1932

Abstract

Computational methods are required to solve problems without closed-form solutions in environmental and resource economics. Efficiency, stability, and accuracy are key elements for computational methods. This review discusses state-of-the-art computational methods applied in environmental and resource economics, including optimal control methods for deterministic models, advances in value function iteration and time iteration for general dynamic stochastic problems, nonlinear certainty equivalent approximation, robust decision making, real option analysis, bilevel optimization, solution methods for continuous time problems, and so on. This review also clarifies the so-called curse of dimensionality, and discusses some computational techniques such as approximation methods without the curse of dimensionality and time-dependent approximation domains. Many existing economic models use simplifying and/or unrealistic assumptions with an excuse of computational feasibility, but these assumptions might be able to be relaxed if we choose an efficient computational method discussed in this review.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-100518-093841
2019-10-05
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/resource/11/1/annurev-resource-100518-093841.html?itemId=/content/journals/10.1146/annurev-resource-100518-093841&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerman F, Stanton EA, Bueno R 2010. Fat tails, exponents, extreme uncertainty: simulating catastrophe in DICE. Ecol. Econ. 69:1657–65
    [Google Scholar]
  2. Adjemian S, Bastani H, Karame F, Juillard M, Maih J et al. 2011. Dynare: reference manual version 4 Dynare Work. Pap. 1, CEPREMAP, Paris. https://www.dynare.org/wp-repo/dynarewp001.pdf
  3. Albers H, Fisher A, Hanemann W 1996. Valuation and management of tropical forests: implications of uncertainty and irreversibility. Environ. Resour. Econ. 8:39–61
    [Google Scholar]
  4. Anda J, Golub A, Strukova E 2009. Economics of climate change under uncertainty: benefits of flexibility. Energy Policy 37:1345–55
    [Google Scholar]
  5. Anthoff D, Tol R 2013. The uncertainty about the social cost of carbon: a decomposition analysis using FUND. Climatic Change 117:515–30
    [Google Scholar]
  6. Anthoff D, Tol R 2014a. The climate framework for uncertainty, negotiation and distribution (FUND) Tech. Descr. Version 3.9. http://www.fund-model.org/Fund-3-9-Scientific-Documentation.pdf
  7. Anthoff D, Tol R 2014b. Climate policy under fat-tailed risk: an application of FUND. Ann. Oper. Res. 220:223–37
    [Google Scholar]
  8. Athanassoglou S, Xepapadeas A 2012. Pollution control with uncertain stock dynamics: when, and how, to be precautious. J. Environ. Econ. Manag. 63:304–20
    [Google Scholar]
  9. Baldwin E, Cai Y, Kuralbayeva K 2018. To build or not to build? Capital stocks and climate policy CESifo Work. Pap. 6884, CESifo Group, Munich
  10. Bellman R 1957. Dynamic Programming Princeton, NJ: Princeton Univ. Press
  11. Berger L, Emmerling J, Tavoni M 2017. Managing catastrophic climate risks under model uncertainty aversion. Manag. Sci. 63:749–65
    [Google Scholar]
  12. Bergman L 2005. CGE modeling of environmental policy and resource management. Handbook of Environmental Economics 3 KG Maler, JR Vincent1273–306 Amsterdam: Elsevier
    [Google Scholar]
  13. Bertsekas D 2005. Dynamic Programming and Optimal Control I Nashua, NH: Athena Sci.
  14. Bertsekas D 2007. Dynamic Programming and Optimal Control II Nashua, NH: Athena Sci.
  15. Brennan MJ, Schwartz ES 1985. Evaluating natural resource investments. J. Bus. 58:135–57
    [Google Scholar]
  16. Brock W, Starrett D 2003. Managing systems with non-convex positive feedback. Environ. Resour. Econ. 26:575–602
    [Google Scholar]
  17. Brumm J, Scheidegger S 2017. Using adaptive sparse grids to solve high-dimensional dynamic models. Econometrica 85:1575–612
    [Google Scholar]
  18. Byrd R, Nocedal J, Waltz R 2006. KNITRO: an integrated package for nonlinear optimization. Large-Scale Nonlinear Optimization G Di Pillo, M Roma35–59 New York: Springer
    [Google Scholar]
  19. Cafiero C, Bobenrieth E, Bobenrieth J, Wright BD 2011. The empirical relevance of the competitive storage model. J. Econom. 162:44–54
    [Google Scholar]
  20. Cafiero C, Bobenrieth E, Bobenrieth J, Wright BD 2015. Maximum likelihood estimation of the standard commodity storage model: evidence from sugar prices. Am. J. Agric. Econ. 97:122–36
    [Google Scholar]
  21. Cai Y, Brock W, Xepapadeas A, Judd KL 2018a. Climate policy under cooperation and competition between regions with spatial heat transport NBER Work. Pap. 24473
  22. Cai Y, Golub AA, Hertel TW 2017. Developing long-run agricultural R&D policy in the face of uncertain economic growth Paper presented at 2017 ASSA Annual Meeting, Chicago, Jan. 6–8
  23. Cai Y, Golub AA, Hertel TW 2017a. Agricultural research spending must increase in light of future uncertainties. Food Policy 70:71–83
    [Google Scholar]
  24. Cai Y, Judd KL 2010. Stable and efficient computational methods for dynamic programming. J. Eur. Econ. Assoc. 8:626–34
    [Google Scholar]
  25. Cai Y, Judd KL 2012. Dynamic programming with shape-preserving rational spline hermite interpolation. Econ. Lett. 117:161–64
    [Google Scholar]
  26. Cai Y, Judd KL 2014. Advances in numerical dynamic programming and new applications. Handbook of Computational Economics 3 K Schmedders, K Judd479–516 Amsterdam: Elsevier
    [Google Scholar]
  27. Cai Y, Judd KL 2015. Dynamic programming with hermite approximation. Math. Methods Oper. Res. 81:245–67
    [Google Scholar]
  28. Cai Y, Judd KL, Lenton TM, Lontzek TS, Narita D 2015a. Environmental tipping points significantly affect the cost-benefit assessment of climate policies. PNAS 112:4606–11
    [Google Scholar]
  29. Cai Y, Judd KL, Lontzek TS 2012. Continuous-time methods for integrated assessment models NBER Work. Pap. 18365
  30. Cai Y, Judd KL, Lontzek TS 2017b. The social cost of carbon with economic and climate risks Econ. Work. Pap. 18113, Hoover Inst., Stanford, CA
  31. Cai Y, Judd KL, Lontzek TS 2018b. Numerical dynamic programming with verification and uncertainty quantification: an application to climate policy Work. Pap., Ohio State Univ., Columbus, and Stanford Univ., Stanford, CA
  32. Cai Y, Judd KL, Steinbuks J 2017c. A nonlinear certainty equivalent approximation method for dynamic stochastic problems. Quant. Econ. 8:117–47
    [Google Scholar]
  33. Cai Y, Judd KL, Thain G, Wright S 2015b. Solving dynamic programming problems on computational grid. Comput. Econ. 45:261–84
    [Google Scholar]
  34. Cai Y, Lenton TM, Lontzek TS 2016b. Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction. Nat. Climate Change 6:520–25
    [Google Scholar]
  35. Cai Y, Sanstad AH 2016. Model uncertainty and energy technology policy: the example of induced technical change. Comput. Oper. Res. 66:362–73
    [Google Scholar]
  36. Carpenter SR, Brock WA 2004. Spatial complexity, resilience, and policy diversity: fishing on lake-rich landscapes. Ecol. Soc. 9:18
    [Google Scholar]
  37. Carpenter SR, Ludwig D, Brock WA 1999. Management of eutrophication for lakes subject to potentially irreversible change. Ecol. Appl. 9:751–71
    [Google Scholar]
  38. Cerreia-Vioglio S, Maccheroni F, Marinacci M, Montrucchio L 2013. Classical subjective expected utility. PNAS 110:6754–59
    [Google Scholar]
  39. Christensen P, Gillingham K, Nordhaus W 2018. Uncertainty in forecasts of long-run economic growth. PNAS 115:5409–14
    [Google Scholar]
  40. Costello CJ, Neubert MG, Polasky SA, Solow AR 2010. Bounded uncertainty and climate change economics. PNAS 107:8108–10
    [Google Scholar]
  41. Crost B, Traeger CP 2013. Optimal climate policy: uncertainty versus Monte Carlo. Econ. Lett. 120:552–58
    [Google Scholar]
  42. Czyzyk J, Mesnier MP, More JJ 1998. The NEOS server. IEEE Comput. Sci. Eng. 5:68–75
    [Google Scholar]
  43. Daigneault AJ, Miranda MJ, Sohngen B 2010. Optimal forest management with carbon sequestration credits and endogenous fire risk. Land Econ. 86:155–72
    [Google Scholar]
  44. Deaton A, Laroque G 1995. Estimating a nonlinear rational expectations commodity price model with unobservable state variables. J. Appl. Econom. 10:S9–S40
    [Google Scholar]
  45. Deaton A, Laroque G 1996. Competitive storage and commodity price dynamics. J. Political Econ. 104:896–923
    [Google Scholar]
  46. Dirkse SP, Ferris MC 1995. The Path Solver: a nonmonotone stabilization scheme for mixed complementarity problems. Optim. Methods Software 5:123–56
    [Google Scholar]
  47. Dixit A, Pindyck R 1994. Investment Under Uncertainty Princeton, NJ: Princeton Univ. Press
  48. Dixon PB, Jorgenson DW 2013. Handbook of Computable General Equilibrium Modeling 1 Amsterdam: Elsevier
  49. Doraszelski U, Judd KL 2012. Avoiding the curse of dimensionality in dynamic stochastic games. Quant. Econ. 3:53–93
    [Google Scholar]
  50. Drouet L, Bosetti V, Tavoni M 2015. Selection of climate policies under the uncertainties in the fifth assessment report of the IPCC. Nat. Climate Change 5:937–40
    [Google Scholar]
  51. Drud AS 1994. CONOPT—a large scale GRG code. ORSA J. Comput. 6:207–16
    [Google Scholar]
  52. Epstein LG, Zin SE 1989. Substitution, risk aversion, and the temporal behavior of consumption and asset returns: a theoretical framework. Econometrica 57:937–69
    [Google Scholar]
  53. Farmer JD, Hepburn C, Mealy P, Teytelboym A 2015. A third wave in the economics of climate change. Environ. Resour. Econ. 62:329–57
    [Google Scholar]
  54. Fenichel EP, Horan RD 2016. Tinbergen and tipping points: Could some thresholds be policy-induced. J. Econ. Behav. Organ. 132:137–52
    [Google Scholar]
  55. Fernandez-Villaverde J, Levintal O 2018. Solution methods for models with rare disasters. Quant. Econ. 9:903–44
    [Google Scholar]
  56. Fernandez-Villaverde J, Rubio-Ramirez J, Schorfheide F 2016. Solution and estimation methods for DSGE models. Handbook of Macroeconomics 2 JB Taylor, H Uhlig527–724 Amsterdam: Elsevier
    [Google Scholar]
  57. Ferris MC, Munson TS 2000. Complementarity problems in GAMS and the Path Solver. J. Econ. Dyn. Control 24:165–88
    [Google Scholar]
  58. Fourer R, Gay D, Kernighan B 2003. AMPL: A Modeling Language for Mathematical Programming Albuquerque, NM: AMPL. 2nd ed.
  59. Gerstner T, Griebel M 1999. Numerical integration using sparse grids. Numer. Algorithms 18:209–32
    [Google Scholar]
  60. Gill P, Murray W, Saunders M, Wright M 1994. User's guide for NPSOL 5.0: a FORTRAN package for nonlinear programming. Tech. Rep., Stanford Univ., Stanford, CA
  61. Gill PE, Murray W, Saunders MA 2005. SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47:99–131
    [Google Scholar]
  62. Gillingham K, Nordhaus W, Anthoff D, Blanford G, Bosetti V et al. 2018. Modeling uncertainty in integrated assessment of climate change: a multimodel comparison. J. Assoc. Environ. Resour. Econ. 5:791–826
    [Google Scholar]
  63. Golub AA, Henderson BB, Hertel TW, Gerber PJ, Rose SK, Sohngen B 2013. Global climate policy impacts on livestock, land use, livelihoods, and food security. PNAS 110:20894–99
    [Google Scholar]
  64. Golub AA, Hertel T, Lee HL, Rose S, Sohngen B 2009. The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry. Resour. Energy Econ. 31:299–319
    [Google Scholar]
  65. Gopalakrishnan S, McNamara D, Smith MD, Murray AB 2017. Decentralized management hinders coastal climate adaptation: the spatial-dynamics of beach nourishment. Environ. Resour. Econ. 67:761–87
    [Google Scholar]
  66. Goulder LH, Mathai K 2000. Optimal CO abatement in the presence of induced technological change. J. Environ. Econ. Manag. 39:1–38
    [Google Scholar]
  67. Grass D 2012. Numerical computation of the optimal vector field: exemplified by a fishery model. J. Econ. Dyn. Control 36:1626–58
    [Google Scholar]
  68. Grass D, Xepapadeas A, de Zeeuw A 2017. Optimal management of ecosystem services with pollution traps: the lake model revisited. J. Assoc. Environ. Resour. Econ. 4:1121–54
    [Google Scholar]
  69. Grimsrud KM, Huffaker R 2006. Solving multidimensional bioeconomic problems with singular-perturbation reduction methods: application to managing pest resistance to pesticidal crops. J. Environ. Econ. Manag. 51:336–53
    [Google Scholar]
  70. Guerra EA, Bobenrieth E, Bobenrieth J, Cafiero C 2015. Empirical commodity storage model: the challenge of matching data and theory. Eur. Rev. Agric. Econ. 42:607–23
    [Google Scholar]
  71. Guerrieri L, Iacoviello M 2015. Occbin: a toolkit for solving dynamic models with occasionally binding constraints easily. J. Monetary Econ. 70:22–38
    [Google Scholar]
  72. Hansen K, Howitt R, Williams J 2008. Valuing risk: options in California water markets. Am. J. Agric. Econ. 90:1336–42
    [Google Scholar]
  73. Hansen LP, Sargent T 2008. Robustness Princeton, NJ: Princeton Univ. Press
  74. Harenberg D, Marelli S, Sudret B, Winschel V 2019. Uncertainty quantification and global sensitivity analysis for economic models. Quant. Econ. 10:1–41
    [Google Scholar]
  75. Heiss F, Winschel V 2008. Likelihood approximation by numerical integration on sparse grids. J. Econom. 144:62–80
    [Google Scholar]
  76. Hertel T 2013. Global applied general equilibrium analysis using the global trade analysis project framework. Handbook of Computable General Equilibrium Modeling PB Dixon, DW Jorgenson 1815–76 Amsterdam: Elsevier
    [Google Scholar]
  77. Heutel G, Moreno-Cruz J, Shayegh S 2016. Climate tipping points and solar geoengineering. J. Econ. Behav. Organ. 132:19–45
    [Google Scholar]
  78. Heutel G, Moreno-Cruz J, Shayegh S 2018. Solar geoengineering, uncertainty, and the price of carbon. J. Environ. Econ. Manag. 87:24–41
    [Google Scholar]
  79. Horridge M, Meeraus A, Pearson K, Rutherford TF 2013. Solution software for computable general equilibrium modeling. Handbook of Computable General Equilibrium Modeling 1 PB Dixon, DW Jorgenson1131–81 Amsterdam: Elsevier
    [Google Scholar]
  80. Hwang IC 2017. A recursive method for solving a climate-economy model: value function iterations with logarithmic approximations. Comput. Econ. 50:95–110
    [Google Scholar]
  81. Insley M 2002. A real options approach to the valuation of a forestry investment. J. Environ. Econ. Manag. 44:471–92
    [Google Scholar]
  82. IPCC (Intergov. Panel Clim. Change) 2007. Climate Change 2007: The Physical Science Basis New York: Cambridge Univ. Press
  83. IPCC (Intergov. Panel Clim. Change) 2013. Climate Change 2013: The Physical Science Basis New York: Cambridge Univ. Press
  84. Iverson T 2012. Communicating trade-offs amid controversial science: decision support for climate policy. Ecol. Econ. 77:74–90
    [Google Scholar]
  85. Iverson T 2013. Minimax regret discounting. J. Environ. Econ. Manag. 66:598–608
    [Google Scholar]
  86. Jensen S, Traeger C 2014. Watch your step: optimal policy in a tipping climate. Eur. Econ. Rev. 69:104–25
    [Google Scholar]
  87. Judd KL 1992. Projection methods for solving aggregate growth models. J. Econ. Theory 58:410–52
    [Google Scholar]
  88. Judd KL 1998. Numerical Methods in Economics Cambridge, MA: MIT Press
  89. Judd KL, Guu SM 1993. Perturbation solution methods for economic growth models. Economic and Financial Modeling with Mathematica H Varian80–103 Berlin: Springer Verlag
    [Google Scholar]
  90. Judd KL, Maliar L, Maliar S 2011. Numerically stable and accurate stochastic simulation approaches for solving dynamic economic models. Quant. Econ. 2:173–210
    [Google Scholar]
  91. Judd KL, Maliar L, Maliar S, Valero R 2014. Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain. J. Econ. Dyn. Control 44:92–123
    [Google Scholar]
  92. Kelly DL, Kolstad CD 1999. Bayesian learning, growth, and pollution. J. Econ. Dyn. Control 23:491–518
    [Google Scholar]
  93. Kelly DL, Tan Z 2015. Learning and climate feedbacks: optimal climate insurance and fat tails. J. Environ. Econ. Manag. 72:98–122
    [Google Scholar]
  94. Kossioris G, Plexousakis M, Xepapadeas A, de Zeeuw A, Maler KG 2008. Feedback Nash equilibria for non-linear differential games in pollution control. J. Econ. Dyn. Control 32:1312–31
    [Google Scholar]
  95. Krueger D, Kubler F 2004. Computing equilibrium in OLG models with stochastic production. J. Econ. Dyn. Control 28:1411–36
    [Google Scholar]
  96. Leach AJ 2007. The climate change learning curve. J. Econ. Dyn. Control 31:1728–52
    [Google Scholar]
  97. Lemoine D, Rudik I 2017. Managing climate change under uncertainty: recursive integrated assessment at an inflection point. Annu. Rev. Resour. Econ. 9:117–42
    [Google Scholar]
  98. Lemoine D, Traeger C 2014. Watch your step: optimal policy in a tipping climate. Am. Econ. J. Econ. Policy 6:137–66
    [Google Scholar]
  99. Leroux AD, Martin VL, Goeschl T 2009. Optimal conservation, extinction debt, and the augmented quasi-option value. J. Environ. Econ. Manag. 58:43–57
    [Google Scholar]
  100. Levintal O 2018. Taylor projection: a new solution method for dynamic general equilibrium models. Int. Econ. Rev. 59:1345–73
    [Google Scholar]
  101. Linquiti P, Vonortas N 2012. The value of flexibility in adapting to climate change: a real options analysis of investments in coastal defense. Climate Change Econ. 3:1250008
    [Google Scholar]
  102. Ljungqvist L, Sargent T 2000. Recursive Macroeconomic Theory Cambridge, MA: MIT Press
  103. Lontzek TS, Cai Y, Judd KL, Lenton TM 2015. Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy. Nat. Climate Change 5:441–44
    [Google Scholar]
  104. Mäler KG, Xepapadeas A, de Zeeuw A 2003. The economics of shallow lakes. Environ. Resour. Econ. 26:603–24
    [Google Scholar]
  105. Maliar L, Maliar S 2015. Merging simulation and projection approaches to solve high-dimensional problems with an application to a new Keynesian model. Quant. Econ. 6:1–47
    [Google Scholar]
  106. Malin BA, Krueger D, Kubler F 2011. Solving the multi-country real business cycle model using a Smolyak-collocation method. J. Econ. Dyn. Control 35:229–39
    [Google Scholar]
  107. Marinacci M 2015. Model uncertainty. J. Eur. Econ. Assoc. 13:1022–100
    [Google Scholar]
  108. McCarl B, Meeraus A, van der Eijk P, Bussieck M, Dirkse S, Nelissen F 2018. McCarl expanded GAMS user guide version 25.1 User Guide, GAMS, Fairfax, VA https://www.gams.com/latest/docs/gams.pdf
  109. Miranda MJ, Fackler PL 2002. Applied Computational Economics and Finance Cambridge, MA: MIT Press
  110. Nadolnyak D, Miranda MJ, Sheldon I 2011. Genetically modified crops as real options: identifying regional and country-specific difference. Int. J. Ind. Organ. 29:455–63
    [Google Scholar]
  111. New M, Hulme M 2000. Representing uncertainty in climate change scenarios: a Monte-Carlo approach. Integr. Assess. 1:203–13
    [Google Scholar]
  112. Nordhaus W, Boyer J 2000. Warming the World: Economic Models of Global Warming Cambridge, MA: MIT Press
  113. Nordhaus WD 2008. A Question of Balance: Weighing the Options on Global Warming Policies New Haven, CT: Yale Univ. Press
  114. O'Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S et al. 2014. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122:387–400
    [Google Scholar]
  115. Polasky S, de Zeeuw A, Wagener F 2011. Optimal management with potential regime shifts. J. Environ. Econ. Manag. 62:229–40
    [Google Scholar]
  116. Powell WB 2007. Approximate Dynamic Programming: Solving the Curses of Dimensionality Hoboken, NJ: Wiley-Interscience
  117. Renner P, Schmedders K 2015. A polynomial optimization approach to principal-agent problems. Econometrica 83:729–69
    [Google Scholar]
  118. Renner P, Schmedders K 2016. Dynamic principal-agent models Res. Pap. 16-26, Swiss Finance Inst., Geneva
  119. Rudik I 2016. Optimal climate policy when damages are unknown Econ. Work. Pap. 16011, Iowa State Univ., Ames
  120. Rust J 1987. Optimal replacement of GMC bus engines: an empirical model of Harold Zurcher. Econometrica 55:999–1033
    [Google Scholar]
  121. Rust J 1996. Numerical dynamic programming in economics. Handbook of Computational Economics 1 HM Amman, DA Kendrick, J Rust619–729 Amsterdam: Elsevier
    [Google Scholar]
  122. Rutherford TF 1993. MILES: a mixed inequality and nonlinear equation solver Work. Pap., Univ. Colorado, Boulder
  123. Rutherford TF 1995. Extension of GAMS for complementarity problems arising in applied economic analysis. J. Econ. Dyn. Control 19:1299–324
    [Google Scholar]
  124. Rutherford TF 1999. Applied general equilibrium modeling with MPSGE as a GAMS subsystem: an overview of the modeling framework and syntax. Comput. Econ. 14:1–46
    [Google Scholar]
  125. Ryu Y, Kim YO, Seo SB, Seo IW 2018. Application of real option analysis for planning under climate change uncertainty: a case study for evaluation of flood mitigation plans in korea. Mitigation Adaptation Strateg. Glob. Change 23:803–19
    [Google Scholar]
  126. Shayegh S, Thomas VM 2015. Adaptive stochastic integrated assessment modeling of optimal greenhouse gas emission reductions. Climatic Change 128:1–15
    [Google Scholar]
  127. Skrainka BS, Judd KL 2011. High performance quadrature rules: how numerical integration affects a popular model of product differentiation Work. Pap., Inst. Fisc. Stud., London
  128. Smolyak SA 1963. Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl. 4:240–43
    [Google Scholar]
  129. Sohngen B, Mendelsohn R 1998. Valuing the impact of large-scale ecological change in a market: the effect of climate change on U.S. timber. Am. Econ. Rev. 88:686–710
    [Google Scholar]
  130. Sohngen B, Mendelsohn R 2003. An optimal control model of forest carbon sequestration. Am. J. Agric. Econ. 85:448–57
    [Google Scholar]
  131. Sohngen B, Mendelsohn R, Sedjo R 1999. Forest management, conservation, and global timber markets. Am. J. Agric. Econ. 81:1–13
    [Google Scholar]
  132. Stroud AH 1971. Approximate Calculation of Multiple Integrals Englewood Cliffs, NJ: Prentice-Hall
  133. Su CL, Judd KL 2012. Constrained optimization approaches to estimation of structural models. Econometrica 80:2213–30
    [Google Scholar]
  134. Traeger C 2014. A 4-stated DICE: quantitatively addressing uncertainty effects in climate change. Environ. Resour. Econ. 59:1–37
    [Google Scholar]
  135. van der Ploeg F, de Zeeuw A 2016. Non-cooperative and cooperative responses to climate catastrophes in the global economy: a north-south perspective. Envir. Resour. Econ. 65:519–40
    [Google Scholar]
  136. Wagener FOO 2003. Skiba points and heteroclinic bifurcations, with applications to the shallow lake system. J. Econ. Dyn. Control 27:1533–61
    [Google Scholar]
  137. Weitzman ML 2009. On modeling and interpreting the economics of catastrophic climate change. Rev. Econ. Stat. 91:1–19
    [Google Scholar]
/content/journals/10.1146/annurev-resource-100518-093841
Loading

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error