1932

Abstract

Parasitic plants steal sugars, water, and other nutrients from host plants through a haustorial connection. Several species of parasitic plants such as witchweeds ( spp.) and broomrapes ( and spp.) are major biotic constraints to agricultural production. Parasitic plants are understudied compared with other major classes of plant pathogens, but the recent availability of genomic and transcriptomic data has accelerated the rate of discovery of the molecular mechanisms underpinning plant parasitism. Here, we review the current body of knowledge of how parasitic plants sense host plants, germinate, form parasitic haustorial connections, and suppress host plant immune responses. Additionally, we assess whether parasitic plants fit within the current paradigms used to understand the molecular mechanisms of microbial plant–pathogen interactions. Finally, we discuss challenges facing parasitic plant research and propose the most urgent questions that need to be answered to advance our understanding of plant parasitism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-082718-100043
2019-08-25
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/phyto/57/1/annurev-phyto-082718-100043.html?itemId=/content/journals/10.1146/annurev-phyto-082718-100043&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Akiyama K, Matsuzaki K-I, Hayashi H 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–27
    [Google Scholar]
  2. 2. 
    Alakonya A, Kumar R, Koenig D, Kimura S, Townsley B et al. 2012. Interspecific RNA interference of SHOOT MERISTEMLESS-like disrupts Cuscuta pentagona plant parasitism. Plant Cell 24:3153–66
    [Google Scholar]
  3. 3. 
    Albrecht H, Yoder JI, Phillips DA 1999. Flavonoids promote haustoria formation in the root parasite Triphysaria versicolor. Plant Physiol 119:585–91
    [Google Scholar]
  4. 4. 
    Aly R. 2007. Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cell. Dev. Biol. Plant 43:304–17
    [Google Scholar]
  5. 5. 
    Amusan IO, Rich PJ, Menkir A, Housley T, Ejeta G 2008. Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytol 178:157–66
    [Google Scholar]
  6. 6. 
    Asai S, Shirasu K. 2015. Plant cells under siege: plant immune system versus pathogen effectors. Curr. Opin. Plant Biol. 28:1–8
    [Google Scholar]
  7. 7. 
    Atsatt PR. 1973. Parasitic flowering plants: How did they evolve?. Am. Nat. 107:502–10
    [Google Scholar]
  8. 8. 
    Bandaranayake PCG, Filappova T, Tomilov A, Tomilova NB, Jamison-McClung D et al. 2010. A single-electron reducing quinone oxidoreductase is necessary to induce haustorium development in the root parasitic plant Triphysaria. Plant Cell 22:1404–19
    [Google Scholar]
  9. 9. 
    Bandaranayake PCG, Yoder J. 2013. Haustorium initiation and early development. See Ref. 59, 61–74
  10. 10. 
    Bandaranayake PCG, Yoder JI. 2013. Trans-specific gene silencing of acetyl-CoA carboxylase in a root-parasitic plant. Mol. Plant-Microbe Interact. 26:575–84
    [Google Scholar]
  11. 11. 
    Ben-Hod G, Losner D, Joel DM, Mayer M 1993. Pectin methylesterase in calli and germinating seeds of Orobanche aegyptiaca. Phytochemistry 32:1399–402
    [Google Scholar]
  12. 12. 
    Birschwilks M, Haupt S, Hofius D, Neumann S 2006. Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. J. Exp. Bot. 57:911–21
    [Google Scholar]
  13. 13. 
    Boller T, He S-Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors and effectors in microbial pathogens. Science 324:742–44
    [Google Scholar]
  14. 14. 
    Bos JIB, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA 2010. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLOS Genet 6:e1001216
    [Google Scholar]
  15. 15. 
    Botanga CJ, Timko MP. 2005. Genetic structure and analysis of host and non-host interactions of Striga gesnerioides (witchweed) from central Florida. Phytopathology 95:1166–73
    [Google Scholar]
  16. 16. 
    Bythell-Douglas R, Rothfels CJ, Stevenson DWD, Graham SW, Wong GK-S et al. 2017. Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues. BMC Biol 15:52
    [Google Scholar]
  17. 17. 
    Cai Q, He B, Kogel K-H, Jin H 2018. Cross-kingdom RNA trafficking and environmental RNAi—nature's blueprint for modern crop protection strategies. Curr. Opin. Microbiol. 46:58–64
    [Google Scholar]
  18. 18. 
    Cai Q, Qiao L, Wang M, He B, Lin F-M et al. 2018. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–29
    [Google Scholar]
  19. 19. 
    Calderwood A, Kopriva S, Morris RJ 2016. Transcript abundance explains mRNA mobility data in Arabidopsis thaliana. Plant Cell 28:610–15
    [Google Scholar]
  20. 20. 
    Chang M, Lynn DG. 1986. The haustorium and the chemistry of host recognition in parasitic angiosperms. J. Chem. Ecol. 12:561–79
    [Google Scholar]
  21. 21. 
    Chinchilla D, Shan L, He P, de Vries S, Kemmerling B 2009. One for all: the receptor-associated kinase BAK1. Trends Plant Sci 14:535–41
    [Google Scholar]
  22. 22. 
    Conn CE, Bythell-Douglas R, Neumann D, Yoshida S, Whittington B et al. 2015. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349:540–43
    [Google Scholar]
  23. 23. 
    Cui H, Tsuda K, Parker JE 2015. Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66:487–511
    [Google Scholar]
  24. 24. 
    Cui S, Wada S, Tobimatsu Y, Takeda Y, Saucet SB et al. 2018. Host lignin composition affects haustorium induction in the parasitic plants Phtheirospermum japonicum and Striga hermonthica. New Phytol 218:710–23
    [Google Scholar]
  25. 25. 
    Cui S, Wakatake T, Hashimoto K, Saucet SB, Toyooka K et al. 2016. Haustorial hairs are specialized root hairs that support parasitism in the facultative parasitic plant Phtheirospermum japonicum. Plant Physiol 170:1492–503
    [Google Scholar]
  26. 26. 
    David-Schwartz R, Runo S, Townsley B, Machuka J, Sinha N 2008. Long-distance transport of mRNA via parenchyma cells and phloem across the host-parasite junction in Cuscuta. New Phytol 179:1133–41
    [Google Scholar]
  27. 27. 
    De Cuyper C, Struk S, Braem L, Gevaert K, De Jaeger G, Goormachtig S 2017. Strigolactones, karrikins and beyond. Plant Cell Environ 40:1691–703
    [Google Scholar]
  28. 28. 
    de Jonge R, Bolton MD, Thomma BPHJ 2011. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Curr. Opin. Plant Biol. 14:400–6
    [Google Scholar]
  29. 29. 
    Delaux P-M, Xie X, Timme RE, Puech-Pages V, Dunand C et al. 2012. Origin of strigolactones in the green lineage. New Phytol 195:857–71
    [Google Scholar]
  30. 30. 
    Eizenberg H, Hershenhorn J, Ephrath JH, Kanampiu F 2013. Chemical control. See Ref. 59 415–32
  31. 31. 
    Feng F, Zhou J-M. 2012. Plant–bacterial pathogen interactions mediated by type III effectors. Curr. Opin. Plant Biol. 15:469–76
    [Google Scholar]
  32. 32. 
    Fernández-Aparicio M, Masi M, Maddau L, Cimmino A, Evidente M et al. 2016. Induction of haustorium development by sphaeropsidones in radicles of the parasitic weeds Striga and Orobanche. A structure–activity relationship study. J. Agric. Food Chem. 64:5188–96
    [Google Scholar]
  33. 33. 
    Fernández-Aparicio M, Rubiales D. 2010. Characterisation of resistance to crenate broomrape (Orobanche crenata Forsk.) in Lathyrus cicera L. Euphytica 173:77–84
    [Google Scholar]
  34. 34. 
    Fernández-Aparicio M, Sillero JC, Rubiales D 2009. Resistance to broomrape species (Orobanche spp.) in common vetch (Vicia sativa L.). Crop Prot 28:7–12
    [Google Scholar]
  35. 35. 
    Fernández-Martínez JM, Domínguez J, Pérez-Vich B, Velasco L 2009. Current research strategies for sunflower broomrape control in Spain. Helia 32:47–55
    [Google Scholar]
  36. 36. 
    Furuhashi T, Furuhashi K, Weckwerth W 2011. The parasitic mechanism of the holostemparasitic plant Cuscuta. J. Plant Interact 6:207–19
    [Google Scholar]
  37. 37. 
    Goldwasser Y, Sazo MRM, Lanini WT 2012. Control of field dodder (Cuscuta campestris) parasitizing tomato with ALS-inhibiting herbicides. Weed Technol 26:740–46
    [Google Scholar]
  38. 38. 
    Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA et al. 2008. Strigolactone inhibition of shoot branching. Nature 455:189–94
    [Google Scholar]
  39. 39. 
    Goyet V, Billard E, Pouvreau J-B, Lechat M-M, Pelletier S et al. 2017. Haustorium initiation in the obligate parasitic plant Phelipanche ramosa involves a host-exudated cytokinin signal. J. Exp. Bot. 68:5539–52
    [Google Scholar]
  40. 40. 
    Gurney AL, Grimanelli D, Kanampiu F, Hoisington D, Scholes JD, Press MC 2003. Novel sources of resistance to Striga hermonthica in Tripsacum dactyloides, a wild relative of maize. New Phytol 160:557–68
    [Google Scholar]
  41. 41. 
    Gurney AL, Slate J, Press MC, Scholes JD 2006. A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phytol 169:199–208
    [Google Scholar]
  42. 42. 
    Gust AA, Pruitt R, Nürnberger T 2017. Sensing danger: key to activating plant immunity. Trends Plant Sci 22:779–91
    [Google Scholar]
  43. 43. 
    Haidar MA, Orr GL, Westra P 1997. Effects of light and mechanical stimulation on coiling and prehaustoria formation in Cuscuta spp. Weed Res 37:219–28
    [Google Scholar]
  44. 44. 
    Haussmann BIG, Hess DE, Omanya GO, Folkertsma RT, Reddy BVS et al. 2004. Genomic regions influencing resistance to the parasitic weed Striga hermonthica in two recombinant inbred populations of sorghum. Theor. Appl. Genet. 109:1005–16
    [Google Scholar]
  45. 45. 
    Hegenauer V, Fürst U, Kaiser B, Smoker M, Zipfel C et al. 2016. Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor. Science 353:478–81
    [Google Scholar]
  46. 46. 
    Hettenhausen C, Li J, Zhuang H, Sun H, Xu Y et al. 2017. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants. PNAS 114:E6703–9
    [Google Scholar]
  47. 47. 
    Hiraoka Y, Ueda H, Sugimoto Y 2009. Molecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica. J. Exp. Bot. 60:641–50
    [Google Scholar]
  48. 48. 
    Hogenhout SA, Van der Hoorn RAL, Terauchi R, Kamoun S 2009. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant-Microbe Interact. 22:115–22
    [Google Scholar]
  49. 49. 
    Holmes MG, Smith H. 1975. The function of phytochrome in plants growing in the natural environment. Nature 254:512
    [Google Scholar]
  50. 50. 
    Honaas L, Wafula E, Yang Z, Der J, Wickett N et al. 2013. Functional genomics of a generalist parasitic plant: laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression. BMC Plant Biol 13:9
    [Google Scholar]
  51. 51. 
    Ichihashi Y, Mutuku JM, Yoshida S, Shirasu K 2015. Transcriptomics exposes the uniqueness of parasitic plants. Brief. Funct. Genom. 14:275–82
    [Google Scholar]
  52. 52. 
    Irving LJ, Cameron DD. 2009. You are what you eat: interactions between root parasitic plants and their hosts. Adv. Bot. Res. 50:87–138
    [Google Scholar]
  53. 53. 
    Ishida JK, Wakatake T, Yoshida S, Takebayashi Y, Kasahara H et al. 2016. Local auxin biosynthesis mediated by a YUCCA flavin monooxygenase regulates haustorium development in the parasitic plant Phtheirospermum japonicum. Plant Cell 28:1795–814
    [Google Scholar]
  54. 54. 
    Ishida JK, Yoshida S, Ito M, Namba S, Shirasu K 2011. Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum. PLOS ONE 6:e25802
    [Google Scholar]
  55. 55. 
    Ishida JK, Yoshida S, Shirasu K 2017. Quinone oxidoreductase 2 is involved in haustorium development of the parasitic plant Phtheirospermum japonicum. Plant Signal. Behav. 12:e1319029
    [Google Scholar]
  56. 56. 
    Jamison DS, Yoder JI. 2001. Heritable variation in quinone-induced haustorium development in the parasitic plant Triphysaria. Plant Physiol 125:1870–79
    [Google Scholar]
  57. 57. 
    Joel D. 2013. Functional structure of the mature haustorium. See Ref. 59 25–60
  58. 58. 
    Joel D, Bar H. 2013. The seed and the seedling. See Ref. 59 147–65
  59. 59. 
    Joel DM, Gressel J, Musselman LJ, eds. 2013. Parasitic Orobanchaceae: Parasitic Mechanisms and Control Strategies Berlin: Springer
    [Google Scholar]
  60. 60. 
    Joel DM, Losner-Goshen D. 1994. The attachment organ of the parasitic angiosperms Orobanche cumana and O. aegyptiaca and its development. Can. J. Bot. 72:564–74
    [Google Scholar]
  61. 61. 
    Johnson BI, De Moraes CM, Mescher MC 2016. Manipulation of light spectral quality disrupts host location and attachment by parasitic plants in the genus Cuscuta. J. Appl. Ecol. 53:794–803
    [Google Scholar]
  62. 62. 
    Jones J, Dangl J. 2006. The plant immune system. Nature 444:323–29
    [Google Scholar]
  63. 63. 
    Jones JDG, Vance RE, Dangl JL 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395
    [Google Scholar]
  64. 64. 
    Jones JT, Kumar A, Pylypenko LA, Thirugnanasambandam A, Castelli L et al. 2009. Identification and functional characterization of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida. Mol. Plant Pathol 10:815–28
    [Google Scholar]
  65. 65. 
    Kaiser B, Vogg G, Furst UB, Albert M 2015. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front. Plant Sci. 6:45
    [Google Scholar]
  66. 66. 
    Katagiri F, Tsuda K. 2010. Understanding the plant immune system. Mol. Plant-Microbe Interact. 23:1531–36
    [Google Scholar]
  67. 67. 
    Kelly CK. 1990. Plant foraging: a marginal value model and coiling response in Cuscuta subinclusa. Ecology 71:1916–25
    [Google Scholar]
  68. 68. 
    Kelly CK. 1992. Resource choice in Cuscuta europaea. PNAS 89:12194–97
    [Google Scholar]
  69. 69. 
    Keyes WJ, Palmer AG, Erbil WK, Taylor JV, Apkarian RP et al. 2007. Semagenesis and the parasitic angiosperm Striga asiatica. Plant J 51:707–16
    [Google Scholar]
  70. 70. 
    Keyes WJ, Taylor JV, Apkarian RP, Lynn DG 2001. Dancing together. Social controls in parasitic plant development. Plant Physiol 127:010753
    [Google Scholar]
  71. 71. 
    Kim D, Kocz R, Boone L, Keyes WJ, Lynn DG 1998. On becoming a parasite: evaluating the role of wall oxidases in parasitic plant development. Chem. Biol. 5:103–17
    [Google Scholar]
  72. 72. 
    Kim G, LeBlanc ML, Wafula EK, dePamphilis CW, Westwood JH 2014. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 345:808–11
    [Google Scholar]
  73. 73. 
    Kim G, Westwood JH. 2015. Macromolecule exchange in Cuscuta–host plant interactions. Curr. Opin. Plant Biol. 26:20–25
    [Google Scholar]
  74. 74. 
    Koch AM, Binder C, Sanders IR 2004. Does the generalist parasitic plant Cuscuta campestris selectively forage in heterogeneous plant communities?. New Phytol 162:147–55
    [Google Scholar]
  75. 75. 
    Kuijt J. 1969. The Biology of Parasitic Flowering Plants Berkeley: Univ. Calif. Press
    [Google Scholar]
  76. 76. 
    Laluk K, Luo H, Chai M, Dhawan R, Lai Z, Mengiste T 2011. Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell 23:2831–49
    [Google Scholar]
  77. 77. 
    LeBlanc M, Kim G, Patel B, Stromberg V, Westwood J 2013. Quantification of tomato and Arabidopsis mobile RNAs trafficking into the parasitic plant Cuscuta pentagona. New Phytol 200:1225–33
    [Google Scholar]
  78. 78. 
    Li J, Timko MP. 2009. Gene-for-gene resistance in Striga-cowpea associations. Science 325:1094
    [Google Scholar]
  79. 79. 
    López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W et al. 2008. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–74
    [Google Scholar]
  80. 80. 
    Lo Presti L, Kahmann R 2017. How filamentous plant pathogen effectors are translocated to host cells. Curr. Opin. Plant Biol. 38:19–24
    [Google Scholar]
  81. 81. 
    Losner-Goshen D, Portnoy VH, Mayer AM, Joel DM 1998. Pectolytic activity by the haustorium of the parasitic plant Orobanche L. (Orobanchaceae) in host roots. Ann. Bot. 81:319–26
    [Google Scholar]
  82. 82. 
    Lumba S, Holbrook-Smith D, McCourt P 2017. The perception of strigolactones in vascular plants. Nat. Chem. Biol. 13:599–606
    [Google Scholar]
  83. 83. 
    Lumba S, Subha A, McCourt P 2017. Found in translation: applying lessons from model systems to strigolactone signaling in parasitic plants. Trends Biochem. Sci. 42:556–65
    [Google Scholar]
  84. 84. 
    Lynn DG, Chang M. 1990. Phenolic signals in cohabitation: implications for plant development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:497–526
    [Google Scholar]
  85. 85. 
    Makhzoum A, Yousefzadi M, Malik S, Gantet P, Tremouillaux-Guiller J 2017. Strigolactone biology: genes, functional genomics, epigenetics and applications. Crit. Rev. Biotechnol. 37:151–62
    [Google Scholar]
  86. 86. 
    Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H et al. 2011. The main auxin biosynthesis pathway in Arabidopsis. PNAS 108:18512–17
    [Google Scholar]
  87. 87. 
    Mishra S, Upadhyay S, Shukla RK 2017. The role of strigolactones and their potential cross-talk under hostile ecological conditions in plants. Front. Physiol. 7:7
    [Google Scholar]
  88. 88. 
    Mitsumasu K, Seto Y, Yoshida S 2015. Apoplastic interactions between plants and plant root intruders. Front. Plant Sci. 6:17
    [Google Scholar]
  89. 89. 
    Molinero-Ruiz L, Delavault P, Pérez-Vich B, Pacureanu-Joita M, Bulos M et al. 2015. History of the race structure of Orobanche cumana and the breeding of sunflower for resistance to this parasitic weed: a review. Span. J. Agric. Res. 13:e10R01
    [Google Scholar]
  90. 90. 
    Morgan W, Kamoun S. 2007. RXLR effectors of plant pathogenic oomycetes. Curr. Opin. Microbiol. 10:332–38
    [Google Scholar]
  91. 91. 
    Mutuku JM, Yoshida S, Shimizu T, Ichihashi Y, Wakatake T et al. 2015. The WRKY45-dependent signaling pathway is required for resistance against Striga hermonthica parasitism. Plant Physiol 168:1152–63
    [Google Scholar]
  92. 92. 
    O'Malley RC, Lynn DG. 2000. Expansin message regulation in parasitic angiosperms: marking time in development. Plant Cell 12:1455–65
    [Google Scholar]
  93. 93. 
    Orr GL, Haidar MA, Orr DA 1996. Smallseed dodder (Cuscuta planiflora) phototropism toward far-red when in white light. Weed Sci 44:233–40
    [Google Scholar]
  94. 94. 
    Parker C. 2012. Parasitic weeds: a world challenge. Weed Sci 60:269–76
    [Google Scholar]
  95. 95. 
    Pérez-de-Luque A. 2013. Haustorium invasion into host tissues. See Ref. 59 75–86
  96. 96. 
    Perez-de-Luque A, Gonzalez-Verdejo CI, Lozano MD, Dita MA, Cubero JI et al. 2006. Protein cross-linking, peroxidase and β-1,3-endoglucanase involved in resistance of pea against Orobanche crenata. J. Exp. Bot. 57:1461–69
    [Google Scholar]
  97. 97. 
    Perez-Vich B, Akhtouch B, Knapp SJ, Leon AJ, Velasco L et al. 2004. Quantitative trait loci for broomrape (Orobanche cumana Wallr.) resistance in sunflower. Theor. Appl. Genet. 109:92–102
    [Google Scholar]
  98. 98. 
    Petre B, Kamoun S. 2014. How do filamentous pathogens deliver effector proteins into plant cells?. PLOS Biol 12:e1001801
    [Google Scholar]
  99. 99. 
    Poulin R. 2011. The many roads to parasitism: a tale of convergence. Adv. Parasitol. 74:1–40
    [Google Scholar]
  100. 100. 
    Ranjan A, Ichihashi Y, Farhi M, Zumstein K, Townsley B et al. 2014. De novo assembly and characterization of the transcriptome of the parasitic weed Cuscuta pentagona identifies genes associated with plant parasitism. Plant Physiol 166:1186–99
    [Google Scholar]
  101. 101. 
    Riopel JL, Timko MP. 1995. Haustorial initiation and differentiation. Parasitic Plants MC Press, JD Graves 39–79 London: Chapman & Hall
    [Google Scholar]
  102. 102. 
    Rodenburg J, Cissoko M, Kayeke J, Dieng I, Khan ZR et al. 2015. Do NERICA rice cultivars express resistance to Striga hermonthica (Del.) Benth. and Striga asiatica (L.) Kuntze under field conditions?. Field Crops Res 170:83–94
    [Google Scholar]
  103. 103. 
    Roney JK, Khatibi PA, Westwood JH 2007. Cross-species translocation of mRNA from host plants into the parasitic plant dodder. Plant Physiol 143:1037–43
    [Google Scholar]
  104. 104. 
    Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L et al. 2010. Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22:364–75
    [Google Scholar]
  105. 105. 
    Runyon JB, Mescher MC, De Moraes CM 2006. Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–67
    [Google Scholar]
  106. 106. 
    Rutter BD, Innes RW. 2017. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol 173:728–41
    [Google Scholar]
  107. 107. 
    Saeed W, Naseem S, Ali Z 2017. Strigolactones biosynthesis and their role in abiotic stress resilience in plants: a critical review. Front. Plant Sci. 8:01487
    [Google Scholar]
  108. 108. 
    Schiefelbein JW, Somerville C. 1990. Genetic control of root hair development in Arabidopsis thaliana. Plant Cell 2:235–43
    [Google Scholar]
  109. 109. 
    Screpanti C, Yoneyama K, Bouwmeester HJ 2016. Strigolactones and parasitic weed management 50 years after the discovery of the first natural strigolactone strigol: status and outlook. Pest Manag. Sci. 72:2013–15
    [Google Scholar]
  110. 110. 
    Shahid S, Kim G, Johnson NR, Wafula E, Wang F et al. 2018. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553:82–85
    [Google Scholar]
  111. 111. 
    Smith CE, Ruttledge T, Zeng Z, O'Malley RC, Lynn DG 1996. A mechanism for inducing plant development: the genesis of a specific inhibitor. PNAS 93:6986–91
    [Google Scholar]
  112. 112. 
    Smith JD, Woldemariam MG, Mescher MC, Jander G, De Moraes CM 2016. Glucosinolates from host plants influence growth of the parasitic plant Cuscuta gronovii and its susceptibility to aphid feeding. Plant Physiol 172:181–97
    [Google Scholar]
  113. 113. 
    Spallek T, Melnyk CW, Wakatake T, Zhang J, Sakamoto Y et al. 2017. Interspecies hormonal control of host root morphology by parasitic plants. PNAS 114:5283–88
    [Google Scholar]
  114. 114. 
    Steffens JC, Lynn DG, Kamat VS, Riopel JL 1982. Molecular specificity of haustorial induction in Agalinis purpurea (L.) Raf. (Scrophulariaceae). Ann. Bot. 50:1–7
    [Google Scholar]
  115. 115. 
    Su C. 2017. Uncovering the Molecular Mechanism Underlying the Virulence of Striga gesnerioides Charlottesville: Univ. Va. Press
    [Google Scholar]
  116. 116. 
    Sun G, Xu Y, Liu H, Sun T, Zhang J et al. 2018. Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nat. Commun 9:2683
    [Google Scholar]
  117. 117. 
    Swarbrick PJ, Huang K, Liu G, Slate J, Press MC, Scholes JD 2008. Global patterns of gene expression in rice cultivars undergoing a susceptible or resistant interaction with the parasitic plant Striga hermonthica. New Phytol 179:515–29
    [Google Scholar]
  118. 118. 
    Tada Y, Sugai M, Furuhashi K 1996. Haustoria of Cuscuta japonica, a holoparasitic flowering plant, are induced by the cooperative effects of far-red light and tactile stimuli. Plant Cell Physiol 37:1049–53
    [Google Scholar]
  119. 119. 
    Timko M, Scholes J. 2013. Host reaction to attack by root parasitic plants. See Ref. 59 115–41
  120. 120. 
    Toh S, Holbrook-Smith D, Stogios PJ, Onopriyenko O, Lumba S et al. 2015. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 350:203–7
    [Google Scholar]
  121. 121. 
    Tomilov A, Tomilova N, Yoder JI 2007. Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta 225:1059–71
    [Google Scholar]
  122. 122. 
    Tomilov AA, Tomilova NB, Abdallah I, Yoder JI 2005. Localized hormone fluxes and early haustorium development in the hemiparasitic plant Triphysaria versicolor. Plant Physiol 138:1469–80
    [Google Scholar]
  123. 123. 
    Tomilov AA, Tomilova NB, Wroblewski T, Michelmore R, Yoder JI 2008. Trans-specific gene silencing between host and parasitic plants. Plant J 56:389–97
    [Google Scholar]
  124. 124. 
    Touré M, Olivier A, Ntare BR, Lane JA, St-Pierre C-A 1997. Inheritance of resistance to Striga gesnerioides biotypes from Mali and Niger in cowpea (Vigna unguiculata (L.) Walp.). Euphytica 94:273–78
    [Google Scholar]
  125. 125. 
    Trewavas A. 2003. Aspects of plant intelligence. Ann. Bot. 92:1–20
    [Google Scholar]
  126. 126. 
    Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T et al. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200
    [Google Scholar]
  127. 127. 
    van Schie CCN, Takken FLW 2014. Susceptibility genes 101: how to be a good host. Annu. Rev. Phytopathol. 52:551–81
    [Google Scholar]
  128. 128. 
    Vaughn KC. 2003. Dodder hyphae invade the host: a structural and immunocytochemical characterization. Protoplasma 220:189–200
    [Google Scholar]
  129. 129. 
    Vinatzer BA, Monteil CL, Clarke CR 2014. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. Annu. Rev. Phytopathol. 52:19–43
    [Google Scholar]
  130. 130. 
    Vogel A, Schwacke R, Denton AK, Usadel B, Hollmann J et al. 2018. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat. Commun 9:2515
    [Google Scholar]
  131. 131. 
    Wang M, Weiberg A, Dellota E, Yamane D, Jin H 2017. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. RNA Biol 14:421–28
    [Google Scholar]
  132. 132. 
    Waters MT, Gutjahr C, Bennett T, Nelson DC 2017. Strigolactone signaling and evolution. Annu. Rev. Plant Biol. 68:291–322
    [Google Scholar]
  133. 133. 
    Weber HC. 1987. Evolution of the secondary haustoria to a primary haustorium in the parasitic Scrophulariaceae-Orobanchaceae. Plant Syst. Evol. 156:127–31
    [Google Scholar]
  134. 134. 
    Weiberg A, Wang M, Lin F-M, Zhao H, Zhang Z et al. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–23
    [Google Scholar]
  135. 135. 
    Westwood J, dePamphilis C, Das M, Fernandez-Aparicio M, Honaas L et al. 2012. The parasitic plant genome project: new tools for understanding the biology of Orobanche and Striga. Weed Sci 60:295–306
    [Google Scholar]
  136. 136. 
    Westwood JH, Yoder JI, Timko MP, dePamphilis CW 2010. The evolution of parasitism in plants. Trends Plant Sci 15:227–35
    [Google Scholar]
  137. 137. 
    Wolf SJ, Timko MP. 1991. In vitro root culture: a novel approach to study the obligate parasite Striga asiatica (L.) Kuntze. Plant Sci 73:233–42
    [Google Scholar]
  138. 138. 
    Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S et al. 2013. Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol. Plant 6:153–63
    [Google Scholar]
  139. 139. 
    Yang Z, Wafula EK, Honaas LA, Zhang H, Das M et al. 2014. Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty. Mol. Biol. Evol. 32:767–90
    [Google Scholar]
  140. 140. 
    Yang ZZ, Zhang YT, Wafula EK, Honaas LA, Ralph PE et al. 2016. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. PNAS 113:E7010–19
    [Google Scholar]
  141. 141. 
    Yoder JI. 2001. Host-plant recognition by parasitic Scrophulariaceae. Curr. Opin. Plant Biol. 4:359–65
    [Google Scholar]
  142. 142. 
    Yoshida S, Cui S, Ichihashi Y, Shirasu K 2016. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 67:643–67
    [Google Scholar]
  143. 143. 
    Yoshida S, Shirasu K. 2009. Multiple layers of incompatibility to the parasitic witchweed, Striga hermonthica. New Phytol. 183:180–89
    [Google Scholar]
  144. 144. 
    Yoshida S, Shirasu K. 2012. Plants that attack plants: molecular elucidation of plant parasitism. Curr. Opin. Plant Biol. 15:708–13
    [Google Scholar]
  145. 145. 
    Zeng ZX, Cartwright CH, Lynn DG 1996. Cyclopropyl-p-benzoquinone: a specific organogenesis inhibitor in plants. J. Am. Chem. Soc. 118:1233–34
    [Google Scholar]
  146. 146. 
    Zhang XM, Liu B, Guo QS, Song LS, Chen L, Wang CL 2016. Construction of a haustorium development associated SSH library in Thesium chinense and analysis of specific ESTs included by Imperata cylindrica. Biochem. Syst. Ecol 64:46–52
    [Google Scholar]
  147. 147. 
    Zhuang H, Li J, Song J, Hettenhausen C, Schuman MC et al. 2018. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host. New Phytol 218:1586–96
    [Google Scholar]
  148. 148. 
    Zwanenburg B, Pospíšil T, Ćavar Zeljković S 2016. Strigolactones: new plant hormones in action. Planta 243:1311–26
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-082718-100043
Loading
/content/journals/10.1146/annurev-phyto-082718-100043
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error