Annually, nearly 500 gigatonnes of CO are exchanged between terrestrial ecosystems and the atmosphere, and this exchange is clearly affected by human activities related to the Earth's forests. Governments are therefore willing to draft legislation incentivizing forest activities that sequester carbon to combat climate change. In this review, we examine issues related to the creation of carbon offset credits through forest conservation, burning of wood biomass in lieu of fossil fuels, and intensive commercial management that accounts for all carbon fluxes, including postharvest. In doing so, we study the costs of monitoring, measuring, and contracting; the principal-agent problem; and questions related to life cycle analyses of CO. We can only conclude that greater care is likely needed in the future to identify carbon offsets from forestry activities if these are to be traded in emissions markets.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abt KL, Abt RC, Galik CS. 2012. Effect of bioenergy demands and supply response on markets, carbon, and land use. For. Sci. 58:523–39 [Google Scholar]
  2. Angelsen A. 2014. The economics of REDD+. Handbook of Forest Resource Economics S Kant, J Alavalapati 290–306 Oxon, UK: Routledge [Google Scholar]
  3. Arguedas C, van Soest DP. 2011. Optimal conservation programs, asymmetric information and the role of fixed costs. Environ. Resour. Econ. 50:305–23 [Google Scholar]
  4. Arroyo-Currás T, Bauer N, Kriegler E, Schwanitz VJ, Luderer G. et al. 2015. Carbon leakage in a fragmented climate regime: the dynamic response of global energy markets. Technol. Forecast. Soc. Change 90:192–203 [Google Scholar]
  5. Aud. Gen. BC 2013. An audit of carbon neutral government. Rep. 14, Gov. BC, Victoria. https://www.bcauditor.com/sites/default/files/publications/2013/report_14/report/OAG%20Carbon%20Neutral.pdf [Google Scholar]
  6. Beck M, Wigle R. 2014. Carbon taxes and mind the hissing Sustain. Prosper. Res. Pap., Univ. Ottawa, Ottawa. http://www.sustainableprosperity.ca/sites/default/files/publications/files/Mind%20the%20Hissing.pdf [Google Scholar]
  7. Bogle TN. 2012. Timber supply on public land in response to catastrophic natural disturbance: a principal-agent problem PhD Thesis, Univ. Victoria, Victoria [Google Scholar]
  8. Bogle TN, van Kooten GC. 2013. Options for maintaining forest productivity after natural disturbance: a principal-agent approach. For. Policy Econ. 26:1138–44 [Google Scholar]
  9. Bogle TN, van Kooten GC. 2015. Protecting timber supply on public land in response to catastrophic natural disturbance: a principal-agent problem. For. Sci. 61:183–92 [Google Scholar]
  10. Bosetti V, Lubowski R, Golub A, Markandya A. 2011. Linking reduced deforestation and a global carbon market: implications for clean energy technology and policy flexibility. Environ. Dev. Econ. 16:4479–505 [Google Scholar]
  11. Bosetti V, Rose SK. 2011. Reducing carbon emissions from deforestation and forest degradation: issues for policy design and implementation. Environ. Dev. Econ. 16:4357–60 [Google Scholar]
  12. Bowes MD, Krutilla JV. 1989. Multiple-Use Management: The Economics of Public Forestlands Washington, DC: Resour. Fut. [Google Scholar]
  13. Boyland M. 2006. The economics of using forest to increase carbon storage. Can. J. For. Res. 36:92223–34 [Google Scholar]
  14. Buongiorno J, Raunikar R, Zhu S. 2011. Consequences of increasing bioenergy demand on wood and forests: an application of the global forest products model. J. For. Econ. 17:214–29 [Google Scholar]
  15. Buttoud G. 2012. Emerging economic mechanisms for global forest governance. For. Policy Econ. 18:1, Spec. Issue1–52 [Google Scholar]
  16. Calish S, Fight RD, Teeguarden DE. 1978. How do nontimber values affect Douglas-fir rotations?. J. For. 76:4217–21 [Google Scholar]
  17. Cherubini F, Peters GP, Berntsen T, Strømman AH, Hertwich E. 2011. CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. Glob. Change Biol. Bioenergy 3:413–26 [Google Scholar]
  18. Ciriacy-Wantrup SV. 1968 (1952). Resource Conservation. Economics and Policies. Berkeley, CA: Univ. Calif., Agric. Exp. Stn, 3rd ed.. [Google Scholar]
  19. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W. 2008. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 8:2389–95 [Google Scholar]
  20. De Soto H. 2000. The Mystery of Capital New York: Basic Books [Google Scholar]
  21. Engel S, Palmer C, Taschini L, Urech S. 2012. Cost-effective payments for reducing emissions from deforestation under uncertainty Work. Pap. 82, Cent. Clim. Change Econ. Policy, Leeds, UK. http://www.cccep.ac.uk/wp-content/uploads/2015/10/WP72_payments-emissions-deforestation.pdf [Google Scholar]
  22. FAO (Food Agric. Organ.) 2014. Climate change and forests Rep., For. Dep. Food Agric. Organ., New York. http://www.fao.org/docrep/003/y0900e/y0900e06.htm [Google Scholar]
  23. FAO (Food Agric. Organ.) 2015. FAOstat database Food Agric. Organ. Stat. Div., updated Mar., New York. http://faostat3.fao.org/download/R/RL/E [Google Scholar]
  24. Galik CS, Abt RC. 2012. The effect of assessment scale and metric selection on the greenhouse gas benefits of woody biomass. Biomass Bioenergy 44:1–7 [Google Scholar]
  25. Ginther S. 2015. A call for transparency in Dutch sustainability rulemaking. Wood Pellet Periodical Blog Jan. 13. http://www.theusipa.org/wood-pellet-periodical [Google Scholar]
  26. Gong Y, Bull G, Baylis K. 2010. Participation in the world's first clean development mechanism forest project: the role of property rights, social capital and contractual rules. Ecol. Econ. 69:1292–302 [Google Scholar]
  27. Green M, Karsh E. 2012. The case for tall wood buildings: how mass timber offers a safe, economical, and environmentally friendly alternative for tall building structures Rep., Wood Enterp. Coalit., Vancouver. http://cwc.ca/wp-content/uploads/publications-Tall-Wood.pdf [Google Scholar]
  28. Hallmann FW, Amacher GS. 2012. Forest bioenergy adoption for a risk-averse landowner under uncertain emerging biomass market. Nat. Resour. Model. 25:3482–510 [Google Scholar]
  29. Hartman R. 1976. The harvesting decision when a standing forest has value. Econ. Inq. 16:52–58 [Google Scholar]
  30. Hayter S, Tanner S, Comer S, Demeter C. 2004. Federal technology alert: biomass cofiring in coal-fired boilers Rep. DOE/EE-0288, Natl. Renew. Energy Lab., Off. Energy Effic. Renew. Energy, US Dep. Energy, Washington, DC. http://www.nrel.gov/docs/fy04osti/33811.pdf [Google Scholar]
  31. He J, Huang Y, Tarp F. 2014. Is the clean development mechanism effective for emission reductions?. Greenh. Gases Sci. Technol. 4:750–60 [Google Scholar]
  32. Helin T, Sokka L, Soimakallio S, Pingoud K, Pajula T. 2013. Approaches for inclusion of forest carbon cycle in life cycle assessment—a review. Glob. Change Biol. Bioenergy 5:475–86 [Google Scholar]
  33. Helm D. 2010. Government failure, rent-seeking, and capture: the design of climate change policy. Oxf. Rev. Econ. Policy 26:2182–96 [Google Scholar]
  34. Hennigar CR, MacLean DA, Amos-Binks LJ. 2008. A novel approach to optimize management strategies for carbon stored in both forest and wood products. For. Ecol. Manag. 256:4786–97 [Google Scholar]
  35. Ince PJ, Kramp AD, Skog KE. 2012. Evaluating economic impacts of expanded global wood energy consumption with the USFPM/GFPM model.. Can. J. Agric. Econ. 60:2211–37 [Google Scholar]
  36. Ince PJ, Kramp AD, Skog KE, Yoo D, Sample VA. 2011. Modelling future U.S. forest sector market and trade impacts of expansion in wood energy consumption. J. For. Econ. 17:2142–56 [Google Scholar]
  37. IPCC (Intergov. Panel Clim. Change) 2000. Land Use, Land-Use Change, and Forestry New York: Cambridge Univ. Press [Google Scholar]
  38. IPCC (Intergov. Panel Clim. Change) 2006. 2006 IPCC guidelines for national greenhouse gas inventories. Vol. 4. Agriculture, forestry and other land use Rep., Intergov. Panel Clim. Change, Geneva. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html [Google Scholar]
  39. IPCC (Intergov. Panel Clim. Change) 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  40. Johnston CMT, van Kooten GC. 2014. Economic consequences of increased bioenergy demand. For. Chron. 90:567–73 [Google Scholar]
  41. Johnston CMT, van Kooten GC. 2015a. Back to the past: burning wood to save the globe. Ecol. Econ. 120:185–93 [Google Scholar]
  42. Johnston CMT, van Kooten GC. 2015b. Economics of co-firing coal and biomass: an application to western Canada. Energy Econ. 48:7–17 [Google Scholar]
  43. Johnston CMT, van Kooten GC. 2016. Global trade impacts of increasing Europe's bioenergy demand. J. For. Econ. 2327–44 [Google Scholar]
  44. Kaimowitz D. 2008. The prospects for reduced emissions from deforestation and degradation (REDD) in Mesoamerica. Int. For. Rev. 10:485–95 [Google Scholar]
  45. Kindermann G, Obersteiner M, Sohngen B, Sathaye J, Andrasko K. et al. 2008. Global cost estimates of reducing carbon emissions through avoided deforestation. PNAS 105:3010302–7 [Google Scholar]
  46. Klein K, LeRoy DG. 2007. The biofuels frenzy: What's in it for Canadian agriculture? Green Pap., Alberta Inst. Agrol., Univ. Alberta, Lethbridge [Google Scholar]
  47. Kurz WA, Beukema SJ, Apps MJ. 1996. Estimation of root biomass and dynamics for the carbon budget model of the Canadian forest sector. Can. J. For. Res. 26:111973–79 [Google Scholar]
  48. Kurz WA, Shaw CH, Boisvenue C, Stinson G, Metsaranta J. et al. 2013. Carbon in Canada's boreal forest—a synthesis. Environ. Rev. 21:4260–92 [Google Scholar]
  49. Latta GS, Baker JS, Beach RH, Rose SK, McCarl BA. 2013. A multi-sector intertemporal optimization approach to assess the GHG implications of U.S. forest and agricultural biomass electricity expansion. J. For. Econ. 19:361–83 [Google Scholar]
  50. Law EA, Thomas S, Meijaard E, Dargusch PJ, Wilson KA. 2012. A modular framework for management of complexity in international forest-carbon policy. Nat. Clim. Change 2:155–60 [Google Scholar]
  51. Lemprière TC, Kurz WA, Hogg EH, Schmoll C, Rampley GJ. et al. 2013. Canadian boreal forests and climate change mitigation. Environ. Rev. 21:293–321 [Google Scholar]
  52. Malmsheimer RW, Bowyer JL, Fried JS, Gee E, Izlar RL. et al. 2011. Managing forests because carbon matters: integrating energy, products, and land management policy. J. For. 109:Suppl. 1S7 [Google Scholar]
  53. Man CD, Lyons KC, Nelson JD, Bull GQ. 2015. Cost to produce carbon credits by reducing the harvest level in British Columbia, Canada. For. Policy Econ. 52:9–17 [Google Scholar]
  54. Mason CF, Plantinga AJ. 2013. The additionality problem with offsets: optimal contracts for carbon sequestration in forests. J. Environ. Econ. Manag. 66:1–14 [Google Scholar]
  55. Mbatu R. 2015. Domestic and international forest regime nexus in Cameroon: an assessment of the effectiveness of REDD+ policy design strategy in the context of the climate change regime. For. Policy Econ. 52:46–56 [Google Scholar]
  56. McDermott SM, Howarth RB, Lutz DA. 2015. Biomass energy and climate neutrality: the case of the northern forest. Land Econ. 91:2197–210 [Google Scholar]
  57. McKechnie J, Colombo S, Chen J, Mabee W, MacLean HL. 2011. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. Environ. Sci. Technol. 45:2789–95 [Google Scholar]
  58. Miner RA, Abt RC, Bowyer JL, Buford MA, Malmsheimer RW. et al. 2014. Forest carbon accounting considerations in US bioenergy policy. J. For. 112:6591–606 [Google Scholar]
  59. Moiseyev A, Solberg B, Kallio AML, Lindner M. 2011. An economic analysis of the potential contribution of forest biomass to the EU RES target and its implication for the EU forest industries. J. For. Econ. 17:197–213 [Google Scholar]
  60. Muth JF. 1961. Rational expectations and the theory of price movements. Econometrica 29:3315–31 [Google Scholar]
  61. Niquidet K, Friesen D. 2014. Bioenergy potential from wood residuals in Alberta: a positive mathematical programming approach. Can. J. For. Res. 44:121586–94 [Google Scholar]
  62. Niquidet K, Stennes B, van Kooten GC. 2012. Bio-energy from mountain pine beetle timber and forest residuals: the economics story. Can. J. Agric. Econ. 60:2195–210 [Google Scholar]
  63. Paroussos L, Fragkos P, Capros P, Fragkiadakis K. 2015. Assessment of carbon leakage through the industry channel: the EU perspective. Technol. Forecast. Soc. Change 90:204–19 [Google Scholar]
  64. PEFC (Prog. Endorsement For. Certif.) 2015. PEFC global statistics: SFM & CoC certification. Prog. Endorsement For. Certif., Geneva, updated Dec. 2014. http://www.pefc.org/about-pefc/who-we-are/facts-a-figures [Google Scholar]
  65. Purdon M. 2015. Opening the black box of carbon finance “additionality”: the political economy of carbon finance effectiveness across Tanzania, Uganda, and Moldova. World Dev. 74:462–78 [Google Scholar]
  66. Raunikar R, Buongiorno J, Turner JA, Zhu S. 2010. Global outlook for wood and forests with the bioenergy demand implied by scenarios of the Intergovernmental Panel on Climate Change. For. Policy Econ. 12:48–56 [Google Scholar]
  67. Sathaye J, Andrasko K, Chan P. 2011. Emissions scenarios, costs, and implementation considerations of REDD-plus programs. Environ. Dev. Econ. 16:4361–80 [Google Scholar]
  68. Searchinger TD, Hamburg SP, Melillo J, Chameides W, Havlik P. et al. 2009. Fixing a critical climate accounting error. Science 326:527–28 [Google Scholar]
  69. Searchinger TD, Heimlich R, Houghton RA, Dong F, Elobeid A. et al. 2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change.. Science 319:1238–40 [Google Scholar]
  70. Schlamadinger B, Marland G. 1999. Net effect of forest harvest on CO2 emissions to the atmosphere: a sensitivity analysis on the influence of time. Tellus B 51:2314–25 [Google Scholar]
  71. Sedjo RA. 2011. Carbon neutrality and bioenergy. A zero-sum game? Discuss. Pap. 11-15, Resour. Fut., Washington, DC [Google Scholar]
  72. Sedjo RA. 2013. Comparative life cycle assessments: carbon neutrality and wood biomass energy. Discuss. Pap. 13-11, Resour. Fut., Washington, DC [Google Scholar]
  73. Sedjo R, Sohngen B. 2012. Carbon sequestration in forests and soils. Annu. Rev. Resour. Econ. 4:127–53 [Google Scholar]
  74. Sedjo RA, Tian X. 2012. Does wood bioenergy increase carbon stocks in forests?. J. For. 110:6304–11 [Google Scholar]
  75. Sikkema R, Junginger M, van Dam J, Stegeman G, Durrant D, Faaij A. 2014. Legal harvesting, sustainable sourcing and cascaded use of wood for bioenergy: their coverage through existing certification frameworks for sustainable forest management. Forests 5:2163–211 [Google Scholar]
  76. Skone TJ, Littlefield J, Eckard R, Cooney G, Wallace R, Marriott J. 2012. Role of alternative energy sources: pulverized coal and biomass co-firing technology assessment. Rep. DOE/NETL-2012/1537, Natl. Energy Technol. Lab., Off. Fossil Energy, US Dep. Energy, Washington, DC [Google Scholar]
  77. Smyth CE, Stinson G, Neilson E, Lemprière TC, Hafer M. et al. 2014. Quantifying the biophysical climate change mitigation potential of Canada's forest sector. Biogeosciences 11:3515–29 [Google Scholar]
  78. Stennes B, Niquidet K, van Kooten GC. 2010. Implications of expanding bioenergy production from wood in British Columbia: an application of a regional wood fibre allocation model. For. Sci. 56:4366–78 [Google Scholar]
  79. Swallow SK, Parks PJ, Wear DN. 1990. Policy-relevant nonconvexities in the production of multiple forest benefits. J. Environ. Econ. Manag. 19:264–80 [Google Scholar]
  80. Swallow SK, Talukdar P, Wear DN. 1997. Spatial and temporal specialization in forest ecosystem management under sole ownership. Am. J. Agric. Econ. 79:311–26 [Google Scholar]
  81. Swallow SK, Wear DN. 1993. Spatial interactions in multiple-use forestry and substitution and wealth effects for the single stand. J. Environ. Econ. Manag. 25:103–20 [Google Scholar]
  82. Tavoni M, Sohngen B, Bosettia V. 2007. Forestry and the carbon market response to stabilize climate. Energy Policy 35:115346–53 [Google Scholar]
  83. United Nations 2015. Adoption of the Paris Agreement Rep. FCCC/CP/2015/L.9/Rev. 1, Framew. Conv. Clim. Change, Dec. 12, United Nations, New York. http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf [Google Scholar]
  84. van Kooten GC. 2004. Climate Change Economics. Why International Accords Fail Cheltenham, UK: Edward Elgar [Google Scholar]
  85. van Kooten GC. 2009a. Biological carbon sequestration and carbon trading re-visited. Clim. Change 95:3–4449–63 [Google Scholar]
  86. van Kooten GC. 2009b. Biological carbon sinks: transaction costs and governance. For. Chron. 85:3372–76 [Google Scholar]
  87. van Kooten GC. 2013. Climate Change, Climate Science and Economics Dordrecht, Neth: Springer [Google Scholar]
  88. van Kooten GC, Binkley CS, Delcourt G. 1995. Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. Am. J. Agric. Econ. 77:2365–74 [Google Scholar]
  89. van Kooten GC, Bogle T, de Vries FP. 2015. Forest carbon offsets revisited: shedding light on darkwoods. For. Sci. 61:2370–80 [Google Scholar]
  90. van Kooten GC, de Vries FP. 2013. Carbon offsets. Encyclopedia of Energy, Natural Resource and Environmental Economics 1 J Shogren 6–8 Amsterdam: Elsevier [Google Scholar]
  91. van Kooten GC, Eagle AJ, Manley J, Smolak T. 2004. How costly are carbon offsets? A meta-analysis of carbon forest sinks. Environ. Sci. Policy 7:4239–51 [Google Scholar]
  92. van Kooten GC, Folmer H. 2004. Land and Forest Economics Cheltenham, UK: Edward Elgar [Google Scholar]
  93. van Kooten GC, Johnston CMT, Xu Z. 2014. Economics of forest carbon sequestration. Handbook of Forest Resource Economics S Kant, J Alavalapati 243–257 New York: Routledge [Google Scholar]
  94. van Kooten GC, Krcmar-Nozic E, Stennes B, van Gorkom R. 1999. Economics of fossil fuel substitution and wood product sinks when trees are planted to sequester carbon on agricultural lands in Western Canada. Can. J. For. Res. 29:111669–78 [Google Scholar]
  95. van Kooten GC, Laaksonen-Craig S, Wang Y. 2009. A meta-regression analysis of forest carbon offset costs. Can. J. For. Res. 39:112153–67 [Google Scholar]
  96. van Kooten GC, Sohngen B. 2007. Economics of forest carbon sinks: a review. Int. Rev. Environ. Resour. Econ. 1:3237–69 [Google Scholar]
  97. Vincent JR, Binkley CS. 1993. Efficient multiple-use forestry may require land-use specialization. Land Econ. 69:370–76 [Google Scholar]
  98. Walker T, Cardellichio P, Colnes A, Gunn JS, Kittler B. et al. 2010. Massachusetts biomass sustainability and carbon policy study: report to the Commonwealth of Massachusetts Department of Energy Resources. Nat. Cap. Initiat. Rep. NCI-2010-03, Manomet Cent. Conserv. Sci., Brunswick, ME [Google Scholar]
  99. Walker T, Cardellichio P, Gunn JS, Saah DS, Hagan JM. 2013. Carbon accounting for woody biomass from Massachusetts (USA) managed forests: a framework for determining the temporal impacts of wood biomass energy on atmospheric greenhouse gas levels. J. Sustain. For. 32:1–2130–58 [Google Scholar]
  100. Wara M. 2008. Measuring the clean development mechanism's performance and potential. UCLA Law Rev. 55:1759–903 [Google Scholar]
  101. Weikard H-P, Zhu X. 2005. Discounting and environmental quality: When should dual rates be used?. Econ. Model. 22:5868–78 [Google Scholar]
  102. Woodward RT. 2011. Double-dipping in environmental markets. J. Environ. Econ. Manag. 61:153–69 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error