We synthesize literature on the spatial aspects of coupled natural-human systems across a variety of natural resource contexts and introduce a framework that can be used to compare modeling approaches and findings across applications. The important components of these systems include spatial heterogeneity in benefits and costs and connectivity of the network. One or more of these components is necessary for spatial policies to be the efficient solution. We highlight the importance of these components by identifying their role in previous work that shows that spatial differentiation in policy implementation is optimal. We pay particular attention to research highlighting the difference between spatial and aspatial policies and the presence of optimal boundary solutions. Finally, we develop a stylized metapopulation model to relate findings in the spatial bioeconomic literature to the theory of second best in public economics and suggest areas for future analysis.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aadland D, Sims C, Finnoff D. 2014. Spatial dynamics of optimal management in bioeconomic systems. Comput. Econ. 45:1–33 [Google Scholar]
  2. Albers HJ, Fischer C, Sanchirico JN. 2010. Invasive species management in a spatially heterogeneous world: effects of uniform policies. Resour. Energy Econ. 32:483–99 [Google Scholar]
  3. Armstrong CW, Skonhoft A. 2006. Marine reserves: a bio-economic model with asymmetric density dependent migration. Ecol. Econ. 57:466–76 [Google Scholar]
  4. Bailey M, Sumaila RU, Lindroos M. 2010. Application of game theory to fisheries over three decades. Fish. Res. 102:1–8 [Google Scholar]
  5. Bhat MG, Huffaker RG. 2007. Management of a transboundary wildlife population: a self-enforcing cooperative agreement with renegotiation and variable transfer payments. J. Environ. Econ. Manag. 53:54–67 [Google Scholar]
  6. Bjørndal T, Gordon D, Kaitala V, Lindroos M. 2004. International management strategies for a straddling fish stock: a bio-economic simulation model of the Norwegian spring-spawning herring fishery. Environ. Resour. Econ. 29:435–57 [Google Scholar]
  7. Bode M, Armsworth PR, Fox HE, Bode L. 2012. Surrogates for reef fish connectivity when designing marine protected area networks. Mar. Ecol. Prog. Ser. 466:155–66 [Google Scholar]
  8. Bode M, Sanchirico JN, Armsworth PR. 2014. Ecosystems may be complex, but just how complex do we need our institutions to be to manage them effectively? Presented at ESA Annu. Meet., 99th, Sacramento
  9. Brock W, Xepapadeas A. 2002. Optimal ecosystem management when species compete for limiting resources. J. Environ. Econ. Manag. 44:189–220 [Google Scholar]
  10. Brown C, Lynch L, Zilberman D. 2002. The economics of controlling insect-transmitted plant diseases. Am. J. Agric. Econ. 84:279–91 [Google Scholar]
  11. Brown G, Roughgarden J. 1997. A metapopulation model with private property and a common pool. Ecol. Econ. 22:65–71 [Google Scholar]
  12. Clark CW. 1980. Restricted access to common-property fishery resources: a game-theoretic analysis. Dynamic Optimization and Mathematical Economics Liu P-T. 117–32 New York: Springer [Google Scholar]
  13. Conrad JM, Smith MD. 2012. Nonspatial and spatial models in bioeconomics. Nat. Resour. Model. 25:52–92 [Google Scholar]
  14. Costello C, Kaffine DT. 2010. Marine protected areas in spatial property rights fisheries. Aust. J. Agric. Resour. Econ. 54:321–41 [Google Scholar]
  15. Costello C, Polasky S. 2008. Optimal harvesting of stochastic spatial resources. J. Environ. Econ. Manag. 56:1–18 [Google Scholar]
  16. Costello C, Rassweiler A, Siegel D, De Leo G, Micheli F, Rosenberg A. 2010. The value of spatial information in MPA network design. PNAS 107:18294–99 [Google Scholar]
  17. Cowen RK, Lwiza KMM, Sponaugle S, Paris CB, Olson DB. 2000. Connectivity of marine populations: open or closed?. Science 287:857–59 [Google Scholar]
  18. Cowen RK, Paris CB, Srinivasan A. 2006. Scaling connectivity in marine populations. Science 311:522–27 [Google Scholar]
  19. Ellis SL, Incze LS, Lawton P, Ojaveer H, MacKenzie BR et al. 2011. Four regional marine biodiversity studies: approaches and contributions to ecosystem-based management. PLOS ONE 6:e18997 [Google Scholar]
  20. Epanchin-Niell RS, Haight RG, Berec L, Kean JM, Liebhold AM. 2012. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 15:803–12 [Google Scholar]
  21. Epanchin-Niell RS, Hastings A. 2010. Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol. Lett. 13:528–41 [Google Scholar]
  22. Epanchin-Niell RS, Wilen JE. 2012. Optimal spatial control of biological invasions. J. Environ. Econ. Manag. 63:260–70 [Google Scholar]
  23. Farrow RS, Schultz MT, Celikkol P, Van Houtven GL. 2005. Pollution trading in water quality limited areas: use of benefits assessment and cost-effective trading ratios. Land Econ. 81:191–205 [Google Scholar]
  24. Fujita M, Krugman PR, Venables A. 1999. The Spatial Economy Cities, Regions and International Trade Cambridge, MA: MIT Press [Google Scholar]
  25. Gerber LR, Botsford LW, Hastings A, Possingham HP, Gaines SD et al. 2003. Population models for marine reserve design: a retrospective and prospective synthesis. Ecol. Appl. 13:47–64 [Google Scholar]
  26. Grafton RQ, Kompas T, Lindenmayer D. 2005. Marine reserves with ecological uncertainty. Bull. Math. Biol. 67:957–71 [Google Scholar]
  27. Groeneveld R, Weikard HP. 2006. Terrestrial metapopulation dynamics: a nonlinear bioeconomic model analysis. J. Environ. Manag. 78:275–85 [Google Scholar]
  28. Harborne AR, Mumby PJ, Ferrari R. 2012. The effectiveness of different meso-scale rugosity metrics for predicting intra-habitat variation in coral-reef fish assemblages. Environ. Biol. Fishes 94:431–42 [Google Scholar]
  29. Hastings A. 1982. Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates. J. Math. Biol. 16:49–55 [Google Scholar]
  30. Hastings A, Botsford LW. 1999. Equivalence in yield from marine reserves and traditional fisheries management. Science 284:1537–38 [Google Scholar]
  31. Helfand GE, Rubin J. 1994. Spreading versus concentrating damages: environmental policy in the presence of nonconvexities. J. Environ. Econ. Manag. 27:84–91 [Google Scholar]
  32. Hofer H, Campbell KLI, East ML, Huish SA. 2000. Modeling the spatial distribution of the economic costs and benefits of illegal game meat hunting in the Serengeti. Nat. Resour. Model. 13:151–77 [Google Scholar]
  33. Horan RD, Wolf CA. 2005. The economics of managing infectious wildlife disease. Am. J. Agric. Econ. 87:537–51 [Google Scholar]
  34. Janmaat JA. 2005. Sharing clams: tragedy of an incomplete commons. J. Environ. Econ. Manag. 49:26–51 [Google Scholar]
  35. Kaiser BA, Burnett KM. 2010. Spatial economic analysis of early detection and rapid response strategies for an invasive species. Resour. Energy Econ. 32:566–85 [Google Scholar]
  36. Kaitala V, Pohjola M. 1988. Modelling optimal recovery of a shared resource stock: a differential game model with efficient memory equilibria. Nat. Resour. Model. 3:91–119 [Google Scholar]
  37. Kolstad CD. 1987. Uniformity versus differentiation in regulating externalities. J. Environ. Econ. Manag. 14:386–99 [Google Scholar]
  38. Kuwayama Y, Brozović N. 2013. The regulation of a spatially heterogeneous externality: tradable groundwater permits to protect streams. J. Environ. Econ. Manag. 66:364–82 [Google Scholar]
  39. Lampert A, Hastings A, Grosholz ED, Jardine SL, Sanchirico JN. 2014. Optimal approaches for balancing invasive species eradication and endangered species management. Science 344:1028–31 [Google Scholar]
  40. Lankoski J, Lichtenberg E, Ollikainen M. 2008. Point/nonpoint effluent trading with spatial heterogeneity. Am. J. Agric. Econ. 90:1044–58 [Google Scholar]
  41. Levin SA. 1974. Dispersion and population interactions. Am. Nat. 108:207–28 [Google Scholar]
  42. Levin SA. 1976. Population dynamic models in heterogeneous environments. Annu. Rev. Ecol. Syst. 7:287–310 [Google Scholar]
  43. Levins R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15:131–40 [Google Scholar]
  44. Levins R. 1970. Extinction. Some Mathematical Problems in Biology Desternhaber M. 77–107 Providence: Am. Math. Soc. [Google Scholar]
  45. Lewis TR, Schmalensee R. 1977. Nonconvexity and optimal exhaustion of renewable resources. Int. Econ. Rev. 18:535–52 [Google Scholar]
  46. Ling S, Milner-Gulland EJ. 2008. When does spatial structure matter in models of wildlife harvesting?. J. Appl. Ecol. 45:63–71 [Google Scholar]
  47. Lipsey RG, Lancaster K. 1956. The general theory of second best. Rev. Econ. Stud. 24:11–32 [Google Scholar]
  48. Montgomery WD. 1972. Markets in licenses and efficient pollution control programs. J. Econ. Theory 5:395–418 [Google Scholar]
  49. Morgan LE, Chuenpagdee R. 2003. Shifting gears: addressing the collateral impacts of fishing methods in US waters. Rep., Environ. Progr., Pew Charit. Trust
  50. Muller NZ, Mendelsohn R. 2009. Efficient pollution regulation: getting the prices right. Am. Econ. Rev. 99:1714–39 [Google Scholar]
  51. Munro GR. 1990. The optimal management of transboundary fisheries: game theoretic considerations. Nat. Resour. Model. 4:403–26 [Google Scholar]
  52. Neubert MG. 2003. Marine reserves and optimal harvesting. Ecol. Lett. 6:843–49 [Google Scholar]
  53. Newbold S, Eadie JM. 2004. Using species-habitat models to target conservation: a case study with breeding mallards. Ecol. Appl. 14:1384–93 [Google Scholar]
  54. Oates WE. 1999. An essay on fiscal federalism. J. Econ. Lit. 37:1120–49 [Google Scholar]
  55. O'Ryan RE. 1996. Cost-effective policies to improve urban air quality in Santiago, Chile. J. Environ. Econ. Manag. 31:302–13 [Google Scholar]
  56. Pezzey JCV, Roberts CM, Urdal BT. 2000. A simple bioeconomic model of a marine reserve. Ecol. Econ. 33:77–91 [Google Scholar]
  57. Pfeiffer L, Lin C-YC. 2012. Groundwater pumping and spatial externalities in agriculture. J. Environ. Econ. Manag. 64:16–30 [Google Scholar]
  58. Polacheck T. 1990. Year around closed areas as a management tool. Nat. Resour. Model. 4:327–54 [Google Scholar]
  59. Robinson EJZ, Albers HJ, Williams JC. 2008. Spatial and temporal modeling of community non-timber forest extraction. J. Environ. Econ. Manag. 56:234–45 [Google Scholar]
  60. Rowthorn RE, Laxminarayan R, Gilligan CA. 2009. Optimal control of epidemics in metapopulations. J. R. Soc. Interface 6:1135–44 [Google Scholar]
  61. Sale P, Hanski I, Kritzer JP. 2006. The merging of metapopulation theory and marine ecology: establishing the historical context. Marine Metapopulations Sale P, Kritzer JP. 3–30 New York: Elsevier [Google Scholar]
  62. Sanchirico JN. 2004. Designing a cost-effective marine reserve network: a bioeconomic metapopulation analysis. Mar. Resour. Econ. 19:41–66 [Google Scholar]
  63. Sanchirico JN. 2005. Additivity properties in metapopulation models: implications for the assessment of marine reserves. J. Environ. Econ. Manag. 49:1–25 [Google Scholar]
  64. Sanchirico JN. 2011. Economically optimal spatial and inter-temporal fishing patterns in a metapopulation. Marine Protected Areas: A Multidisciplinary Approach Claudet J. 99–120 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  65. Sanchirico JN, Malvadkar U, Hastings A, Wilen JE. 2006. When are no-take zones an economically optimal fishery management strategy?. Ecol. Appl. 16:1643–59 [Google Scholar]
  66. Sanchirico JN, Wilen JE. 1999. Bioeconomics of spatial exploitation in a patchy environment. J. Environ. Econ. Manag. 37:129–50 [Google Scholar]
  67. Sanchirico JN, Wilen JE. 2001. A bioeconomic model of marine reserve creation. J. Environ. Econ. Manag. 42:257–76 [Google Scholar]
  68. Sanchirico JN, Wilen JE. 2005. Optimal spatial management of renewable resources: matching policy scope to ecosystem scale. J. Environ. Econ. Manag. 50:23–46 [Google Scholar]
  69. Sanchirico JN, Wilen JE. 2006. Bioeconomics of metapopulations: sinks, sources and optimal closures. Frontiers in Resource Economics: Essays in Honor of Gardner Brown Layton D, Halvorson R. 3–19 Cheltenham, UK: Edward Elgar [Google Scholar]
  70. Sanchirico JN, Wilen JE. 2008. Sustainable use of renewable resources: implications of spatial-dynamic ecological and economic processes. Int. Rev. Environ. Resour. Econ. 1:367–405 [Google Scholar]
  71. Sanchirico JN, Wilen JE, Coleman C. 2010. Optimal rebuilding of a metapopulation. Am. J. Agric. Econ. 92:1087–102 [Google Scholar]
  72. Shanks AL, Grantham BA, Carr MH. 2003. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13:159–69 [Google Scholar]
  73. Sharov AA. 2004. Bioeconomics of managing the spread of exotic pest species with barrier zones. Risk Anal. 24:879–92 [Google Scholar]
  74. Sirén AH, Cardenas J-C, Hambäck P, Parvinen K. 2013. Distance friction and the cost of hunting in tropical forest. Land Econ. 89:558–74 [Google Scholar]
  75. Skellam J. 1951. Random dispersal in theoretical populations. Biometrika 38:196–218 [Google Scholar]
  76. Skonhoft A, Solstad JT. 1996. Wildlife management, illegal hunting and conflicts. A bioeconomic analysis. Environ. Dev. Econ. 1:165–81 [Google Scholar]
  77. Smith MD. 2008. Bioeconometrics: empirical modeling of bioeconomic systems. Mar. Resour. Econ. 23:1–23 [Google Scholar]
  78. Smith MD. 2012. The new fisheries economics: incentives across many margins. Annu. Rev. Resour. Econ. 4:379–402 [Google Scholar]
  79. Smith MD, Lynham J, Sanchirico JN, Wilson JA. 2010. Political economy of marine reserves: understanding the role of opportunity costs. PNAS 107:18300–5 [Google Scholar]
  80. Smith MD, Sanchirico JN, Wilen JE. 2009. The economics of spatial-dynamic processes: applications to renewable resources. J. Environ. Econ. Manag. 57:104–21 [Google Scholar]
  81. Smith MD, Wilen JE. 2003. Economic impacts of marine reserves: the importance of spatial behavior. J. Environ. Econ. Manag. 46:183–206 [Google Scholar]
  82. Tietenberg T. 1995. Tradeable permits for pollution control when emission location matters: What have we learned?. Environ. Resour. Econ. 5:95–113 [Google Scholar]
  83. Tietenberg T. 2006. Tradable permits in principle and practice. Penn State Environ. Law Rev. 14:251–81 [Google Scholar]
  84. Tuck GN, Possingham HP. 1994. Optimal harvesting strategies for a metapopulation. Bull. Math. Biol. 56:107–27 [Google Scholar]
  85. Warner RR, Cowen RK. 2002. Local retention of production in marine populations: evidence, mechanisms, and consequences. Bull. Mar. Sci. 70:245–49 [Google Scholar]
  86. White C, Kendall BE, Gaines S, Siegel DA, Costello C. 2008. Marine reserve effects on fishery profit. Ecol. Lett. 11:370–79 [Google Scholar]
  87. Wilen JE. 2004. Spatial management of fisheries. Mar. Resour. Econ. 19:7–20 [Google Scholar]
  88. Wilen JE. 2005. Property rights and the texture of rents in fisheries. Evolving Property Rights in Marine Fisheries Leal DR. 49–67 Lanham, MD: Rowman & Littlefield [Google Scholar]
  89. Zhang W, van der Werf W, Swinton SM. 2010. Spatially optimal habitat management for enhancing natural control of an invasive agricultural pest: soybean aphid. Resour. Energy Econ. 32:551–65 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error