, Mitrović M et al. 2013. Characterisation of benzimidazole resistance of Cercospora beticola in Serbia using PCR-based detection of resistance-associated mutations of the β-tubulin gene. Eur. J. Plant Pathol. 135:889–902
    [Google Scholar]
  126. 126.  Unckless RL, Clark AG, Messer PW 2017. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205:827–41
    [Google Scholar]
  127. 127.  Vallieres C, Trouillard M, Dujardin G, Meunier B 2011. Deleterious effect of the Q(o) inhibitor compound resistance-conferring mutation G143A in the intron-containing cytochrome b gene and mechanisms for bypassing it. Appl. Environ. Microbiol. 77:2088–93
    [Google Scholar]
  128. 128.  Valsecchi I, Mellado E, Beau R, Raj S, Latge JP 2015. Fitness studies of azole-resistant strains of Aspergillus fumigatus. Antimicrob. Agents Chemother. 59:7866–69
    [Google Scholar]
  129. 129.  van den Bosch F, Oliver R, van den Berg F, Paveley N 2014. Governing principles can guide fungicide-resistance management tactics. Annu. Rev. Phytopathol. 52:175–95
    [Google Scholar]
  130. 130.  Veloukas T, Kalogeropoulou P, Markoglou AN, Karaoglanidis GS 2014. Fitness and competitive ability of Botrytis cinerea field isolates with dual resistance to SDHI and QoI fungicides, associated with several sdhB and the cytb G143A mutations. Phytopathology 104:347–56
    [Google Scholar]
  131. 131.  Vieira WAD, Lima WG, Nascimento ES, Michereff SJ, Reis A 2017. Thiophanate-methyl resistance and fitness components of Colletotrichum musae isolates from banana in Brazil. Plant Dis 101:1659–65
    [Google Scholar]
  132. 132.  Walker A-S, Micoud A, Rémuson F, Grosman J, Gredt M, Leroux P 2013. French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Pest Manag. Sci. 69:667–78
    [Google Scholar]
  133. 133.  Walker A-S, Ravigne V, Rieux A, Ali S, Carpentier F, Fournier E 2017. Fungal adaptation to contemporary fungicide applications: the case of Botrytis cinerea populations from Champagne vineyards (France). Mol. Ecol. 26:1919–35
    [Google Scholar]
  134. 134.  Walters DR, Boyle C 2005. Induced resistance and allocation costs: What is the impact of pathogen challenge?. Physiol. Mol. Plant Pathol. 66:40–44
    [Google Scholar]
  135. 135.  Wang F, Lin Y, Yin WX, Peng YL, Schnabel G et al. 2015. The Y137H mutation of VvCYP51 gene confers the reduced sensitivity to tebuconazole in Villosiclava virens. Sci. Rep. 5:13
    [Google Scholar]
  136. 136.  Wang HC, Sun HY, Stammler G, Ma JX, Zhou MG 2010. Generation and characterization of isolates of Peronophythora litchii resistant to carboxylic acid amide fungicides. Phytopathology 100:522–27
    [Google Scholar]
  137. 137.  Wang X, Minasov G, Shoichet BK 2002. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 320:85–95
    [Google Scholar]
  138. 138.  Weinstein B, Solomon F 1990. Phenotypic consequences of tubulin overproduction in Saccharomyces cerevisiae: differences between α-tubulin and β-tubulin. Mol. Cell. Biol. 10:5295–304
    [Google Scholar]
  139. 139.  Wood PM, Hollomon DW 2003. A critical evaluation of the role of alternative oxidase in the performance of strobilurin and related fungicides acting at the Q(o) site of Complex III. Pest Manag. Sci. 59:499–511
    [Google Scholar]
  140. 140.  Yamashita M, Fraaije BA 2018. Non-target site SDHI resistance is present as standing genetic variation in field populations of Zymoseptoria tritici. Pest Manag. Sci. 74:672–81
    [Google Scholar]
  141. 141.  Yan K, Dickman MB 1996. Isolation of a β-tubulin gene from Fusarium moniliforme that confers cold-sensitive benomyl resistance. Appl. Environ. Microbiol. 62:3053–60
    [Google Scholar]
  142. 142.  Yang L, Gao F, Shang L, Zhan J, McDonald BA 2013. Association between virulence and triazole tolerance in the phytopathogenic fungus Mycosphaerella graminicola. . PLOS ONE 8:e59568
    [Google Scholar]
  143. 143.  Zhan J, McDonald BA 2013. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 51:131–53
    [Google Scholar]
  144. 144.  Zhang CQ, Liu YH, Zhu GN 2010. Detection and characterization of benzimidazole resistance of Botrytis cinerea in greenhouse vegetables. Eur. J. Plant Pathol. 126:509–15
    [Google Scholar]
  145. 145.  Zheng DS, Olaya G, Koller W 2000. Characterization of laboratory mutants of Venturia inaequalis resistant to the strobilurin-related fungicide kresoxim-methyl. Curr. Genet. 38:148–55
    [Google Scholar]
  146. 146.  Ziogas BN, Markoglou AN, Malandrakis AA 2003. Studies on the inherent resistance risk to fenhexamid in Botrytis cinerea. Eur. J. Plant Pathol. 109:311–17
    [Google Scholar]
  147. 147.  Ziogas BN, Markoglou AN, Tzima A 2002. A non-Mendelian inheritance of resistance to strobilurin fungicides in Ustilago maydis. Pest Manag. Sci. 58:908–16
    [Google Scholar]
  148. 148.  Ziogas BN, Nikou D, Markoglou AN, Malandrakis AA, Vontas J 2009. Identification of a novel point mutation in the β-tubulin gene of Botrytis cinerea and detection of benzimidazole resistance by a diagnostic PCR-RFLP assay. Eur. J. Plant Pathol. 125:97–107
    [Google Scholar]
  149. 149.  Zou G, Ying SH, Shen ZC, Feng MG 2006. Multi-sited mutations of β-tubulin are involved in benzimidazole resistance and thermotolerance of fungal biocontrol agent Beauveria bassiana. Environ. . Microbiol 8:2096–105
    [Google Scholar]
  150. 150.  zur Wiesch PA, Kouyos R, Engelstädter J, Regoes RR, Bonhoeffer S 2011. Population biological principles of drug-resistance evolution in infectious diseases. Lancet Infect. Dis. 11:236–47
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-050012
Loading
/content/journals/10.1146/annurev-phyto-080417-050012
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error