1932

Abstract

(myrtle rust) is a globally invasive neotropical rust of the Myrtaceae that came into international prominence following extensive damage to exotic plantations in Brazil in the 1970s and 1980s. In 2005, myrtle rust established in Hawaii (USA), and over the past 12 years has spread from the Americas into Asia, the Pacific, and South Africa. Myrtle rust was detected in Australia in 2010, and the response and ultimately unsuccessful eradication attempt was a lesson to those concerned about the threat of exotic pests and diseases to Australia's environment. Seven years following establishment, we are already observing the decline of many myrtaceous species and severe impacts to native plant communities. However, the recently developed Myrtle rust in Australia draft action plan identified that there is no nationally coordinated response strategy for the environmental dimensions of this threat. Recent reviews have identified a greater need for involvement from environmental agencies in biosecurity preparedness, response, and resourcing, and we believe this approach needs to extend to the management of invasive environmental pathogens once they establish.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080516-035256
2018-08-25
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080516-035256.html?itemId=/content/journals/10.1146/annurev-phyto-080516-035256&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Anderson RC 2012. A baseline analysis of the distribution, host-range, and severity of the rust Puccinia Psidii in the Hawaiian islands, 2005-2010. Tech. Rep. HCSU-031, Hawaii Coop. Stud Unit., Hilo, HI
  2. 2.  Anderson C, Low-Choy S, Whittle P, Taylor S, Gambley C et al. 2017. Australian plant biosecurity surveillance systems. Crop Prot 100:8–20
    [Google Scholar]
  3. 3.  Arthur JC 1915. Uredinales of Porto Rico based on collections by F. L. Stevens (Continued). Mycologia 7:227–55
    [Google Scholar]
  4. 4. Aust. Bur. Agric. Resour. Econ. Sci. 2016. Forests of Australia (2013) v2.0. Canberra, Aust: Dep. Agric. Water Resour.
    [Google Scholar]
  5. 5.  Bailey PJ 2012. Investment Plan: Forest Biosecurity and Preparedness Melbourne, Aust: FWPA
    [Google Scholar]
  6. 6.  Baker RED, Dale WT 1948. Fungi of Barbados and the Windward Islands. Mycol. Pap. 25:1–26
    [Google Scholar]
  7. 7.  Beadle NCW 1981. Origins of the Australian angiosperm flora. Ecological Biography of Australia A Keast 407 The Hague, Neth.: Dr W. Junk
    [Google Scholar]
  8. 8.  Beale R, Fairbrother J, Inglis A, Trebeck D 2008. One biosecurity: a working partnership. The independent review of Australias quarantine and biosecurity arrangements report to the Australian government Rep., Commonw. Aust Canberra, ACT:244 pp.
    [Google Scholar]
  9. 9.  Beenken L 2017. Austropuccinia: a new genus name for the myrtle rust pathogen Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa 297:53–61
    [Google Scholar]
  10. 10.  Berthon K, Esperón-Rodríguez M, Beaumont L, Carnegie AJ, Leishman L 2018. Assessment and prioritisation of plant species at risk from myrtle rust (Austropuccinia psidii) under current and future climates in Australia. Biol. Conserv. 218:154–62
    [Google Scholar]
  11. 11.  Booth TH, Jovanovic T 2012. Assessing vulnerable areas for Puccinia psidii (eucalyptus rust) in Australia. Austral. Plant Pathol. 41:425–29
    [Google Scholar]
  12. 12.  Booth TH, Old KM, Jovanovic T 2000. A preliminary assessment of high risk areas for Puccinia psidii (eucalyptus rust) in the Neotropics and Australia. Agric. Ecosyst. Environ. 82:295–301
    [Google Scholar]
  13. 13.  Brasier C, Webber J 2010. Sudden larch death. Nature 466:824–25
    [Google Scholar]
  14. 14.  Cameron NL, Carnegie AJ, Wardlaw T, Lawson SA, Venn T 2018. An economic evaluation of sirex wood wasp (Sirex noctilio) control in Australian pine plantations. Aust. For. 81:37–45
    [Google Scholar]
  15. 15.  Carnegie AJ 2015. First report of Puccinia psidii (myrtle rust) in Eucalyptus plantations in Australia. Plant Dis 99:161
    [Google Scholar]
  16. 16.  Carnegie AJ, Cooper K 2011. Emergency response to the incursion of an exotic myrtaceous rust in Australia. Australas. Plant Pathol. 40:346–59
    [Google Scholar]
  17. 17.  Carnegie AJ, Lawson S, Smith T, Pegg GS, Stone C, McDonald J 2008. Healthy Hardwoods: A Field Guide to Pests, Diseases and Nutritional Disorders in Subtropical Hardwoods Melbourne, Aust: FWPA
    [Google Scholar]
  18. 18.  Carnegie AJ, Lawson S, Wardlaw T, Cameron N, Venn T 2018. Benchmarking forest health surveillance and biosecurity activities for managing Australia's exotic forest pest and pathogen risks. Aust. For. 81:14–23
    [Google Scholar]
  19. 19.  Carnegie AJ, Lidbetter JR 2012. Rapidly expanding host range of Puccinia psidii sensu lato in Australia. Australas. Plant Pathol. 41:13–29
    [Google Scholar]
  20. 20.  Carnegie AJ, Lidbetter JR, Walker J, Horwood MA, Tesoriero L et al. 2010. Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia. Australas. Plant Pathol. 39:463–66
    [Google Scholar]
  21. 21.  Carnegie AJ, Kathuria A, Pegg GS, Entwistle P, Nagel M, Giblin FR 2016. Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol. Invasions 18:127–44
    [Google Scholar]
  22. 22.  Chardón CE, Toro RA 1934. Mycological explorations of Venezuela. Monogr. Univ. Porto Rico Ser. B 2:1–351
    [Google Scholar]
  23. 23. CMI. 1987. Puccinia psidii Winter Edition 4. Commonw. Mycol. Inst. Distrib. Maps Plant Dis 1811–2
    [Google Scholar]
  24. 24. Commonw. Dep. Prim. Ind. 1985. Guava rust: Puccinia psidii winter Plant Quar. Leafl. No. 45 Commonw. Aust Canberra, ACT:
    [Google Scholar]
  25. 25. Commonw. Aust. 2015. Environmental biosecurity Rep. Environ. Commun Ref. Comm., Parliam. House Canberra, ACT: http://www.aph.gov.au/Parliamentary_Business/Committees/Senate/Environment_and_Communications
    [Google Scholar]
  26. 26. Counc. Aust. Gov. 2012. National Environmental Biosecurity Response Agreement (NEBRA) Commonw. Aust Canberra, ACT: https://www.coag.gov.au/about-coag/agreements/national-environmental-biosecurity-response-agreement-nebra
    [Google Scholar]
  27. 27.  Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW 1998. Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis 82:819–25
    [Google Scholar]
  28. 28.  Craik W, Palmer D, Sheldrake R 2017. Priorities for Australias biosecurity system: an independent review of the capacity of the national biosecurity system and its underpinning intergovernmental agreement Rep., Commonw. Aust Canberra, ACT:
    [Google Scholar]
  29. 29.  Dale WT 1955. A preliminary list of Jamaican Uredinales. Mycol. Pap. 60:1–22
    [Google Scholar]
  30. 30.  de Goes A, Martins RD, dos Reis RF 2004. Effect of copper fungicides, sprayed alone or in combination with mancozeb, in expression of phytotoxicity symptoms and rust control caused by Puccinia psidii in guava. Rev. Brasileira Fruticultura 26:237–40
    [Google Scholar]
  31. 31. Dep. Agric. Water Resourc. 2018. National forest biosecurity surveillance strategy Rep., Plant Health Aust Canberra, ACT:
    [Google Scholar]
  32. 32.  Dianese JC, Moraes TS, Silva AR 1984. Response of Eucalyptus species to field infection by Puccinia psidii. . Plant Dis 68:314–16
    [Google Scholar]
  33. 33.  Di Fonzo MA 1946. Las Uredineas del Chaco. Publ. Misceláneo Ministério Agric. Buenos Aires Ser. A 12:1–12
    [Google Scholar]
  34. 34.  Di Stéfano JF, Fournier LA, Carranza J, Marin W, Mora A 1998. Potencial invasor de Syzygium jambos (Myrtaceae) en fragmentos boscosos: el caso de Ciudad Coln, Costa Rica. Rev. Biol. Trop. 46:567–73
    [Google Scholar]
  35. 35.  Doran J, Lea D, Bush D 2012. Assessing myrtle rust in a lemon myrtle provenance trial Rural Ind. Res. Dev. Corp. Publ. No. 12/098 Rural Ind. Res. Dev. Corp Barton, ACT:
    [Google Scholar]
  36. 36.  du Plessis E, McTaggart AR, Granados G, Wingfield MJ, Roux J et al. 2017. First report of myrtle rust caused by Austropuccinia psidii on Rhodomyrtus tomentosa (Myrtaceae) from Singapore. Plant Dis 101:1676
    [Google Scholar]
  37. 37.  Esperón-Rodríguez M, Baumgartner JB, Beaumont LJ, Berthon K, Carnegie AJ et al. 2018. The risk to Myrtaceae of Austropuccinia psidii, myrtle rust, in Mexico. For. Pathol In press
    [Google Scholar]
  38. 38.  Ferreira FA 1983. Ferrugem do eucalipto. Rev. Arvore 7:91–109
    [Google Scholar]
  39. 39.  Gibbs JN 1978. Intercontinental epidemiology of Dutch elm disease. Annu. Rev. Phytopathol. 16:287–307
    [Google Scholar]
  40. 40.  Giblin F, Carnegie AJ 2014. Puccinia psidii (myrtle rust): global host list/Australian host list Rep., Aust. Netw Plant Conserv Canberra, ACT: http://www.anpc.asn.au/myrtle-rust
    [Google Scholar]
  41. 41.  Gill AM 1975. Fire and the Australian flora: a review. Aust. For. 38:4–15
    [Google Scholar]
  42. 42.  Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C 2007. Puccinia psidii: a threat to the Australian environment and economy—a review. Australas. Plant Pathol. 36:1–16
    [Google Scholar]
  43. 43.  Glen M, Machado P, Mohammed C, Alfenas A 2013. Comparative genomics of Puccinia psidii Final Rep. Myrtle Rust Transit Manag. Progr, Plant Health Aust Canberra, ACT: http://myrtlerust.net.au/documents/
    [Google Scholar]
  44. 44. Glob. Invasive Species Database. 2010. Puccinia psidii (fungus). http://www.issg.org/database/species/ecology.asp?si=1538&fr=1&sts=sss&lang=EN
    [Google Scholar]
  45. 45.  Graça RN 2011. Genetic diversity of Puccinia psidii populations PhD thesis, Universidade Fed. Viçosa, Viçosa, Bras
    [Google Scholar]
  46. 46.  Graça RN, Aun CP, Guimarães LMS, Rodrigues BVA, Zauza EAV, Alfenas AC 2011. A new race of Puccinia psidii defeats rust resistance in eucalypt. Australas. Plant Pathol. 40:442–47
    [Google Scholar]
  47. 47.  Graça RN, Ross-Davis AL, Klopfenstein NB, Kim MS, Peever TL et al. 2013. Rust disease of eucalypts, caused by Puccinia psidii, did not originate via host jump from guava in Brazil. Mol. Ecol. 22:6033–47
    [Google Scholar]
  48. 48.  Granados G, McTaggart A, Barnes I, Rodas C, Roux J, Wingfield M 2017. The pandemic biotype of Austropuccinia psidii discovered. Aust. Plant. Pathol 56:267–275
    [Google Scholar]
  49. 49.  Grgurinovic CA, Walsh D, Macbeth F 2006. Eucalyptus rust caused by Pucinia psidii and the threat it poses to Australia. EPPO Bull 36:486–89
    [Google Scholar]
  50. 50.  Herrera V 2018. Editorial: resilience at diagnostics and surveillance services. Surveillance 45:3–4
    [Google Scholar]
  51. 51.  Horwood M, Carnegie AJ, Park RF 2013. Gathering efficacy data to indentify the most effective chemicals for controlling myrtle rust (Uredo rangelii) Final Rep. Myrtle Rust Transit Manag. Progr, Plant Health Aust Canberra, ACT: http://myrtlerust.net.au/documents/
    [Google Scholar]
  52. 52.  Invasive Species Counc 2014. Environmental Biosecurity Submission 74 - Attachment 1: Case Studies Fairfield, NSW: ISC
    [Google Scholar]
  53. 53.  Joffily J 1944. Ferrugem do eucalipto. Bragantia 4:475–88
    [Google Scholar]
  54. 54.  Kawanishi T, Uemastu S, Kakishima M, Kagiwada S, Hamamoto H et al. 2009. First report of rust disease on ohia and the causal fungus in Japan. J. Genet. Plant Pathol. 75:428–31
    [Google Scholar]
  55. 55.  Kern FD, Ciferri R, Thurston HW Jr 1933. The rust-flora of the Dominican Republic. Ann. Mycol. 31:1–40
    [Google Scholar]
  56. 56.  Killgore EM, Heu RA 2007. Ohia rust Puccinia psidii Winter. State of Hawaii Department of Agriculture New Pest Advisory No 05–04
  57. 57.  Kriticos DJ, Morin L, Leriche A, Anderson RC, Caley P 2013. Combining a climatic niche model of an invasive fungus with its host species distributions to identify risks to natural assets: Puccinia psidii sensu lato in Australia. PLOS ONE 8:e64479
    [Google Scholar]
  58. 58.  Kulheim C, Hsieh S, Sandu K, Foley WJ 2013. Discovery of genetic markers for resistance to infection by Uredo rangelii in species of Myrtaceae (other than members of the tribe Eucalyptaea) Final Rep. Myrtle Rust Transit Manag. Progr, Plant Health Aust Canberra, ACT: http://myrtlerust.net.au/documents/
    [Google Scholar]
  59. 59.  Lana VM, Mafia RG, Ferreira MA, Sartório RC, Zauza EAV et al. 2012. Survival and dispersal of Puccinia psidii spores in eucalypt wood products. Australas. Plant Pathol. 41:229–38
    [Google Scholar]
  60. 60.  Langrel SRH, Glen M, Alfenas AC 2008. Molecular diagnosis of Puccinia psidii (guava rust): a quarantine threat to Australian eucalypt and Myrtaceae biodiversity. Plant Pathol 57:687–701
    [Google Scholar]
  61. 61.  Lawson SA, Carnegie AJ, Cameron NL, Wardlaw T, Venn T 2018. Risk of exotic pests to the Australian forest industry. Aust. For. 81:3–13
    [Google Scholar]
  62. 62.  Lee DJ, Brawner JT, Pegg GS 2015. Screening Eucalyptus cloeziana and E. argophloia populations for resistance to Puccinia psidii. . Plant Dis 99:71–79
    [Google Scholar]
  63. 63.  León-Gallegos HM, Cummins GB 1981. Uredinales (royas) de México. Vol. 1. Puccinia Culiacán, México: Secr. Agric. Recur. Hidraul. México
    [Google Scholar]
  64. 64.  Liew ECY, Maier W, van der Merwe M 2013. Phylogenetic position of Puccinia psidii within the Pucciniales Final Rep. Myrtle Rust Transit Manag. Progr, Plant Health Aust Canberra, ACT: http://myrtlerust.net.au/documents/
    [Google Scholar]
  65. 65.  Loope L, La Rosa AM 2008. An analysis of the risk of the introduction of additional strains of the rust Puccinia psidii Winter (‘Ohi'a rust) to Hawai'i US Geol. Surv. Open File Rep 2008–1008 USGS Reston, VA:
    [Google Scholar]
  66. 66.  Loope L, Uchida J, Mehroff L 2008. The threat of the non-native neotropical rust Puccinia psidii to Hawaiian biodiversity and native ecosystems: a case example of the need for prevention. Rethinking Protected Areas in a Changing World: Proceedings of the 2007 GWS Biennial Conference on Parks, Protected Areas, and Cultural Sites S Weber, D Harmon 112–17 Hancock, MI: George Wright Soc http://www.georgewright.org/0720loope.pdf
    [Google Scholar]
  67. 67.  Machado P da S, Alfenas AC, Alfenas RF, Mohammed CJ, Glen M 2015. Microsatellite analysis indicates that Puccinia psidii in Australia is mutating but not recombining. Australas. Plant Pathol. 44:455–62
    [Google Scholar]
  68. 68.  MacLachlan JD 1938. A rust of the pimento tree in Jamaica, B.W.I. Phytopathology 28:157–70
    [Google Scholar]
  69. 69.  Makinson RO, Conn BJ 2014. Puccinia psidii (Pucciniaceae: eucalyptus rust, guava rust, myrtle rust): a threat to biodiversity in the Indo-Pacific region. Gard. Bull. Singap. 66:173–88
    [Google Scholar]
  70. 70.  Marlatt RB, Kimbrough JW 1979. Puccinia psidii on Pimenta dioica in south Florida. Plant Dis. Rep. 63:510–12
    [Google Scholar]
  71. 71.  Mayor E 1913. Contribution á l’étude des Uredinées de Colombia. Mém. Soc. Neuchâtel. Sci. Nat. 5:442–599
    [Google Scholar]
  72. 72.  McAllister RRJ, Robinson CJ, Brown A, Maclean K, Perry S, Liu S 2017. Balancing collaboration with coordination: contesting eradication in the Australian plant pest and disease biosecurity system. Int. J. Commons 11:330–54
    [Google Scholar]
  73. 73.  McTaggart AR, Roux J, Gafur A, Tarrigan M, Santhakumar Wingfield MJ 2016. Rust (Puccinia psidii) recorded in Indonesia poses a threat to forests and forestry in South-East Asia. Australas. Plant Pathol. 45:83–89
    [Google Scholar]
  74. 74.  Mellano V 2006. Rust on myrtle found in San Diego County. Healthy Gard. Healthy Home Ret. Nurs. Newsl. 1:63
    [Google Scholar]
  75. 75. Ministry of Primary Industries. 2018. New approach to myrtle rust. Media Release, April 6
  76. 76.  Mohammed C, Glen M, Walshe T, Wardlaw T, Stone C et al. 2011. An audit of forest biosecurity arrangements and preparedness in Australia Rep. PNC159–0910, For Wood Prod. Aust Melbourne, VIC:
    [Google Scholar]
  77. 77.  Morin L, Aveyard R, Lidbetter JR, Wilson PG 2012. Investigating the host-range of the rust fungus Puccinia psidii sensu lato across tribes of the family Myrtaceae present in Australia. PLOS ONE 7:4e35434
    [Google Scholar]
  78. 78.  Morin L, Talbot MJ, Glen M 2014. Quest to elucidate the life cycle of Puccinia psidii sensu lato. Fungal Biol 118:253–63
    [Google Scholar]
  79. 79.  Morin RS, Liebhold AM, Pugh SA, Crocker SJ 2017. Regional assessment of emerald ash borer, Agrilus planipennis, impacts in forests of the Eastern United States. Biol. Invasions 19:703–11
    [Google Scholar]
  80. 80.  Mortenson LA, Hughes RF, Friday JB, Keith LM, Barbosa JM et al. 2014. Assessing spatial distribution, stand impacts and rate of Ceratocystis fimbriata induced ‘ōhi‘a (Metrosideros polymorpha) mortality in tropical wet forest, Hawai'i, USA. For. Ecol. Manag. 377:83–92
    [Google Scholar]
  81. 81.  Myerscough PJ 1998. Ecology of Myrtaceae with special reference to the Sydney region. Cunninghamia 5:787–807
    [Google Scholar]
  82. 82.  Nairn ME, Allen PG, Inglis AR, Tanner C 1996. Australian Quarantine: a Shared Responsibility Canberra: Dep. Prim. Ind. Energy
    [Google Scholar]
  83. 83. NSW Sci. Comm. 2011. Introduction and establishment of exotic rust fungi of the order Uredinales pathogenic on plants in the family Myrtaceae—key threatening process listing. Rep. NSW Sci. Comm., NSW Sci. Comm. Sydney, NSW. http://www.environment.nsw.gov.au/determinations/exoticrustPD.htm
  84. 84. NSW Sci. Comm. 2017. Preliminary determinations by date Rep. NSW Sci. Comm., NSW Sci. Comm. Sydney, NSW. http://www.environment.nsw.gov.au/committee/preliminarydeterminationsbydate.htm
    [Google Scholar]
  85. 85. Off. Chief Plant Prot. Off. 2007. Puccinia psidii. Forestry, rural and urban biosecurity plan. Pest specific contingency plan Rep., Aust. Gov. Dep Agric. Fish. For Canberra, ACT:
    [Google Scholar]
  86. 86. Off. Environ. Heritage. 2018. Saving our species key threatening process strategy: introduction and establishment of exotic rust fungi of the order Pucciniales pathogenic on plants of the family Myrtaceae. Rep., Off. Environ. Heritage, Sydney, NSW
  87. 87.  Pegg GS, Brawner J, Lee DJ 2014. Screening Corymbia populations for resistance to Puccinia psidii. . Plant Pathol 63:425–36
    [Google Scholar]
  88. 88.  Pegg GS, Carnegie AJ, Giblin FG, Perry S 2018. Managing myrtle rust in Australia Coop. Res. Cent. Plant Biosecur Rep. CRC2063, Plant Biosecur. CRC Canberra, ACT:
    [Google Scholar]
  89. 89.  Pegg GS, Giblin FR, McTaggart AR, Guymer GP, Taylor H et al. 2014. Puccinia psidii in Queensland, Australia: disease symptoms, distribution and impact. Plant Pathol. 63:1005–21
    [Google Scholar]
  90. 90.  Pegg GS, Lee DJ, Carnegie AJ 2018. Predicting impact of myrtle rust on broad leaved Melaleuca species populations in Australia. Australas. Plant Pathol In press
    [Google Scholar]
  91. 91.  Pegg GS, Perry S, Carnegie AJ, Ireland K, Giblin F 2012. Understanding myrtle rust epidemiology and host specificity to determine disease impact in Australia Coop. Res. Cent. Natl. Plant Biosecur. Rep. CRC70186 Natl. Plant Biosecur. CRC Canberra, ACT:
    [Google Scholar]
  92. 92.  Pegg GS, Taylor T, Entwistle P, Guymer G, Giblin FG, Carnegie AJ 2017. Impact of Austropuccinia psidii on Myrtaceae rich wet sclerophyll forests in south-east Queensland. PLOS ONE 12:11e0188058
    [Google Scholar]
  93. 93.  Perdomo-Sánchez O, Piepenbring M 2008. A new species of Puccinia and new rust fungi from Panama. Mycol. Progress 7:161–68
    [Google Scholar]
  94. 94.  Plant Health Aust 2007. Plantation forest biosecurity plan. Version 1.0 Rep., Plant Health Aust Canberra, ACT:
    [Google Scholar]
  95. 95.  Plant Health Aust 2009. Industry biosecurity plan for the nursery and garden industry Rep., Plant Health Aust Canberra, ACT:
    [Google Scholar]
  96. 96.  Plant Health Aust 2010. PLANTPLAN: Australian emergency plant pest response plan. Version 2 Rep., Plant Health Aust Canberra, ACT:
    [Google Scholar]
  97. 97.  Plant Health Aust 2017. Government and plant industry cost sharing deed in respect of emergency plant pest responses Rep., Plant Health Aust Canberra, ACT:
    [Google Scholar]
  98. 98.  Potts BM, Sandhu KS, Wardlaw T, Freeman J, Li H et al. 2016. Evolutionary history shapes the susceptibility of an island tree flora to an exotic pathogen. Forest Ecol. Manag. 368:183–93
    [Google Scholar]
  99. 99.  Ramsfield T, Dick M, Bulman L, Ganley R 2010. Briefing document on myrtle rust, a member of the guava rust complex, and the risk to New Zealand Rep., Scion, Rotorua New Zealand: http://www.nzffa.org.nz/images/design/Briefing-paper-myrtle-rust.pdf
    [Google Scholar]
  100. 100.  Rayachhetry MB, Elliot ML, Van TK 1997. Natural epiphytotic of the rust Puccinia psidii on Melaleuca quin-quenervia in Florida. Plant Dis 81:831
    [Google Scholar]
  101. 101.  Rayachhetry MB, Van TK, Center TD, Elliott ML 2001. Host range of Puccinia psidii, a potential biological control agent of Melaleuca quinquenervia in Florida. Biol. Control 22:38–45
    [Google Scholar]
  102. 102.  Ribeiro IJA, Pommer CV 2004. Breeding guava (Psidium guajava) for resistance to rust caused by Puccinia psidii. . Acta Hortic 632:75–78
    [Google Scholar]
  103. 103.  Ross-Davis AL, Hanna JW, Kim M-S, Lodge DJ, Klopfenstein NB 2014. Tracking the distribution of Puccinia psidii genotypes that cause rust disease on diverse myrtaceous trees and shrubs. Proceedings of the 61st Annual Western International Forest Disease Work Conference K Chadwick, P Palacios, pp. 131–37 Washington, DC: USDA For. Serv.
    [Google Scholar]
  104. 104.  Roux J, Germishuizen I, Nadel R, Lee DJ, Wingfield MJ, Pegg GS 2015. Risk assessment for Puccinia psidii becoming established in South Africa. Plant Pathol 64:1326–35
    [Google Scholar]
  105. 105.  Roux J, Granados GM, Shuey L, Barnes I, Wingfield MJ, McTaggart AR 2016. A unique genotype of the rust pathogen, Puccinia psidii, on Myrtaceae in South Africa. Australas. Plant Pathol. 45:645–52
    [Google Scholar]
  106. 106.  Roux J, Greyling I, Coutinho TA, Verleur M, Wingfield MJ 2013. The myrtle rust pathogen, Puccinia psidii, discovered in Africa. IMA Fungus 4:155–59
    [Google Scholar]
  107. 107.  Roux J, Wingfield MJ 2009. Ceratocystis species: Emerging pathogens of non-native plantations Eucalyptus and Acacia species. Southern Forests 71:115–20
    [Google Scholar]
  108. 108.  Sandhu KS, Karaoglu H, Zhang P, Park RF 2015. Simple sequence repeat markers support the presence of a single genotype of Puccinia psidii in Australia. Plant Pathol 65:1084–94
    [Google Scholar]
  109. 109.  Sandhu K, Park R 2013. Genetic basis of pathogenicity in Uredo rangelii Final Rep. Myrtle Rust Transit. Manag Progr, Plant Health Aust Canberra, ACT:
    [Google Scholar]
  110. 110.  Schieber E, Sánchez A 1968. Lista preliminary de la enfermedades de las plantas in Guatemala. Bol. Téc. Minist. Agric. Guatem. 25:1–56
    [Google Scholar]
  111. 111.  Shepherd M, Wood R, Raymond C, Rose T, Entwistle P, Baker G 2015. Upland tea tree, an underexplored resource in the domestication of Melaleuca alternifolia. . Acta Hortic 1101:119–26
    [Google Scholar]
  112. 112.  Silva AC, Andrade PM, Alfenas AC, Graça RN, Cannon P et al. 2014. Virulence and impact of Brazilian strains of Puccinia psidii on Hawaiian ’ōhi'a (Metrosideros polymorpha). Pac. Sci. 68:47–56
    [Google Scholar]
  113. 113.  Simpson J, Thomas K, Grgurinovic C 2006. Uredinales species pathogenic on species of Myrtaceae. Australas. Plant Pathol. 35:5549–62
    [Google Scholar]
  114. 114.  Smith FEV 1935. Rust disease of pimento. J. Jam. Agric. Soc. 39:408–11
    [Google Scholar]
  115. 115.  Soewarto J, Carriconde F, Hugot N, Bocs S, Hamelin C, Maggia L 2017. Impact of Austropuccinia psidii in New Caledonia, a biodiversity hotspot. For. Pathol. 48:2e12402
    [Google Scholar]
  116. 116.  Specht RL 1981. Major vegetation formations in Australia. Ecological Biography of Australia A Keast 163–297 The Hague, Neth: Dr W. Junk
    [Google Scholar]
  117. 117.  Spegazzini CL 1884. Fungi Guaranitici. Pugillus 1. Anal. Soc. Científica Argent. 17:119–34
    [Google Scholar]
  118. 118.  Spegazzini CL 1889. Fungi Puiggariani. Pugillus 1. Boletín Acad. Nacional Ciencias Córdoba 11:378–622
    [Google Scholar]
  119. 119.  Stevenson JA 1926. Foreign Plant Diseases. A Manual of Economic Plant Diseases Which Are New or Not Widely Distributed in the United States Washington, DC: US Dep. Agric. Fed. Hortic. Board
    [Google Scholar]
  120. 120.  Stewart JE, Ross-Davis AL, Graça RN et al. 2017. Insights into the genetic diversity of Puccinia psidii in the Americas and Hawaii: global implications for invasive threat assessments. For. Pathol. 48:e12378
    [Google Scholar]
  121. 121.  Tan M-K, Collins D, Chen Z, Englezou A, Wilkins MR 2014. A brief overview of the size and composition of the myrtle rust genome and its taxonomic status. Mycology 5:52–63
    [Google Scholar]
  122. 122.  Taylor T, Morin L, Pegg GS, Zalucki J 2017. The threat of myrtle rust to the conservation of endangered tree, Gossia gonoclada (Myrtaceae) in south east Queensland. Australas. Plant Conserv. 25:36–8
    [Google Scholar]
  123. 123.  Tessmann DJ, Dianese JC, Miranda AC, Castro LHR 2001. Epidemiology of a neotropical rust (Puccinia psidii): periodical analysis of the temporal progress in a perennial host (Syzygium jambos). Plant Pathol 50:725–31
    [Google Scholar]
  124. 124.  Thumma B, Pegg GS, Warburton P, Brawner J, Macdonell P et al. 2013. Molecular tagging of rust resistance genes in eucalypts Final Rep. Myrtle Rust Transit Manag. Progr, Plant Health Aust Canberra, ACT: http://myrtlerust.net.au/documents/
    [Google Scholar]
  125. 125.  Tobias P, Guest DI, Külheim C, Park RF 2018. De novo transcriptome study identifies candidate genes involved in resistance to Austropuccinia psidii (myrtle rust) in Syzygium luehmannii (Riberry). Phytopathology 108:627–40
    [Google Scholar]
  126. 126.  Tobias P, Park RF, Külheim C, Guest DI 2015. Wild-sourced Chamelaucium uncinatum have no resistance to Puccinia psidii (myrtle rust). Australas. Plant Dis. Notes 10:15
    [Google Scholar]
  127. 127.  Tommerup IC, Alfenas AC, Old KM 2003. Guava rust in Brazil: a threat to Eucalyptus and other Myrtaceae. N. Z. J. For. Sci. 33:420–28
    [Google Scholar]
  128. 128.  Tovar F, Carnegie AJ, Collins S, Horwood M, Lawson S et al. 2016. Framework for national biosecurity surveillance of exotic forest pests Rep., Dep. Agric. Water Resour Canberra, ACT:
    [Google Scholar]
  129. 129.  Uchida JY, Loope LL 2009. A recurrent epiphytotic of guava rust on rose apple, Syzygium jambos, in Hawaii. Plant Dis 93:429
    [Google Scholar]
  130. 130.  van der Merwe M, Ericson L, Walker J, Thrall PH, Burdon JJ 2007. Evolutionary relationships among species of Puccinia and Uromyces (Pucciniaceae, Uredinales) inferred from partial protein coding gene phylogenies. Mycol. Res. 111:163–75
    [Google Scholar]
  131. 131.  Walker J 1983. Pacific mycogeography: deficiencies and irregularities in the distribution of plant parasitic fungi. Aust. J. Bot. Suppl. Ser. 10:89–136
    [Google Scholar]
  132. 132.  Westaway JO 2016. The pathogen myrtle rust (‘Puccinia psidii’) in the Northern Territory: first detection, new host and potential impacts. North. Territ. Nat. 27:13–28
    [Google Scholar]
  133. 133.  Westaway JO 2018. Update on myrtle rust in the Top End. North. Territ. Nat press
  134. 134.  Wingfield MJ, Roux J, Wingfield BD 2011. Insect pests and pathogens of Australian acacias grown as non-natives: an experiment in biogeography with far-reaching consequences. Divers. Distrib. 17:968–77
    [Google Scholar]
  135. 135.  Winter GR 1884. Rabenhorstii fungi europaei et extraeuropaei exsiccati cura Dr. G. Winter, Centuria XXXI et XXXII. Hedwigia 23:164–72
    [Google Scholar]
  136. 136.  Zambino P, Nolan PA 2011. First report of rust caused by Puccinia psidii on paperbark, Melaleuca quinquenervia, in California. Plant Dis 95:1314
    [Google Scholar]
  137. 137.  Zauza EAV, Alfenas AC, Old KM, Couto MMF, Graça RN, Maffia LA 2010. Myrtaceae species resistance to rust caused by Puccinia psidii. Australas. . Plant Pathol 39:405–11
    [Google Scholar]
  138. 138.  Zhuang JY, Wei SX 2011. Additional materials for the rust flora of Hainan Province, China. Mycosystema 30:853–60
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080516-035256
Loading
/content/journals/10.1146/annurev-phyto-080516-035256
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error