1932

Abstract

Management of geminiviruses is a worldwide challenge because of the widespread distribution of economically important diseases caused by these viruses. Regardless of the type of agriculture, management is most effective with an integrated pest management (IPM) approach that involves measures before, during, and after the growing season. This includes starting with resistant cultivars and virus- and vector-free transplants and propagative plants. For high value vegetables, protected culture (e.g., greenhouses and screenhouses) allows for effective management but is limited owing to high cost. Protection of young plants in open fields is provided by row covers, but other measures are typically required. Measures that are used for crops in open fields include roguing infected plants and insect vector management. Application of insecticide to manage vectors (whiteflies and leafhoppers) is the most widely used measure but can cause undesirable environmental and human health issues. For annual crops, these measures can be more effective when combined with host-free periods of two to three months. Finally, given the great diversity of the viruses, their insect vectors, and the crops affected, IPM approaches need to be based on the biology and ecology of the virus and vector and the crop production system. Here, we present the general measures that can be used in an IPM program for geminivirus diseases, specific case studies, and future challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080615-100327
2018-08-25
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080615-100327.html?itemId=/content/journals/10.1146/annurev-phyto-080615-100327&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Adams MJ, Lefkowitz EJ, King AMQ, Harrach B, Harrison RL et al. 2017. Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses. Arch. Virol. 162:2505–38
    [Google Scholar]
  2. 2.  Adkins S, Webster CG, Kousik CS, Webb SE, Roberts PD et al. 2011. Ecology and management of whitefly-transmitted viruses of vegetable crops in Florida. Virus Res 159:110–14
    [Google Scholar]
  3. 3.  Akano AO, Dixon AGO, Mba C, Barrera E, Fregene M 2002. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor. Appl. Genet. 105:521–25
    [Google Scholar]
  4. 4.  Alabi OJ, Kumar PL, Mgbechi-Ezeri JU, Naidu RA 2010. Two new “legumoviruses” (genus Begomovirus) naturally infecting soybean in Nigeria. Arch. Virol. 155:643–56
    [Google Scholar]
  5. 5.  Alagianagalingam MN, Ramakrishnan K 1966. Cassava mosaic in India. South Indian Hortic 14:71–72
    [Google Scholar]
  6. 6.  Alegbejo MD, Olojede SO, Kashina BD, Abo ME 2008. Maize streak mastrevirus in Africa: distribution, transmission, epidemiology, economic significance and management strategies. J. Sustain. Agric. 19:35–45
    [Google Scholar]
  7. 7.  Ali Z, Abul-Faraj A, Li L, Ghosh N, Piatek M et al. 2015. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant 8:1288–91
    [Google Scholar]
  8. 8.  Ali Z, Ali S, Tashkandi M, Zaidi SSEA, Mahfouz MM 2016. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci. Rep. 6:e26912
    [Google Scholar]
  9. 9.  Al Rwahnih M, Dave A, Anderson MM, Rowhani A, Uyemoto JK, Sudarshana MR 2013. Association of a DNA virus with grapevines affected by red blotch disease in California. Phytopathology 103:1069–76
    [Google Scholar]
  10. 10.  Al Rwahnih M, Rowhani A, Golino DA, Islas CM, Preece JE, Sudarshana MR 2015. Detection and genetic diversity of Grapevine red blotch-associated virus isolates in table grape accessions in the National Clonal Germplasm Repository in California. Can. J. Plant Pathol. 37:130–35
    [Google Scholar]
  11. 11.  Amin I, Mansoor S, Amrao L, Hussain M, Irum S et al. 2006. Mobilisation into cotton and spread of a recombinant cotton leaf curl disease satellite. Arch. Virol. 151:2055–65
    [Google Scholar]
  12. 12.  Amrao L, Amin I, Shahid MS, Briddon RW, Mansoor S 2010. Cotton leaf curl disease in resistant cotton is associated with a single begomovirus that lacks an intact transcriptional activator protein. Virus Res 152:153–63
    [Google Scholar]
  13. 13.  Antignus Y 2014. Management of air-borne viruses by optical barriers in protected agriculture and open-field crops. Adv. Virus Res. 90:1–33
    [Google Scholar]
  14. 14.  Aragão FJL, Nogueira EOPL, Tinoco MLP, Faria JC 2013. Molecular characterization of the first commercial transgenic common bean immune to the Bean golden mosaic virus. J. . Biotechnol 166:42–50
    [Google Scholar]
  15. 15.  Bahder BW, Zalom FG, Jayanth M, Sudarshana MR 2016. Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying Spissistilus festinus as a vector of Grapevine red blotch-associated virus. . Phytopathology 106:1223–30
    [Google Scholar]
  16. 16.  Bahder BW, Zalom FG, Sudarshana MR 2016. An evaluation of the flora adjacent to wine grape vineyards for the presence of alternative host plants of Grapevine red blotch-associated virus. . Plant Dis 100:1571–74
    [Google Scholar]
  17. 17.  Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN et al. 2015. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat. Plants 1:e15145
    [Google Scholar]
  18. 18.  Bananej K, Ahoonmanesh A, Kheyr-Pour A 2002. Host range of an Iranian isolate of Watermelon chlorotic stunt virus as determined by whitefly-mediated inoculation and agroinfection, and its geographical distribution. J. Phytopathol. 150:423–30
    [Google Scholar]
  19. 19.  Barboza N, Blanco-Meneses M, Esker P, Moriones E, Inoue-Nagata AK 2018. Distribution and diversity of begomoviruses in tomato and sweet pepper plants in Costa Rica. Ann. Appl. Biol. 172:20–32
    [Google Scholar]
  20. 20.  Behjatnia SAA, Afsharifar AR, Tahan V, Motlagh MHA, Gandomani OE et al. 2011. Widespread occurrence and molecular characterization of Wheat dwarf virus in Iran. Australas. Plant Pathol. 40:12–19
    [Google Scholar]
  21. 21.  Belabess Z, Dallot S, El-Montaser S, Granier M, Majde M et al. 2015. Monitoring the dynamics of emergence of a non-canonical recombinant of Tomato yellow leaf curl virus and displacement of its parental viruses in tomato. Virology 486:291–306
    [Google Scholar]
  22. 21a.  Belabess Z, Peterschmitt M, Granier M, Tahiri A, Blenzar A, Urbino C 2016. The non-canonical tomato yellow leaf curl virus recombinant that displaced its parental viruses in southern Morocco exhibits a high selective advantage in experimental conditions. J. Gen. Virol. 97:3433–45
    [Google Scholar]
  23. 22.  Benkovics AH, Vida G, Nelson D, Veisz O, Bedford I et al. 2010. Partial resistance to Wheat dwarf virus in winter wheat cultivars. Plant Pathol 59:1144–51
    [Google Scholar]
  24. 23.  Bennett CW 1971. The Curly Top Disease of Sugarbeet and Other Plants Saint Paul, MN: Am. Phytopathol. Soc.
    [Google Scholar]
  25. 24.  Bergamin-Filho A, Inoue-Nagata AK, Bassanezi RB, Belasque J, Amorim L et al. 2016. The importance of primary inoculum and area-wide disease management to crop health and food security. Food Secur 8:221–38
    [Google Scholar]
  26. 25.  Bianchini A 1999. Resistance to Bean golden mosaic virus in bean genotypes. Plant Dis 83:615–20
    [Google Scholar]
  27. 26.  Bonfim K, Faria JC, Nogueira EOPL, Mendes EA, Aragao FJL 2007. RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol. Plant-Microbe Interact. 20:717–26
    [Google Scholar]
  28. 27.  Briddon RW, Ghabrial S, Lin N, Palukaitis P, Scholthof K, Vetten H 2012. Satellites and other virus-dependent nucleic acids. Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses AMQ King, MJ Adams, EB Carstens, EJ Lefkowitz 1209–19 New York: Elsevier
    [Google Scholar]
  29. 28.  Briddon RW, Mansoor S, Bedford ID, Pinner MS, Saunders K et al. 2001. Identification of DNA components required for induction of cotton leaf curl disease. Virology 285:234–43
    [Google Scholar]
  30. 29.  Briddon RW, Markham PG 2000. Cotton leaf curl virus disease. Virus Res 71:151–59
    [Google Scholar]
  31. 30.  Briddon RW, Patil BL, Bagewadi B, Nawaz-ul-Rehman MS, Fauquet CM 2010. Distinct evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses. BMC Evol. Biol. 10:97
    [Google Scholar]
  32. 31.  Brown JK, Idris AM, Alteri C, Stenger DC 2002. Emergence of a new cucurbit-infecting begomovirus species capable of forming viable reassortants with related viruses in the Squash leaf curl virus cluster. Phytopathology 92:734–42
    [Google Scholar]
  33. 32.  Brown JK, Ostrow KM, Idris AM, Stenger DC 1999. Biotic, molecular, and phylogenetic characterization of Bean calico mosaic virus, a distinct begomovirus species with affiliation in the Squash leaf curl virus cluster. Phytopathology 89:273–80
    [Google Scholar]
  34. 33.  Cai JH, Xie K, Lin L, Qin BX, Chen BS, Meng JR 2010. Cotton leaf curl Multan virus newly reported to be associated with cotton leaf curl disease in China. Plant Pathol 59:794–95
    [Google Scholar]
  35. 34.  Caro M, Verlaan MG, Julián O, Finkers R, Wolters AMA et al. 2015. Assessing the genetic variation of Ty-1 and Ty-3 alleles conferring resistance to Tomato yellow leaf curl virus in a broad tomato germplasm. Mol. Breed. 35:132
    [Google Scholar]
  36. 35.  Castle SJ, Prabhaker N 2013. Monitoring changes in Bemisia tabaci (Hemiptera: Aleyrodidae) susceptibility to neonicotinoid insecticides in Arizona and California. J. Econ. Entomol. 106:1404–13
    [Google Scholar]
  37. 36.  Chattopadhyay A, Dutta S, Chatterjee S 2011. Seed yield and quality of okra as influenced by sowing dates. Afr. J. Biotechnol. 10:5461–67
    [Google Scholar]
  38. 37.  Chen LF, Gilbertson RL 2016. Transmission of curtoviruses (Beet curly top virus) by the beet leafhopper (Circulifer tenellus). Vector-Mediated Transmission of Plant Pathogens J Brown 243–62 St Paul, MN: Am. Phytopathol. Soc.
    [Google Scholar]
  39. 38.  Cicero JM, Brown JK 2016. Bemisia tabaci-mediated transmission of begomoviruses: history and anatomical, biological, and cellular interactions. Vector-Mediated Transmission of Plant Pathogens J Brown 211230–62 St Paul, MN: Am. Phytopathol. Soc.
    [Google Scholar]
  40. 39.  Cieniewicz EJ, Pethybridge SJ, Loeb G, Perry K, Fuchs M 2018. Insights into the ecology of Grapevine red blotch virus in a diseased vineyard. Phytopathology 108:94–102
    [Google Scholar]
  41. 40.  Cohen S, Lapidot M 2007. Appearance and expansion of TYLCV: a historical point of view. Tomato Yellow Leaf Curl Virus Disease: Management, Molecular Biology, Breeding for Resistance H Czosnek 3–12 Dordrecht: Springer
    [Google Scholar]
  42. 41.  Costa AS 1965. Three whitefly-transmitted virus diseases of beans in São Paulo, Brazil. FAO Plant Prot. Bull. 13:121–30
    [Google Scholar]
  43. 42.  Creamer R, Luque-Williams M, Howo M 1996. Epidemiology and incidence of Beet curly top geminivirus in naturally infected weed hosts. Plant Dis 80:533–35
    [Google Scholar]
  44. 43.  De Barro PJ, Liu SS, Boykin LM, Dinsdale AB 2011. Bemisia tabaci: a statement of species status. Annu. Rev. Entomol. 56:1–19
    [Google Scholar]
  45. 44.  Duffus JE 1983. Epidemiology and control of curly top diseases of sugarbeet and other crops. Plant Virus Epidemiology. The Spread and Control of Insect-Borne Viruses RT Plumb, JM Thresh 297–304 Oxford: Blackwell Sci.
    [Google Scholar]
  46. 45.  Duffy S, Holmes EC 2007. Multiple introductions of the Old World begomovirus Tomato yellow leaf curl virus into the New World. Appl. Environ. Microbiol. 73:7114–17
    [Google Scholar]
  47. 46.  Faria JC, Maxwell DP 1999. Variability in geminivirus isolates associated with Phaseolus spp. in Brazil. Phytopathology 89:262–68
    [Google Scholar]
  48. 47.  Fiallo-Olive E, Marquez-Martin B, Hassan I, Chirinos D, Geraud-Pouey F et al. 2013. Complete genome sequences of two novel begomoviruses infecting common bean in Venezuela. Arch. Virol. 158:723–27
    [Google Scholar]
  49. 48.  Flock RA, Mayhew DE 1981. Squash leaf curl, a new disease of cucurbits in California. Plant Dis 65:75–76
    [Google Scholar]
  50. 49.  Fondong VN 2017. The search for resistance to Cassava mosaic geminiviruses: how much we have accomplished, and what lies ahead. Front. Plant Sci. 8:408
    [Google Scholar]
  51. 50.  Fortes I, Sánchez-Campos S, Fiallo-Olivé E, Díaz-Pendón J, Navas-Castillo J, Moriones E 2016. A novel strain of Tomato leaf curl New Delhi virus has spread to the Mediterranean Basin. Viruses 8:307
    [Google Scholar]
  52. 51.  Frison EA 1994. Sanitation techniques for cassava. Trop. Sci. 34:146
    [Google Scholar]
  53. 52.  Fukuta SF, Kato S, Yoshida K, Mizukami Y, Ishida A et al. 2003. Detection of tomato yellow leaf curl virus by loop-mediated isothermal amplification reaction. J. Virol. Methods 112:35–40
    [Google Scholar]
  54. 53.  Garcia-Neria MA, Rivera-Bustamante RF 2011. Characterization of geminivirus resistance in an accession of Capsicum chinense Jacq. Mol. Plant-Microbe Interact. 24:172–82
    [Google Scholar]
  55. 54.  Ghanim M 2014. A review of the mechanisms and components that determine the transmission efficiency of Tomato yellow leaf curl virus (Geminiviridae; Begomovirus) by its whitefly vector. Virus Res 186:47–54
    [Google Scholar]
  56. 55.  Ghazanfar MU, Sahi ST, Ilyas MB, Randhawa MA 2007. Influence of sowing dates on CLCuV incidence in some cotton varieties. Pak. J. Phytopathol. 19:177–80
    [Google Scholar]
  57. 56.  Gilbertson RL, Batuman O, Webster CG, Adkins S 2015. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2:67–93
    [Google Scholar]
  58. 57.  Gilbertson RL, Faria JC, Ahlquist P, Maxwell DP 1993. Genetic diversity in geminiviruses causing bean golden mosaic disease: the nucleotide sequence of the infectious cloned DNA components of a Brazilian isolate of Bean golden mosaic geminivirus. . Phytopathology 83:709–15
    [Google Scholar]
  59. 58.  Gilbertson RL, Hidayat SH, Martinez RT, Leong SA, Faria JC et al. 1991. Differentiation of bean-infecting geminiviruses by nucleic acid hybridization probes and aspects of bean golden mosaic in Brazil. Plant Dis 75:336–42
    [Google Scholar]
  60. 59.  Gilbertson RL, Rojas M, Natwick E 2011. Development of integrated pest management (IPM) strategies for whitefly (Bemisia tabaci)-transmissible geminiviruses. The Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) Interaction with Geminivirus-Infected Host Plants WMO Thompson 323–56 Dordrecht: Springer
    [Google Scholar]
  61. 60.  Guo JY, Ye GY, Dong SZ, Liu SS 2010. An invasive whitefly feeding on a virus-infected plant increased its egg production and realized fecundity. PLOS ONE 5:e11713
    [Google Scholar]
  62. 61.  Guzman P, Sudarshana MR, Seo Y-S, Rojas MR, Natwick E et al. 2000. A new bipartite geminivirus (Begomovirus) causing leaf curl and crumpling in cucurbits in the Imperial Valley of California. Plant Dis 84:488
    [Google Scholar]
  63. 62.  Haible D, Kober S, Jeske H 2006. Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J. Virol. Methods 135:9–16
    [Google Scholar]
  64. 63.  Hagen C, Rojas MR, Kon T, Gilbertson RL 2008. Recovery from Cucurbit leaf crumple virus (family Geminiviridae, genus Begomovirus) infection is an adaptive antiviral response associated with changes in viral small RNAs. Phytopathology 98:1029–37
    [Google Scholar]
  65. 64.  Hagen C, Rojas MR, Sudarshana MR, Xoconostle-Cazares B, Natwick ET et al. 2008. Biology and molecular characterization of Cucurbit leaf crumple virus, an emergent cucurbit-infecting begomovirus in the Imperial Valley of California. Plant Dis 92:781–83
    [Google Scholar]
  66. 65.  Hahn SK, Terry ER, Leuschner K 1980. Breeding cassava for resistance to cassava mosaic disease. Euphytica 29:673–83
    [Google Scholar]
  67. 66.  Hamed AA, Makkouk KM 2002. Occurence and management of Chickpea chlorotic dwarf virus in chickpea fields in northern Sudan. Phytopathol. Mediterr. 41:193–98
    [Google Scholar]
  68. 67.  Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S 2013. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat. Rev. Microbiol. 11:777–88
    [Google Scholar]
  69. 68.  Hawkins GW, Lett J-M, Briddon RW, Chase MW, Moury B, Martin DP 2011. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLOS ONE 6:e19193
    [Google Scholar]
  70. 69.  Horn NM, Reddy SV, Roberts IM, Reddy DVR 1993. Chickpea chlorotic dwarf virus, a new leafhopper‐transmitted geminivirus of chickpea in India. Ann. Appl. Biol. 122:467–79
    [Google Scholar]
  71. 70.  Horowitz R, Denholm I, Morin S 2007. Resistance to insecticides in the TYLCV vector, Bemisia tabaci. Tomato Yellow Leaf Curl Virus Disease: Management, Molecular Biology, Breeding for Resistance H Czosnek 305–25 Dordrecht, Neth: Springer
    [Google Scholar]
  72. 71.  Horowitz AR, Kontsedalov S, Ishaaya I 2004. Dynamics of resistance to the neonicotinoids acetamiprid and thiamethoxam in Bemisia tabaci (Homoptera: Aleyrodidae). J. Econ. Entomol. 97:2051–56
    [Google Scholar]
  73. 72.  Idris AM, Briddon RW, Bull SE, Brown JK 2005. Cotton leaf curl Gezira virus-satellite DNAs represent a divergent, geographically isolated Nile Basin lineage: predictive identification of a satDNA REP-binding motif. Virus Res 109:19–32
    [Google Scholar]
  74. 73.  Idris AM, Brown JK 2004. Cotton leaf crumple virus is a distinct Western Hemisphere begomovirus species with complex evolutionary relationships indicative of recombination and reassortment. Phytopathology 94:1068–74
    [Google Scholar]
  75. 74.  Inoue-Nagata AK, Albuquerque LC, Rocha WB, Nagata T 2004. A simple method for cloning the complete begomovirus genome using the bacteriophage φ29 DNA polymerase. J. Virol. Methods 116:209–11
    [Google Scholar]
  76. 75.  Inoue-Nagata AK, Lima MF, Gilbertson RL 2016. A review of geminivirus (begomovirus) diseases in vegetables and other crops in Brazil: current status and approaches for management. Hortic. Bras. 34:8–18
    [Google Scholar]
  77. 76.  Ji X, Zhang H, Zhang Y, Wang Y, Gao C 2015. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants 1:e15144
    [Google Scholar]
  78. 77.  Jose J, Usha R 2003. Bhendi yellow vein mosaic disease in India is caused by association of a DNA β satellite with a begomovirus. Virology 305:310–17
    [Google Scholar]
  79. 78.  Juarez MA, Tovar R, Fiallo-Olive E, Aranda MA, Gosalvez B et al. 2014. First detection of Tomato leaf curl New Delhi virus infecting zucchini in Spain. Plant Dis 98:857
    [Google Scholar]
  80. 79.  Jungner J 1906. Die Zwergzikade (Cicadula sexnotata Fall.) und ihre Bekämpfung Berlin: DLG
    [Google Scholar]
  81. 80.  Kaffka SR, Wintermantel WM, Lewellen RT 2002. Comparisons of soil and seed applied systemic insecticides to control Beet curly top virus in the San Joaquin Valley. J. Sugar Beet Res. 39:59–74
    [Google Scholar]
  82. 81.  Kanakala S, Verma HN, Vijay P, Saxena DR, Malathi VG 2013. Response of chickpea genotypes to Agrobacterium-mediated delivery of Chickpea chlorotic dwarf virus (CpCDV) genome and identification of resistance source. Appl. Microbiol. Biotechnol. 97:9491–501
    [Google Scholar]
  83. 82.  Karavina C 2014. Maize streak virus: a review of pathogen occurrence, biology and management options for smallholder farmers. Afr. J. Agric. Res. 9:2736–42
    [Google Scholar]
  84. 83.  Karthikeyan C, Patil BL, Borah BK, Resmi TR, Turco S et al. 2016. Emergence of a latent Indian cassava mosaic virus from cassava which recovered from infection by a non-persistent Sri Lankan cassava mosaic virus. . Viruses 8:e264
    [Google Scholar]
  85. 84.  Kenyon L, Tsai W-S, Shih S-L, Lee L-M 2014. Emergence and diversity of begomoviruses infecting solanaceous crops in East and Southeast Asia. Virus Res 186:104–13
    [Google Scholar]
  86. 85.  Kheyr-Pour A, Bananej K, Dafalla GA, Caciagli P, Noris E et al. 2000. Watermelon chlorotic stunt virus from the Sudan and Iran: sequence comparisons and identification of a whitefly-transmission determinant. Phytopathology 90:629–35
    [Google Scholar]
  87. 86.  Kil EJ, Kim S, Lee YJ, Byun HS, Park J et al. 2016. Tomato yellow leaf curl virus (TYLCV-IL): a seed-transmissible geminivirus in tomatoes. Sci. Rep. 6:19013
    [Google Scholar]
  88. 87.  Kis A, Tholt G, Ivanics M, Várallyay É, Jenes B, Havelda Z 2016. Polycistronic artificial miRNA‐mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature. Mol. Plant Pathol. 17:427–37
    [Google Scholar]
  89. 88.  Köklü G, Ramsell JNE, Kvarnheden A 2007. The complete genome sequence for a Turkish isolate of Wheat dwarf virus (WDV) from barley confirms the presence of two distinct WDV strains. Virus Genes 34:359–66
    [Google Scholar]
  90. 89.  Kon T, Rojas MR, Abdourhamane IK, Gilbertson RL 2009. Roles and interactions of begomoviruses and satellite DNAs associated with okra leaf curl disease in Mali, West Africa. J. Gen. Virol. 90:1001–13
    [Google Scholar]
  91. 90.  Krupovic M, Ravantti J, Bamford D 2009. Geminiviruses: a tale of a plasmid becoming a virus. BMC Evol. Biol. 9:112
    [Google Scholar]
  92. 91.  Kuan C-P, Wu M-T, Lu, Y-L, Huang H-C 2010. Rapid detection of squash leaf curl virus by loop-mediated isothermal amplification. J. Virol. Methods 169:61–65
    [Google Scholar]
  93. 92.  Kvarnhedan A, Lett J-M, Peterschmitt M 2016. Mastreviruses: tropical and temperate leafhopper-borne geminiviruses. Vector-Mediated Transmission of Plant Pathogens J Brown 231–241 St Paul, MN: Am. Phytopathol. Soc.
    [Google Scholar]
  94. 93.  Kyetere DT, Ming R, McMullen MD, Pratt RC, Brewbaker J, Musket T 1999. Genetic analysis of tolerance to Maize streak virus in maize. Genome 42:20–26
    [Google Scholar]
  95. 94.  Lagat M, Danson M, Kimani M, Kuria A 2008. Quantitative trait loci for resistance to Maize streak virus in maize genotypes used in hybrid development. Afr. J. Biotechnol. 7:2573–77
    [Google Scholar]
  96. 95.  Lapidot M, Gelbart D, Gal-On A, Sela N, Anfoka G et al. 2014. Frequent migration of introduced cucurbit-infecting begomoviruses among Middle Eastern countries. Virol. J. 11:181
    [Google Scholar]
  97. 96.  Lapidot M, Karniel U, Gelbart D, Fogel D, Evenor D et al. 2015. A novel route controlling begomovirus resistance by the messenger RNA surveillance factor Pelota. PLOS Genet 11:e1005538
    [Google Scholar]
  98. 97.  Lapidot M, Legg JP, Wintermantel WM, Polston JE 2014. Management of whitefly-transmitted viruses in open-field production systems. Adv. Virus Res. 90:147–206
    [Google Scholar]
  99. 98.  Lefeuvre P, Martin DP, Harkins G, Lemey P, Gray AJA et al. 2010. The spread of Tomato yellow leaf curl virus from the Middle East to the world. PLOS Pathog 6:e1001164
    [Google Scholar]
  100. 99.  Lefeuvre P, Moriones E 2015. Recombination as a motor of host switches and virus emergence: geminiviruses as case studies. Curr. Opin. Virol. 10:14–19
    [Google Scholar]
  101. 100.  Legg J, Alvarez E 2017. Diseases affecting cassava. Achieving Sustainable Cultivation of Cassava 2 C Hershey 213–44 Philadelphia: Burleigh Dodds Sci.
    [Google Scholar]
  102. 101.  Legg J, Jeremiah S, Obiero H, Maruthi M, Ndyetabula I et al. 2011. Comparing the regional epidemiology of the cassava mosaic and Cassava brown streak virus pandemics in Africa. Virus Res 159:161–70
    [Google Scholar]
  103. 102.  Legg JP, Lava Kumar P, Makeshkumar T, Tripathi L, Ferguson M et al. 2015. Cassava virus diseases: biology, epidemiology, and management. Adv. Virus Res 91:85–142
    [Google Scholar]
  104. 103.  Leke WN, Mignouna DB, Brown JK, Kvarnheden A 2015. Begomovirus disease complexes: emerging threat to vegetable production systems of West and Central Africa. Agric. Food Secur. 4:1
    [Google Scholar]
  105. 104.  Leke WN, Sattar MN, Ngane EB, Ngeve JM, Kvarnheden A, Brown JK 2013. Molecular characterization of begomoviruses and DNA satellites associated with okra leaf curl disease in Cameroon. Virus Res 174:116–25
    [Google Scholar]
  106. 105.  Li Z, Xie Y, Zhou XP 2005. Tobacco curly shoot virus DNAβ is not necessary for infection but intensifies symptoms in a host-dependent manner. Phytopathology 95:902–8
    [Google Scholar]
  107. 106.  Lima ATM, Sobrinho RR, González-Aguilera J, Rocha CS, Silva SJC et al. 2013. Synonymous site variation due to recombination explains higher genetic variability in begomovirus populations infecting non-cultivated hosts. J. Gen. Virol. 94:418–31
    [Google Scholar]
  108. 107.  Lima JS, Assunção IP, Teodoro I, Lima GSA, Michereff SJ 2011. Influence of irrigation system on incidence and losses caused by golden mosaic in common bean. Trop. Plant Pathol. 36:50–53
    [Google Scholar]
  109. 108.  Lindblad M, Arenö P 2002. Temporal and spatial population dynamics of Psammotettix alienus, a vector of Wheat dwarf virus. Int. J. . Pest Manag 48:233–38
    [Google Scholar]
  110. 109.  Lindblad M, Sigvald R 2004. Temporal spread of Wheat dwarf virus and mature plant resistance in winter wheat. Crop Prot 23:229–34
    [Google Scholar]
  111. 110.  Lindsten K, Vacke J 1991. A possible barley adapted strain of Wheat dwarf virus (WDV). Acta Phytopathol. Entomol. Hung. 26:175–80
    [Google Scholar]
  112. 111.  Londoño MA, Harmon CL, Polston JE 2016. Evaluation of recombinase polymerase amplification for detection of begomoviruses by plant diagnostic clinics. Virol. J. 13:48
    [Google Scholar]
  113. 112.  Macedo MA, Albuquerque LC, Maliano MR, Souza JO, Rojas MR et al. 2017. Characterization of tomato leaf curl purple vein virus, a new monopartite New World begomovirus infecting tomato in Northeast Brazil. Arch. Virol. 163:737–43
    [Google Scholar]
  114. 113.  Macedo MA, Barreto SS, Costa TM, Rocha GA, Dianese EC et al. 2017. First report of Tomato severe rugose virus, a tomato-infecting begomovirus, in soybean plants in Brazil. Plant Dis 101:1959
    [Google Scholar]
  115. 114.  Macedo MA, Costa TM, Barbosa JC, Pereira JL, Michereff-Filho M et al. 2017. Temporal and spatial dynamics of begomovirus disease in tomatoes in Central Brazil. Plant Pathol 66:529–38
    [Google Scholar]
  116. 115.  Magenya OEV, Mueke J, Omwega C 2008. Significance and transmission of maize streak virus disease in Africa and options for management: a review. Afr. J. Biotechnol. 7:4897–910
    [Google Scholar]
  117. 116.  Mansoor S, Amin I, Iram S, Hussain M, Zafar Y et al. 2003. Breakdown of resistance in cotton to cotton leaf curl disease in Pakistan. Plant Pathol 52:784
    [Google Scholar]
  118. 117.  Manurung B, Witsack W, Mehner S, Gruntzig M, Fuchs E 2004. The epidemiology of Wheat dwarf virus in relation to occurrence of the leafhopper Psammotettix alienus in Middle-Germany. Virus Res 100:109–13
    [Google Scholar]
  119. 118.  Márquez-Martín B, Aragón-Caballero L, Fiallo-Olivé E, Navas-Castillo J, Moriones E 2011. Tomato leaf deformation virus, a novel begomovirus associated with a severe disease of tomato in Peru. Eur. J. Plant Pathol. 129:1–7
    [Google Scholar]
  120. 119.  Martin DP, Shepherd DN 2009. The epidemiology, economic impact and control of maize streak disease. Food Secur 1:305–15
    [Google Scholar]
  121. 120.  Mendez-Lozano J, Torres-Pacheco I, Fauquet CM, Rivera-Bustamante RF 2003. Interactions between geminiviruses in a naturally occurring mixture: Pepper huasteco virus and Pepper golden mosaic virus. . Phytopathology 93:270–77
    [Google Scholar]
  122. 121.  Meng B, Martelli GP, Golino DA, Fuchs M 2017. Grapevine Viruses: Molecular Biology, Diagnostics and Management New York: Springer Int.
    [Google Scholar]
  123. 122.  Monjane AL, Harkins GW, Martin DP, Lemey P, Lefeuvre P et al. 2011. Reconstructing the history of Maize streak virus strain A dispersal to reveal diversification hot spots and its origin in Southern Africa. J. Virol. 85:9623–36
    [Google Scholar]
  124. 123.  Morales F, Niessen A, Ramirez BT, Castano M 1990. Isolation and partial characterization of a geminivirus causing bean dwarf mosaic. Phytopathology 80:96–101
    [Google Scholar]
  125. 124.  Moriones E, Praveen S, Chakraborty S 2017. Tomato leaf curl New Delhi virus: an emerging virus complex threatening vegetable and fiber crops. Viruses 9:e264
    [Google Scholar]
  126. 125.  Muniyappa V 1980. Whiteflies. Vectors of Plant Pathogens KF Harris, K Maramorisch 39–85 New York: Academic
    [Google Scholar]
  127. 126.  Nauen R, Denholm I 2005. Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch. Insect Biochem. Physiol. 58:200–15
    [Google Scholar]
  128. 127.  Navas-Castillo J, Sanchez-Campos S, Diaz JA, Saez-Alonso E, Moriones E 1999. Tomato yellow leaf curl virus-Is causes a novel disease of common bean and severe epidemics in tomato in Spain. Plant Dis 83:29–32
    [Google Scholar]
  129. 128.  Ning W, Shi X, Liu B, Pan H, Wei W et al. 2015. Transmission of Tomato yellow leaf curl virus by Bemisia tabaci as affected by whitefly sex and biotype. Sci. Rep. 5:e10744
    [Google Scholar]
  130. 129.  Nygren J, Shad N, Kvarnheden A, Westerbergh A 2015. Variation in susceptibility to Wheat dwarf virus among wild and domesticated wheat. PLOS ONE 10:e0121580
    [Google Scholar]
  131. 130.  Ogbe FO, Legg J, Raya MD, Muimba-Kankolongo A, Theu MP et al. 1997. Diagnostic survey of cassava mosaic viruses in Tanzania, Malawi and Zambia. Roots 4:12–15
    [Google Scholar]
  132. 131.  Ogbe FO, Songa W, Kamau JW 1996. Survey of the incidence of African cassava mosaic and East African cassava mosaic viruses in Kenya and Uganda using a monoclonal antibody-based diagnostic test. Roots 3:10–14
    [Google Scholar]
  133. 132.  Okogbenin E, Egesi CN, Olasanmi B, Ogundapo O, Kahya S et al. 2012. Molecular marker analysis and validation of resistance to cassava mosaic disease in elite cassava genotypes in Nigeria. Crop Sci 52:2576–86
    [Google Scholar]
  134. 133.  Otim-Nape GW, Bua A, Thresh JM, Baguma Y, Ogwal S et al. 1997. Cassava Mosaic Virus Disease in Uganda: The Current Pandemic and Approaches to Control Chatham, UK: Nat. Resour. Inst.
    [Google Scholar]
  135. 134.  Otti G, Bouvaine S, Kimata B, Mkamillo G, Kumar PL et al. 2016. High‐throughput multiplex real‐time PCR assay for the simultaneous quantification of DNA and RNA viruses infecting cassava plants. J. Appl. Microbiol. 120:1346–56
    [Google Scholar]
  136. 135.  Pakkianathan BC, Kontsedalov S, Lebedev G, Mahadav A, Zeidan M et al. 2015. Replication of Tomato yellow leaf curl virus in its whitefly vector Bemisia tabaci. J. . Virol 89:9791–803
    [Google Scholar]
  137. 136.  Panella L, Strausbaugh CA 2012. Beet curly top resistance in USDA-ARS plant introductions. Plant Dis. Manag. Rep. 7:FC121
    [Google Scholar]
  138. 137.  Perry KL, McLane H, Hyder MZ, Dangl GS, Thompson JR, Fuchs MF 2016. Grapevine red blotch-associated virus is present in free-living Vitis spp. proximal to cultivated grapevines. Phytopathology 106:663–70
    [Google Scholar]
  139. 138.  Perry KL, McLane H, Thompson JR, Fuchs M 2018. A novel grablovirus from non-cultivated grapevine (Vitus sp.) in North America. Arch. Virol. 163:259–62
    [Google Scholar]
  140. 139.  Peterschmitt M, Granier M, Aboulama S 1999. First report of Tomato yellow leaf curl geminivirus in Morocco. Plant Dis 83:1074
    [Google Scholar]
  141. 140.  Pfeiffer DG, Mullins DE, Gilbertson RL, Brewster CC, Westwood J, Miller SA 2011. IPM packages developed for vegetable crops in West Africa. Phytopathology 101:S228
    [Google Scholar]
  142. 141.  Pita JS, Fondong VN, Sangare A, Otim-Nape GW, Ogwal S, Fauquet CM 2001. Recombination pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J. Gen. Virol. 82:655–65
    [Google Scholar]
  143. 142.  Pratt R, Gordon S, Lipps P, Asea G, Bigirwa G, Pixley K 2003. Use of IPM in the control of multiple diseases in maize: strategies for selection of host resistance. Afr. Crop Sci. J. 11:189–98
    [Google Scholar]
  144. 143.  Ramcharan A, Baranowski K, McCloskey P, Ahamed B, Legg J, Hughes D 2017. Transfer learning for image-based cassava disease detection. Front. Plant Sci. 8:e1852
    [Google Scholar]
  145. 144.  Ramesh SV, Sahu PP, Prasad M, Praveen S, Pappu HR 2017. Geminiviruses and plant hosts: a closer examination of the molecular arms race. Viruses 9:e1852
    [Google Scholar]
  146. 145.  Ramsell JNE, Boulton MI, Martin DP, Valkonen JPT, Kvarnheden A 2009. Studies on the host range of the barley strain of Wheat dwarf virus using an agroinfectious viral clone. Plant Pathol 58:1161–69
    [Google Scholar]
  147. 146.  Reynaud B, Peterschmitt M 1992. A study of the mode of transmission of Maize streak virus by Cicadulina mbila using an enzyme‐linked immunosorbent assay. Ann. Appl. Biol. 121:85–94
    [Google Scholar]
  148. 147.  Rodríguez-Pardina PE, Zerbini FM, Ducasse DA, Murilo F, Rodríguez-Pardina Z et al. 2006. Genetic diversity of begomoviruses infecting soybean, bean and associated weeds in Northwestern Argentina. Fitopatol. Bras. 31:342–48
    [Google Scholar]
  149. 148.  Rojas MR, Gilbertson RL, Russel DR, Maxwell DP 1993. Use of degenerate primers in the polymesase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis 77:340–47
    [Google Scholar]
  150. 149.  Rojas MR, Hagen C, Lucas WJ, Gilbertson RL 2005. Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu. Rev. Phytopathol. 43:361–94
    [Google Scholar]
  151. 149a.  Romero M 2018. GCP21 calls for regional approach to stem the outbreak of cassava mosaic disease in Southeast Asia. CIAT Blog June 27. https://blog.ciat.cgiar.org/press-release-gcp21-calls-for-regional-approach-to-stem-the-outbreak-of-cassava-mosaic-disease-in-southeast-asia/
    [Google Scholar]
  152. 150.  Rose DJW 1978. Epidemiology of maize streak disease. Annu. Rev. Entomol. 23:259–83
    [Google Scholar]
  153. 151.  Sakata JJ, Shibuya Y, Sharma P, Ikegami M 2008. Strains of a new bipartite begomovirus, Pepper yellow leaf curl Indonesia virus, in leaf-curl-diseased tomato and yellow-vein-diseased ageratum in Indonesia. Arch. Virol. 153:2307–13
    [Google Scholar]
  154. 152.  Salati R, Nahkla MK, Rojas MR, Guzman P, Jaquez J et al. 2002. Tomato yellow leaf curl virus in the Dominican Republic: characterization of an infectious clone, virus monitoring in whiteflies, and identification of reservoir hosts. Phytophatology 92:487–96
    [Google Scholar]
  155. 153.  Samu F, Beleznai O, Tholt G 2013. A potential spider natural enemy against virus vector leafhoppers in agricultural mosaic landscapes: corroborating ecological and behavioral evidence. Biol. Control 67:390–96
    [Google Scholar]
  156. 154.  Sander JD, Joung JK 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:347–55
    [Google Scholar]
  157. 155.  Sanwal S, Singh M, Singh DB, Naik P 2014. Resistance to Yellow vein mosaic virus and Okra enation leaf curl virus: challenges and future strategies. Curr. Sci. 106:1470–71
    [Google Scholar]
  158. 156.  Saunders K, Salim N, Mali VR, Malathi VG, Briddon R et al. 2002. Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA-B component by a monopartite begomovirus. Virology 293:63–74
    [Google Scholar]
  159. 157.  Schubert J, Habekuß A, Kazmaier K, Jeske H 2007. Surveying cereal-infecting geminiviruses in Germany: diagnostics and direct sequencing using rolling circle amplification. Virus Res 127:61–70
    [Google Scholar]
  160. 158.  Seo Y-S, Gepts PG, Gilbertson RL 2004. Genetics of resistance to the geminivirus, Bean dwarf mosaic virus, and the role of the hypersensitive response in common bean. Theor. Appl. Genet. 108:786–93
    [Google Scholar]
  161. 169.  Seo Y-S, Zhou Y-C, Turini TA, Cook CG, Gilbertson RL, Natwick ET 2006. Evaluation of cotton germplasm for resistance to the whitefly and cotton leaf crumple (CLCr) disease and etiology of CLCr in California's Imperial Valley. Plant Dis 90:877–84
    [Google Scholar]
  162. 160.  Shepherd DN, Mangwende T, Martin DP, Bezuidenhout M, Kloppers FJ et al. 2007. Maize streak virus-resistant transgenic maize: a first for Africa. Plant Biotechnol. J. 5:759–67
    [Google Scholar]
  163. 161.  Shepherd DN, Martin DP, Van Der Walt E, Dent K, Varsani A, Rybicki EP 2010. Maize streak virus: an old and complex “emerging” pathogen. Mol. Plant Pathol. 11:1–12
    [Google Scholar]
  164. 162.  Shetty AO, Singh JP, Singh D 2013. Resistance to yellow vein mosaic virus in okra: a review. Biol. Agric. Hortic. 29:159–64
    [Google Scholar]
  165. 163.  Shih SL, Tsai WS, Green SK, Khalid S, Ahmad I et al. 2003. Molecular characterization of tomato and chili leaf curl begomoviruses from Pakistan. Plant Dis 87:200
    [Google Scholar]
  166. 164.  Sseruwagi P, Sserubombwe WS, Legg JP, Ndunguru J, Thresh JM 2004. Methods of surveying the incidence and severity of cassava mosaic disease and whitefly vector populations on cassava in Africa: a review. Virus Res 100:129–42
    [Google Scholar]
  167. 165.  Stansly PA, Sánchez PA, Rodríguez JM, Cañizares F, Nieto A et al. 2004. Prospects for biological control of Bemisia tabaci (Homoptera, Aleyrodidae) in greenhouse tomatoes of southern Spain. Crop Prot 23:701–12
    [Google Scholar]
  168. 166.  Strausbaugh CA, Wenninger EJ, Eujayl IA 2012. Management of severe curly top in sugar beet with insecticides. Plant Dis 96:1159–64
    [Google Scholar]
  169. 167.  Strausbaugh CA, Wenninger EJ, Eujayl IA 2014. Control of curly top in sugar beet with seed and foliar insecticides. Plant Dis 98:1075–80
    [Google Scholar]
  170. 168.  Strausbaugh CA, Wintermantel WM, Gillen AM, Eujayl IA 2008. Curly top survey in the western United States. Phytopathology 98:1212–17
    [Google Scholar]
  171. 169.  Sudarshana MR, Perry KL, Fuchs MF 2015. Grapevine red blotch-associated virus, an emerging threat to the grapevine industry. Phytopathology 105:1026–32
    [Google Scholar]
  172. 170.  Sufrin-Ringwald T, Lapidot M 2011. Characterization of a synergistic interaction between two cucurbit-infecting begomoviruses: Squash leaf curl virus and Watermelon chlorotic stunt virus. . Phytopathology 101:281–89
    [Google Scholar]
  173. 171.  Swanson MM, Harrison BD 1994. Properties, relationships and distribution of cassava mosaic geminiviruses. Trop. Sci. 34:15–25
    [Google Scholar]
  174. 172.  Szyniszewska AM, Busungu C, Boni SB, Shirima R, Bouwmeester H, Legg JP 2017. Spatial analysis of temporal changes in the pandemic of severe cassava mosaic disease in northwestern Tanzania. Phytopathology 107:1229–42
    [Google Scholar]
  175. 173.  Tahir M, Haider MS, Briddon RW 2010. Chili leaf curl betasatellite is associated with a distinct recombinant begomovirus, Pepper leaf curl Lahore virus, in Capsicum in Pakistan. Virus Res 149:109–14
    [Google Scholar]
  176. 174.  Deleted in proof
  177. 175.  Taylor N, Chavarriaga P, Raemakers K, Siritunga D, Zhang P 2004. Development and application of transgenic technologies in cassava. Plant Mol. Biol. 56:671–88
    [Google Scholar]
  178. 176.  Taylor N, Gaitán-Solís E, Moll T, Trauterman B, Jones T et al. 2012. A high-throughput platform for the production and analysis of transgenic cassava (Manihot esculenta) plants. Trop. Plant Biol. 5:127–39
    [Google Scholar]
  179. 177.  Tiendrébéogo F, Lefeuvre P, Hoareau M, Traoré VSE, Barro N et al. 2011. Molecular and biological characterization of Pepper yellow vein Mali virus (PepYVMV) isolates associated with pepper yellow vein disease in Burkina Faso. Arch. Virol. 156:483–87
    [Google Scholar]
  180. 178.  Torres-Pacheco I, Garzon-Tiznado JA, Brown JK, Becerra-Flora A, Rivera-Bustamante RF 1996. Detection and distribution of geminiviruses in Mexico and the southern United States. Phytopathology 86:1186–92
    [Google Scholar]
  181. 179.  Ucko O, Cohen S, Ben-Joseph R 1998. Prevention of virus epidemics by a crop-free period in the Arava region of Israel. Phytoparasitica 26:313–21
    [Google Scholar]
  182. 180.  Vacke J 1961. Wheat dwarf virus disease. Biol. Plant. 3:228–33
    [Google Scholar]
  183. 181.  Vacke J, Cibulka R 2000. Response of selected winter wheat varieties to Wheat dwarf virus infection at an early growth stage. Czech J. Genet. Plant Breed. 36:1–4
    [Google Scholar]
  184. 182.  Varma A, Malathi VG 2003. Emerging geminivirus problems: a serious threat to crop production. Ann. Appl. Biol. 142:145–64
    [Google Scholar]
  185. 183.  Varsani A, Martin DP, Navas-Castillo J, Moriones E, Hernandez-Zepeda C et al. 2014. Revisiting the classification of curtoviruses based on genome-wide pairwise identity. Arch. Virol. 159:1873–82
    [Google Scholar]
  186. 184.  Varsani A, Roumagnac P, Fuchs M, Navas-Castillo J, Moriones E et al. 2017. Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Arch. . Virol 162:1819–31
    [Google Scholar]
  187. 185.  Venkataravanappa V, Reddy M, Jalali S, Reddy MK 2015. Association of Tomato leaf curl New Delhi virus DNA-B with Bhendi yellow vein mosaic virus in okra showing yellow vein mosaic disease symptoms. Acta Virol 59:125–39
    [Google Scholar]
  188. 186.  Kumar RV, Singh AK, Singh AK, Yadav T, Singh AK et al. 2015. Complexity of begomovirus and betasatellite populations associated with chilli leaf curl disease in India. J. Gen. Virol. 96:3143–58
    [Google Scholar]
  189. 187.  Wang HL, Cui XY, Wang XW, Liu SS, Zhang ZH, Zhou XP 2016. First report of Sri Lankan cassava mosaic virus infecting cassava in Cambodia. Plant Dis 100:1029
    [Google Scholar]
  190. 188.  Wang LL, Wang XR, Wei XM, Huang H, Wu JX et al. 2016. The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies. Autophagy 12:1560–74
    [Google Scholar]
  191. 189.  Wolfe MD, Rabbi IY, Egesi C, Hamblin M, Kawuki R et al. 2016. Genome-wide association and prediction reveals genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement. Plant Genome 9:1–13
    [Google Scholar]
  192. 190.  Xie K, Cai JH, Hu DM, Wei X, Jia Q et al. 2010. First report of okra leaf curl disease in China. J. Plant Pathol. 92:109
    [Google Scholar]
  193. 191.  Xie Y, Zhao L, Jiao X, Jiang T, Gong H et al. 2013. A recombinant begomovirus resulting from exchange of the C4 gene. J. Gen. Virol. 94:1896–907
    [Google Scholar]
  194. 192.  Yang X, Guo W, Ma X, An Q, Zhou XP 2011. Molecular characterization of Tomato leaf curl China virus, infecting tomato plants in China, and functional analyses of its associated betasatellite. Appl. Environ. Microbiol. 77:3092–101
    [Google Scholar]
  195. 193.  Yepes LM, Cieniewicz EJ, Krenz B, McLane H, Thompson JR, Perry KL, Fuchs M 2018. Causative role of grapevine red blotch virus in red blotch disease. Phytopathology 108:902–9
    [Google Scholar]
  196. 194.  Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E et al. 2017. ICTV virus taxonomy profile: Geminiviridae. J. Gen. . Virol 98:131–33
    [Google Scholar]
  197. 195.  Zhou XP 2013. Advances in understanding begomovirus satellites. Annu. Rev. Phytopathol. 51:357–81
    [Google Scholar]
  198. 196.  Zhou XP, Liu YL, Calvert L, Munoz C, Otim-Nape GW et al. 1997. Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78:2101–11
    [Google Scholar]
  199. 197.  Zhou YC, Noussourou M, Kon T, Rojas MR, Jiang H et al. 2008. Evidence of local evolution of tomato-infecting begomovirus species in West Africa: characterization of Tomato leaf curl Mali virus and Tomato yellow leaf crumple virus from Mali. Arch Virol 153:693–706
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080615-100327
Loading
/content/journals/10.1146/annurev-phyto-080615-100327
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error