1932

Abstract

Precision farming enables agricultural management decisions to be tailored spatially and temporally. Site-specific sensing, sampling, and managing allow farmers to treat a field as a heterogeneous entity. Through targeted use of inputs, precision farming reduces waste, thereby cutting both private variable costs and the environmental costs such as those of agrichemical residuals. At present, large farms in developed countries are the main adopters of precision farming. But its potential environmental benefits can justify greater public and private sector incentives to encourage adoption, including in small-scale farming systems in developing countries. Technological developments and big data advances continue to make precision farming tools more connected, accurate, efficient, and widely applicable. Improvements in the technical infrastructure and the legal framework can expand access to precision farming and thereby its overall societal benefits.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-100518-093929
2019-10-05
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/resource/11/1/annurev-resource-100518-093929.html?itemId=/content/journals/10.1146/annurev-resource-100518-093929&mimeType=html&fmt=ahah

Literature Cited

  1. Aasen H, Honkavaara E, Lucieer A, Zarco-Tejada P 2018. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, measurement procedures, and data correction workflows. Remote Sensing 10:71091
    [Google Scholar]
  2. Aggelopoulou AD, Bochtis D, Fountas S, Swain KC, Gemtos TA, Nanos GD 2011. Yield prediction in apple orchards based on image processing. Precis. Agric. 12:3448–56
    [Google Scholar]
  3. Agili H, Chokmani K, Cambouris A, Perron I, Poulin J 2018. Site-specific management zones delineation using drone-based hyperspectral imagery Paper presented at the 14th International Conference on Precision Agriculture Monticello, IL:
  4. Anken T, Dubuis PH, Lebrun M 2018. Drohnen: kaum Abdrift, kaum Lärm. Landfreund Aug. 22. https://www.landfreund.ch/pflanzenbau/Drohnen-kaum-Abdrift-kaum-Laerm-9614983.html
    [Google Scholar]
  5. Antle JM, Basso B, Conant RT, Godfray HCJ, Jones JW et al. 2017. Towards a new generation of agricultural system data, models and knowledge products: design and improvement. Agric. Syst. 155:255–68
    [Google Scholar]
  6. Aubert BA, Schroeder A, Grimaudo J 2012. IT as enabler of sustainable farming: an empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 54:1510–20
    [Google Scholar]
  7. Aune JB, Coulibaly A, Giller KE 2017. Precision farming for increased land and labour productivity in semi-arid West Africa. A review. Agron. Sustain. Dev. 37:316
    [Google Scholar]
  8. Balafoutis A, Beck B, Fountas S, Vangeyte J, Van der Wal T et al. 2017. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 9:81339
    [Google Scholar]
  9. Barnes AP, Soto I, Eory V, Beck B, Balafoutis A et al. 2019. Exploring the adoption of precision agricultural technologies: a cross regional study of EU farmers. Land Use Policy 80:163–74
    [Google Scholar]
  10. Basu S, Omotubora A, Beeson M, Fox C 2018. Legal framework for small autonomous agricultural robots. AI Soc https://doi.org/10.1007/s00146-018-0846-4
    [Crossref] [Google Scholar]
  11. Bauer ME, Cipra JE. 1973. Identification of agricultural crops by computer processing of ERTS MSS data LARS Tech. Rep. 20, Purdue Univ West Lafayette, IN:
  12. Berckmans D. 2014. Precision livestock farming technologies for welfare management in intensive livestock systems. Sci. Tech. Rev. Off. Int. Epizoot. 33:1189–96
    [Google Scholar]
  13. Blumenthal JM, Baltensperger DD, Cassman KG, Mason SC, Pavlista AD 2008. Importance and effect of nitrogen on crop quality and health. Nitrogen in the Environment: Sources, Problems, and Management JL Hatfield, RF Follett 51–70 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  14. Böcker T, Britz W, Möhring N, Finger R 2019. An economic and environmental assessment of a glyphosate ban for the example of maize production. Eur. Rev. Agric. Econ In Press https://doi.org/10.1093/erae/jby050
    [Crossref]
  15. Böcker T, Finger R. 2016. European pesticide tax schemes in comparison: an analysis of experiences and developments. Sustainability 8:4378
    [Google Scholar]
  16. Bouroubi Y, Bugnet P, Nguyen-Xuan T, Gosselin C, Bélec C et al. 2018. Pest detection on UAV imagery using a deep convolutional neural network Paper presented at the 14th International Conference on Precision Agriculture Monticello, IL:
  17. Bowman MS, Zilberman D. 2013. Economic factors affecting diversified farming systems. Ecol. Soc. 18:133
    [Google Scholar]
  18. Bramley RGV. 2009. Lessons from nearly 20 years of Precision Agriculture research, development, and adoption as a guide to its appropriate application. Crop. Pasture Sci. 60:3197–217
    [Google Scholar]
  19. Brandes E, McNunn GS, Schulte LA, Bonner IJ, Muth DJ et al. 2016. Subfield profitability analysis reveals an economic case for cropland diversification. Environ. Res. Lett. 11:1014009
    [Google Scholar]
  20. Bullock DS, Lowenberg-DeBoer J, Swinton SM 2002. Adding value to spatially managed inputs by understanding site‐specific yield response. Agric. Econ. 27:3233–45
    [Google Scholar]
  21. Busse M, Schwerdtner W, Siebert R, Doernberg A, Kuntosch A et al. 2015. Analysis of animal monitoring technologies in Germany from an innovation system perspective. Agric. Syst. 138:55–65
    [Google Scholar]
  22. Candiago S, Remondino F, De Giglio M, Dubbini M, Gattelli M 2015. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing 7:44026–47
    [Google Scholar]
  23. Carolan M. 2017. Publicising food: big data, precision agriculture, and co‐experimental techniques of addition. Soc. Rural. 57:2135–54
    [Google Scholar]
  24. Casado-Vara R, Prieto J, De la Prieta F, Corchado JM 2018. How blockchain improves the supply chain: case study alimentary supply chain. Proc. Comput. Sci. 134:393–98
    [Google Scholar]
  25. Castle M, Lubben BD, Luck J 2015. Precision agriculture usage and big agriculture data. Cornhusker Economics May 27. https://digitalcommons.unl.edu/agecon_cornhusker/725/
    [Google Scholar]
  26. Chi H, Welch S, Vasserman E, Kalaimannan E 2017. A framework of cybersecurity approaches in precision agriculture. Proceedings of the ICMLG2017 5th International Conference on Management Leadership and Governance90–95 Reading, UK: Acad. Conf. Publ. Int.
    [Google Scholar]
  27. Chlingaryan A, Sukkarieh S, Whelan B 2018. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comput. Electron. Agric. 151:61–69
    [Google Scholar]
  28. Corkery M, Popper N. 2018. From farm to blockchain: Walmart tracks its lettuce. New York Times Sept. 24. https://www.nytimes.com/2018/09/24/business/walmart-blockchain-lettuce.html
    [Google Scholar]
  29. Corwin DL, Lesch SM. 2005. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 46:1–311–43
    [Google Scholar]
  30. Dammer KH, Adamek R. 2012. Sensor-based insecticide spraying to control cereal aphids and preserve lady beetles. Agronomy J 104:61694–701
    [Google Scholar]
  31. Diacono M, Rubino P, Montemurro F 2013. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 33:1219–41
    [Google Scholar]
  32. Du Q, Chang NB, Yang C, Srilakshmi KR 2008. Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management. J. Environ. Manag. 86:114–26
    [Google Scholar]
  33. Eur. Comm 2017. Benchmarking of farm productivity and sustainability performance EIP-AGRI Focus Group Final Rep., Jan. 10. https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/eip-agri_fg_benchmarking_final_report_2016_en.pdf
  34. Evans RG, LaRue J, Stone KC, King BA 2013. Adoption of site-specific variable rate sprinkler irrigation systems. Irrig. Sci. 31:4871–87
    [Google Scholar]
  35. Fales M, Dell R, Herbert ME, Sowa SP, Asher J et al. 2016. Making the leap from science to implementation: strategic agricultural conservation in Michigan's Saginaw Bay watershed. J. Great Lakes Res. 42:61372–85
    [Google Scholar]
  36. Finger R. 2018. Take a holistic view when making pesticide policies stricter. Nature 556:7700174
    [Google Scholar]
  37. Finger R, Möhring N, Dalhaus T, Böcker T 2017. Revisiting pesticide taxation schemes. Ecol. Econ. 134:263–66
    [Google Scholar]
  38. Foster AD, Rosenzweig MR. 2010. Microeconomics of technology adoption. Annu. Rev. Econ. 2:395–424
    [Google Scholar]
  39. Fulton JP, Shearer SA, Higgins SF, Hancock DW, Stombaugh TS 2005. Distribution pattern variability of granular VRT applicator. Trans. ASAE 48:62053–64
    [Google Scholar]
  40. Galvez JF, Mejuto JC, Simal-Gandara J 2018. Future challenges on the use of blockchain for food traceability analysis. Trends Anal. Chem. 107:222–32
    [Google Scholar]
  41. Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG et al. 2013. Sustainable intensification in agriculture: premises and policies. Science 341:614133–34
    [Google Scholar]
  42. Ge L, Brewster C, Spek J, Smeenk A, Top J et al. 2017. Blockchain for agriculture and food Report 2017-112, Wageningen Econ. Res Wageningen, Neth: https://library.wur.nl/WebQuery/wurpubs/fulltext/426747
  43. Gebbers R, Adamchuk VI. 2010. Precision agriculture and food security. Science 327:5967828–31
    [Google Scholar]
  44. Giles DK. 2016. Use of remotely piloted aircraft for pesticide applications: issues and outlook. Outlooks Pest Manag 27:5213–16
    [Google Scholar]
  45. Gnyp ML, Panitzki M, Reusch S, Jasper J, Bolten A, Bareth G 2016. Comparison between tractor-based and UAV-based spectrometer measurements in winter wheat Paper presented at the 13th International Conference on Precision Agriculture St. Louis, MO:
  46. Golka W, Żurek G, Kamiński JR 2016. Permanent grassland restoration techniques—an overview. Agric. Eng. 20:451–58
    [Google Scholar]
  47. Griffin TW, Shockley JM, Mark TB 2018. Economics of precision farming. Precision Agriculture Basics DK Shannon, DE Clay, NR Kitchen 221–30 Madison, WI: Am. Soc. Agron.
    [Google Scholar]
  48. Harmel RD, Kenimer AL, Searcy SW, Torbert HA 2004. Runoff water quality impact of variable rate sidedress nitrogen application. Precis. Agric. 5:3247–61
    [Google Scholar]
  49. Hunt ER Jr, Daughtry CS. 2018. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture. Int. J. Remote Sens. 39:15–165345–76
    [Google Scholar]
  50. Isik M, Khanna M. 2002. Variable-rate nitrogen application under uncertainty: implications for profitability and nitrogen use. J. Agric. Resour. Econ. 27:161–76
    [Google Scholar]
  51. Jensen HG, Jacobsen LB, Pedersen SM, Tavella E 2012. Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precis. Agric. 13:6661–77
    [Google Scholar]
  52. Jeon HY, Zhu H. 2012. Development of a variable-rate sprayer for nursery liner applications. Trans. ASABE 55:1303–12
    [Google Scholar]
  53. Jones JW, Antle JM, Basso B, Boote KJ, Conant RT et al. 2017. Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric. Syst. 155:269–88
    [Google Scholar]
  54. Kempenaar C, Been T, Booij J, van Evert F, Michielsen JM, Kocks C 2018. Advances in variable rate technology application in potato in the Netherlands. Potato Res 60:3–4295–305
    [Google Scholar]
  55. Keogh M, Henry M. 2016. The Implications of Digital Agriculture and Big Data for Australian Agriculture Sydney, Aust: Aust. Farm Inst.
  56. Khanna M, Isik M, Winter‐Nelson A 2000. Investment in site‐specific crop management under uncertainty: implications for nitrogen pollution control and environmental policy. Agric. Econ. 24:19–12
    [Google Scholar]
  57. Khosla R, Fleming K, Delgado JA, Shaver TM, Westfall DG 2002. Use of site-specific management zones to improve nitrogen management for precision agriculture. J. Soil Water Conserv. 57:6513–18
    [Google Scholar]
  58. Kim YJ, Kim HJ, Ryu KH, Rhee JY 2008. Fertiliser application performance of a variable-rate pneumatic granular applicator for rice production. Biosyst. Eng. 100:4498–510
    [Google Scholar]
  59. Kritikos M. 2017. Precision Agriculture in Europe: Legal, Social and Ethical Considerations Brussels: Eur. Union http://www.europarl.europa.eu/RegData/etudes/STUD/2017/603207/EPRS_STU(2017)603207_EN.pdf
  60. Kutter T, Tiemann S, Siebert R, Fountas S 2011. The role of communication and co-operation in the adoption of precision farming. Precis. Agric. 12:12–17
    [Google Scholar]
  61. Landis DA, Wratten SD, Gurr GM 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45:175–201
    [Google Scholar]
  62. Lev-Ram M. 2017. John Deere is paying $305 million for this Silicon Valley company Fortune, Sept. 6. http://fortune.com/2017/09/06/john-deere-blue-river-acquisition/
  63. Li Y, Chen D, Walker CN, Angus JF 2010. Estimating the nitrogen status of crops using a digital camera. Field Crops Res 118:3221–27
    [Google Scholar]
  64. Liaghat S, Balasundram SK. 2010. A review: the role of remote sensing in precision agriculture. Am. J. Agric. Biol. Sci. 5:150–55
    [Google Scholar]
  65. Lilienthal H, Gerighausen H, Schnug E 2018. Agricultural remote sensing information for farmers in Germany Paper presented at the 14th International Conference on Precision Agriculture Monticello, IL:
  66. Lin YP, Petway JR, Anthony J, Mukhtar H, Liao SW et al. 2017. Blockchain: the evolutionary next step for ICT e-agriculture. Environments 4:350
    [Google Scholar]
  67. Liu Y, Swinton SM, Miller NR 2006. Is site-specific yield response consistent over time? Does it pay. Am. J. Agric. Econ. 88:2471–83
    [Google Scholar]
  68. Loghin F, Popescu S, Rus F 2011. Dynamic modeling of working sections of grassland oversowing machine MSPD-2.5. Eng. Rural Dev. 2011:480–85
    [Google Scholar]
  69. Lottes P, Khanna R, Pfeifer J, Siegwart R, Stachniss C 2017. UAV-based crop and weed classification for smart farming. IEEE International Conference on Robotics and Automation (ICRA) 20173024–31 New York: IEEE
    [Google Scholar]
  70. Lowenberg-DeBoer J. 1999. Risk management potential of precision farming technologies. J. Agric. Appl. Econ. 31:2275–85
    [Google Scholar]
  71. Lowenberg-DeBoer J. 2015. The precision agriculture revolution: making the modern farmer. Foreign Aff 94:3105–12
    [Google Scholar]
  72. Mahlein AK, Kuska MT, Behmann J, Polder G, Walter A 2018. Hyperspectral sensors and imaging technologies in phytopathology: state of the art. Annu. Rev. Phytopathol. 56:535–58
    [Google Scholar]
  73. Mann S, Lanz S. 2013. Happy Tinbergen: Switzerland's new direct payment system. EuroChoices 12:324–28
    [Google Scholar]
  74. Martín-Retortillo M, Pinilla V. 2015. On the causes of economic growth in Europe: Why did agricultural labour productivity not converge between 1950 and 2005. Cliometrica 9:3359–96
    [Google Scholar]
  75. Massa A. 2017. Someone figured out how to put tomatoes on a blockchain. Bloomberg Technology Nov. 9. https://www.bloomberg.com/news/articles/2017-11-09/the-internet-of-tomatoes-is-coming-starting-with-boston-salads
    [Google Scholar]
  76. Möckel S. 2015. ‘Best available techniques’ as a mandatory basic standard for more sustainable agricultural land use in Europe. Land Use Policy 47:342–51
    [Google Scholar]
  77. Mondal P, Basu M. 2009. Adoption of precision agriculture technologies in India and in some developing countries: scope, present status and strategies. Prog. Nat. Sci. 19:6659–66
    [Google Scholar]
  78. Mulla DJ. 2013. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst. Eng. 114:4358–71
    [Google Scholar]
  79. Muth D. 2014. Profitability versus environmental performance: Are they competing. J. Soil Water Conserv. 69:6203A–6A
    [Google Scholar]
  80. Naik NS, Shete VV, Danve SR 2016. Precision agriculture robot for seeding function Paper presented at the International Conference on Inventive Computation Technologies, Coimbatore India:
  81. Nam CW, Parsche R, Radulescu DM, Schöpe M 2007. Taxation of fertilizers, pesticides and energy use for agricultural production in selected EU countries. Eur. Environ. 17:4267–84
    [Google Scholar]
  82. Nawar S, Corstanje R, Halcro G, Mulla D, Mouazen AM 2017. Delineation of soil management zones for variable-rate fertilization: a review. Adv. Agron. 143:175–245
    [Google Scholar]
  83. Norton GW, Swinton SM. 2001. Precision agriculture: global prospects and environmental implications. Tomorrow's Agriculture: Incentives, Institutions, Infrastructure and Innovations GH Peters, P Pingali 269–86 New York: Routledge
    [Google Scholar]
  84. Osteen CD, Fernandez‐Cornejo J. 2013. Economic and policy issues of US agricultural pesticide use trends. Pest Manag. Sci. 69:91001–25
    [Google Scholar]
  85. Pampolino MF, Manguiat IJ, Ramanathan S, Gines HC, Tan PS et al. 2007. Environmental impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice systems. Agric. Syst. 93:1–31–24
    [Google Scholar]
  86. Paustian M, Theuvsen L. 2017. Adoption of precision agriculture technologies by German crop farmers. Precision Agric 18:5701–16
    [Google Scholar]
  87. Peth D, Mußhoff O, Funke K, Hirschauer N 2018. Nudging farmers to comply with water protection rules—experimental evidence from Germany. Ecol. Econ. 152:310–21
    [Google Scholar]
  88. Pierce FJ, Nowak P. 1999. Aspects of precision agriculture. Adv. Agron. 67:1–85
    [Google Scholar]
  89. Pierpaoli E, Carli G, Pignatti E, Canavari M 2013. Drivers of precision agriculture technologies adoption: a literature review. Proc. Technol. 8:61–69
    [Google Scholar]
  90. Poppe KJ, Wolfert S, Verdouw C, Verwaart T 2013. Information and communication technology as a driver for change in agri‐food chains. EuroChoices 12:160–65
    [Google Scholar]
  91. Power AG. 2010. Ecosystem services and agriculture: tradeoffs and synergies. Philos. Trans. R. Soc. B 365:15542959–71
    [Google Scholar]
  92. Reichardt M, Jürgens C. 2009. Adoption and future perspective of precision farming in Germany: results of several surveys among different agricultural target groups. Precis. Agric. 10:173–94
    [Google Scholar]
  93. Rejesus RM, Hornbaker RH. 1999. Economic and environmental evaluation of alternative pollution-reducing nitrogen management practices in central Illinois. Agric. Ecosyst. Environ. 75:1–241–53
    [Google Scholar]
  94. Riecken J, Kurtenbach E. 2017. Der Satellitenpositionierungsdienst der deutschen Landesvermessung—SAPOS®. Z. Geod. Geoinform. Landmanag. 5:293–300
    [Google Scholar]
  95. Robertson MJ, Llewellyn RS, Mandel R, Lawes R, Bramley RGV et al. 2012. Adoption of variable rate fertiliser application in the Australian grains industry: status, issues and prospects. Precis. Agric. 13:2181–99
    [Google Scholar]
  96. Roldán JJ, del Cerro J, Garzón‐Ramos D, Garcia‐Aunon P, Garzón M et al. 2018. Robots in agriculture: state of art and practical experiences. Service Robots AJR Neves. London: InTechOpen. https://doi.org/10.5772/intechopen.69874
    [Crossref] [Google Scholar]
  97. Ruiz-Garcia L, Steinberger G, Rothmund M 2010. A model and prototype implementation for tracking and tracing agricultural batch products along the food chain. Food Control 21:2112–21
    [Google Scholar]
  98. Sadler EJ, Evans R, Stone KC, Camp CR 2005. Opportunities for conservation with precision irrigation. J. Soil Water Conserv. 60:6371–78
    [Google Scholar]
  99. Schellberg J, Hill MJ, Gerhards R, Rothmund M, Braun M 2008. Precision agriculture on grassland: applications, perspectives and constraints. Eur. J. Agron. 29:2–359–71
    [Google Scholar]
  100. Schieffer J, Dillon C. 2015. The economic and environmental impacts of precision agriculture and interactions with agro-environmental policy. Precis. Agric. 16:146–61
    [Google Scholar]
  101. Schimmelpfennig D. 2016. Farm profits and adoption of precision agriculture Rep. 249773 Econ. Res. Serv., US Dep. Agric Washington, DC:
  102. Schimmelpfennig D, Ebel R. 2016. Sequential adoption and cost savings from precision agriculture. J. Agric. Resour. Econ. 41:197–115
    [Google Scholar]
  103. Schröter D, Cramer W, Leemans R, Prentice CI, Araújo MB et al. 2005. Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–37
    [Google Scholar]
  104. Seelan SK, Laguette S, Casady GM, Seielstad GA 2003. Remote sensing applications for precision agriculture: a learning community approach. Remote Sensing Environ 88:1–2157–69
    [Google Scholar]
  105. Sehy U, Ruser R, Munch JC 2003. Nitrous oxide fluxes from maize fields: relationship to yield, site-specific fertilization, and soil conditions. Agric. Ecosyst. Environ. 99:1–397–111
    [Google Scholar]
  106. Shaw R, Lark RM, Williams AP, Chadwick DR, Jones DL 2016. Characterising the within-field scale spatial variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor networks for precision agriculture. Agric. Ecosyst. Environ. 230:294–306
    [Google Scholar]
  107. Shockley JM, Dillon CR, Stombaugh TS 2011. A whole farm analysis of the influence of auto-steer navigation on net returns, risk, and production practices. J. Agric. Appl. Econ. 43:157–75
    [Google Scholar]
  108. Silva CB, de Moraes MAFD, Molin JP 2011. Adoption and use of precision agriculture technologies in the sugarcane industry of São Paulo state, Brazil. Precis. Agric. 12:167–81
    [Google Scholar]
  109. Slaughter DC, Giles DK, Downey D 2008. Autonomous robotic weed control systems: a review. Comput. Electron. Agric. 61:163–78
    [Google Scholar]
  110. Sunding D, Zilberman D. 2001. The agricultural innovation process: research and technology adoption in a changing agricultural sector. Handb. Agric. Econ. 1:207–61
    [Google Scholar]
  111. Suprem A, Mahalik N, Kim K 2013. A review on application of technology systems, standards and interfaces for agriculture and food sector. Comp. Standards Interfaces 35:4355–64
    [Google Scholar]
  112. Swinton SM. 2005. Economics of site-specific weed management. Weed Sci 53:2259–63
    [Google Scholar]
  113. Swinton SM, Lowenberg-DeBoer J. 1998. Evaluating the profitability of site-specific farming. J. Prod. Agric. 11:4439–46
    [Google Scholar]
  114. Swinton SM, Lupi F, Robertson GP, Hamilton SK 2007. Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol. Econ. 64:2245–52
    [Google Scholar]
  115. Swinton SM, Van Deynze B 2017. Hoes to herbicides: economics of evolving weed management in the United States. Eur. J. Dev. Res. 29:560–74
    [Google Scholar]
  116. Tamirat TW, Pedersen SM, Lind KM 2018. Farm and operator characteristics affecting adoption of precision agriculture in Denmark and Germany. Acta Agric. Scand. Sect. B Soil Plant Sci. 68:4349–57
    [Google Scholar]
  117. Tey YS, Brindal M. 2012. Factors influencing the adoption of precision agricultural technologies: a review for policy implications. Precis. Agric. 13:6713–30
    [Google Scholar]
  118. Tian F. 2016. An agri-food supply chain traceability system for China based on RFID & blockchain technology Paper presented at the 13th International Conference on Service Systems and Service Management, Kunming China:
  119. Tilman D, Balzer C, Hill J, Befort BL 2011. Global food demand and the sustainable intensification of agriculture. PNAS 108:5020260–64
    [Google Scholar]
  120. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S 2002. Agricultural sustainability and intensive production practices. Nature 418:6898671–77
    [Google Scholar]
  121. Tozer PR. 2009. Uncertainty and investment in precision agriculture—is it worth the money. Agric. Syst. 100:1–380–87
    [Google Scholar]
  122. Van Evert FK, Been T, Booij AJ, Kempenaar C, Kessel JG, Molendijk PL 2018. Akkerweb: a platform for precision farming data, science, and practice Paper presented at the 14th International Conference on Precision Agriculture Montreal:
  123. Van Evert FK, Gaitán-Cremaschi D, Fountas S, Kempenaar C 2017. Can precision agriculture increase the profitability and sustainability of the production of potatoes and olives. Sustainability 9:101863
    [Google Scholar]
  124. Van Evert FK, Samsom J, Polder G, Vijn M, Dooren HJV et al. 2011. A robot to detect and control broad‐leaved dock (Rumex obtusifolius L.) in grassland. J. Field Robot. 28:2264–77
    [Google Scholar]
  125. Vermeulen SJ, Campbell BM, Ingram JS 2012. Climate change and food systems. Annu. Rev. Environ. Resour. 37:195–222
    [Google Scholar]
  126. Vollmer-Sanders C, Allman A, Busdeker D, Moody LB, Stanley WG 2016. Building partnerships to scale up conservation: 4R Nutrient Stewardship Certification Program in the Lake Erie watershed. J. Great Lakes Res. 42:61395–402
    [Google Scholar]
  127. Walter A, Finger R, Huber R, Buchmann N 2017. Opinion: smart farming is key to developing sustainable agriculture. PNAS 114:246148–50
    [Google Scholar]
  128. Walter A, Khanna R, Lottes P, Stachniss C, Siegwart R et al. 2018. Flourish: a robotic approach for automation in crop management Paper presented at the 14th International Conference on Precision Agriculture Montreal:
  129. Walter A, Liebisch F, Hund A 2015. Plant phenotyping: from bean weighing to image analysis. Plant Methods 11:114
    [Google Scholar]
  130. Wang N, Zhang N, Wang M 2006. Wireless sensors in agriculture and food industry—recent development and future perspective. Comput. Electron. Agric. 50:11–14
    [Google Scholar]
  131. Watcharaanantapong P, Roberts RK, Lambert DM, Larson JA, Velandia M et al. 2014. Timing of precision agriculture technology adoption in US cotton production. Precis. Agric. 15:4427–46
    [Google Scholar]
  132. Wathes CM, Kristensen HH, Aerts JM, Berckmans D 2008. Is precision livestock farming an engineer's daydream or nightmare, an animal's friend or foe, and a farmer's panacea or pitfall. Comput. Electron. Agric. 64:12–10
    [Google Scholar]
  133. Weersink A, Fraser E, Pannell D, Duncan E, Rotz S 2018. Opportunities and challenges for Big Data in agricultural and environmental analysis. Annu. Rev. Resour. Econ. 10:19–37
    [Google Scholar]
  134. Wheeler T, Von Braun J 2013. Climate change impacts on global food security. Science 341:6145508–13
    [Google Scholar]
  135. Winstead AT, Norwood SH, Griffin TW, Runge M, Adrian AM et al. 2010. Adoption and use of precision agriculture technologies by practitioners Paper presented at the 10th International Conference on Precision Agriculture Denver, CO:
  136. Wirtz BW, Weyerer JC. 2017. Cyberterrorism and cyber attacks in the public sector: how public administration copes with digital threats. Int. J. Public Adm. 40:131085–100
    [Google Scholar]
  137. Wolfert S, Ge L, Verdouw C, Bogaardt MJ 2017. Big data in smart farming—a review. Agric. Syst. 153:69–80
    [Google Scholar]
  138. Woodard JD. 2016a. Big data and Ag-Analytics: an open source, open data platform for agricultural & environmental finance, insurance, and risk. Agric. Finance Rev. 76:115–26
    [Google Scholar]
  139. Woodard JD. 2016b. Data science and management for large scale empirical applications in agricultural and applied economics research. Appl. Econ. Perspect. Policy 38:3373–88
    [Google Scholar]
  140. Xiongkui H, Bonds J, Herbst A, Langenakens J 2017. Recent development of unmanned aerial vehicle for plant protection in East Asia. Int. J. Agric. Biol. Eng. 10:318–30
    [Google Scholar]
  141. Zhang C, Kovacs JM. 2012. The application of small unmanned aerial systems for precision agriculture: a review. Precis. Agric. 13:6693–712
    [Google Scholar]
  142. Zhang KM, Wen ZG. 2008. Review and challenges of policies of environmental protection and sustainable development in China. J. Environ. Manag. 88:41249–61
    [Google Scholar]
  143. Zhang N, Wang M, Wang N 2002. Precision agriculture—a worldwide overview. Comput. Electron. Agric. 36:2–3113–32
    [Google Scholar]
  144. Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM 2007. Ecosystem services and dis-services to agriculture. Ecol. Econ. 64:2253–60
    [Google Scholar]
  145. Zhou XV, English BC, Larson JA, Lambert DM, Roberts RK et al. 2017. Precision farming adoption trends in the southern US. J. Cotton Sci. 21:2143–55
    [Google Scholar]
  146. Zude-Sasse M, Fountas S, Gemtos TA, Abu-Khalaf N 2016. Applications of precision agriculture in horticultural crops. Eur. J. Hortic. Sci. 81:278–90
    [Google Scholar]
/content/journals/10.1146/annurev-resource-100518-093929
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error