1932

Abstract

We review the literature on the performance of groundwater institutions, including command-and-control (CAC) approaches, market-based institutions (MBIs), and voluntary approaches, and evaluate how they will perform as agriculture adapts to climate change. Both CAC approaches and MBIs lead to uneven distributional impacts on farmers, and voluntary approaches have not been successful in reducing water withdrawal on a large scale. A polycentric approach of regulation plus local management might perform well. Climate change will increase the irrigation demand for groundwater and demand flexible and properly scoped institutions that attend to local conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-101623-100909
2024-10-07
2025-05-01
Loading full text...

Full text loading...

/deliver/fulltext/resource/16/1/annurev-resource-101623-100909.html?itemId=/content/journals/10.1146/annurev-resource-101623-100909&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal A. 2001.. Common property institutions and sustainable governance of resources. . World Dev. 29:(10):164972
    [Crossref] [Google Scholar]
  2. Arora A, Bansal S, Ward PS. 2019.. Do farmers value rice varieties tolerant to droughts and floods? Evidence from a discrete choice experiment in Odisha, India. . Water Resour. Econ. 25::2741
    [Crossref] [Google Scholar]
  3. Ayres AB, Edwards EC, Libecap GD. 2018.. How transaction costs obstruct collective action: the case of California's groundwater. . J. Environ. Econ. Manag. 91::4665
    [Crossref] [Google Scholar]
  4. Ayres AB, Meng KC, Plantinga AJ. 2021.. Do environmental markets improve on open access? Evidence from California groundwater rights. . J. Political Econ. 129:(10):281760
    [Crossref] [Google Scholar]
  5. Barrett S. 1994.. Self-enforcing international environmental agreements. . Oxf. Econ. Pap. 46:(46):87894
    [Crossref] [Google Scholar]
  6. Brozović N, Sunding DL, Zilberman D. 2010.. On the spatial nature of the groundwater pumping externality. . Resour. Energy Econ. 32:(2):15464
    [Crossref] [Google Scholar]
  7. Bruno EM, Hagerty N, Wardle AR. 2024.. The political economy of groundwater management: descriptive evidence from California. . In American Agriculture, Water Resources, and Climate Change, ed. GD Libecap, A Dinar , pp. 34366. Chicago:: Univ. Chicago Press
    [Google Scholar]
  8. Bruno EM, Jessoe K. 2021.. Missing markets: evidence on agricultural groundwater demand from volumetric pricing. . J. Public Econ. 196::104374
    [Crossref] [Google Scholar]
  9. Bruno EM, Sexton RJ. 2020.. The gains from agricultural groundwater trade and the potential for market power: theory and application. . Am. J. Agric. Econ. 102:(3):884910
    [Crossref] [Google Scholar]
  10. Burness HS, Brill TC. 2001.. The role for policy in common pool groundwater use. . Resour. Energy Econ. 23:(1):1940
    [Crossref] [Google Scholar]
  11. Cobourn KM. 2015.. Externalities and simultaneity in surface water-groundwater systems: challenges for water rights institutions. . Am. J. Agric. Econ. 97:(3):786808
    [Crossref] [Google Scholar]
  12. Cody KC, Smith SM, Cox M, Andersson K. 2015.. Emergence of collective action in a groundwater commons: irrigators in the San Luis Valley of Colorado. . Soc. Nat. Resour. 28:(4):40522
    [Crossref] [Google Scholar]
  13. Cuthbert MO, Gleeson T, Moosdorf N, Befus KM, Schneider A, et al. 2019.. Global patterns and dynamics of climate-groundwater interactions. . Nat. Clim. Change 9:(2):13741
    [Crossref] [Google Scholar]
  14. Deines JM, Kendall AD, Butler JJ, Hyndman DW. 2019.. Quantifying irrigation adaptation strategies in response to stakeholder-driven groundwater management in the US High Plains Aquifer. . Environ. Res. Lett. 14:(4):044014
    [Crossref] [Google Scholar]
  15. Dinar A, Tsur Y. 2021.. The Economics of Water Resources: A Comprehensive Approach. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  16. Drysdale KM, Hendricks NP. 2018.. Adaptation to an irrigation water restriction imposed through local governance. . J. Environ. Econ. Manag. 91::15065
    [Crossref] [Google Scholar]
  17. Earnhart D, Hendricks NP. 2023.. Adapting to water restrictions: intensive versus extensive adaptation over time differentiated by water right seniority. . Am. J. Agric. Econ. 105:(5):145890
    [Crossref] [Google Scholar]
  18. Edwards EC. 2016.. What lies beneath? Aquifer heterogeneity and the economics of groundwater management. . J. Assoc. Environ. Resour. Econ. 3:(2):45391
    [Google Scholar]
  19. Edwards EC, Guilfoos T. 2021.. The economics of groundwater governance institutions across the globe. . Appl. Econ. Perspect. Policy 43:(4):157194
    [Crossref] [Google Scholar]
  20. Edwards EC, Hendricks NP, Sampson GS. 2023.. The capitalization of incomplete property rights to the groundwater commons. Work. Pap. , N.C. State Univ., Raleigh:. https://www.ericcedwards.com/_files/ugd/1110dc_53cfecaa3e674df09bf98169095076ca.pdf
    [Google Scholar]
  21. Famiglietti JS. 2014.. The global groundwater crisis. . Nat. Clim. Change 4:(11):94548
    [Crossref] [Google Scholar]
  22. Fishman R, Lall U, Modi V, Parekh N. 2016.. Can electricity pricing save India's groundwater? Field evidence from a novel policy mechanism in Gujarat. . J. Assoc. Environ. Resour. Econ. 3:(4):81955
    [Google Scholar]
  23. Foster T, Brozović N, Butler AP. 2017.. Effects of initial aquifer conditions on economic benefits from groundwater conservation. . Water Resour. Res. 53:(1):74462
    [Crossref] [Google Scholar]
  24. Gardner R, Moore MR, Walker JM. 1997.. Governing a groundwater commons: a strategic and laboratory analysis of western water law. . Econ. Inq. 35:(2):21834
    [Crossref] [Google Scholar]
  25. Guilfoos T, Khanna N, Peterson JM. 2016.. Efficiency of viable groundwater management policies. . Land Econ. 92:(4):61840
    [Crossref] [Google Scholar]
  26. Guilfoos T, Pape AD, Khanna N, Salvage K. 2013.. Groundwater management: the effect of water flows on welfare gains. . Ecol. Econ. 95::3140
    [Crossref] [Google Scholar]
  27. Heard S, Fienup M, Remson EJ. 2021.. The first SGMA groundwater market is trading: the importance of good design and the risks of getting it wrong. . Calif. Agric. 75::5056
    [Google Scholar]
  28. Hrozencik A, Gardner G, Potter N, Wallander S. 2023.. Irrigation organizations: groundwater management. Econ. Brief 34 , Econ. Res. Serv., US Dep. Agric., Washington, DC:
    [Google Scholar]
  29. Hrozencik RA, Manning DT, Suter JF, Goemans C, Bailey RT. 2017.. The heterogeneous impacts of groundwater management policies in the Republican River Basin of Colorado. . Water Resour. Res. 53:(12):1075778
    [Crossref] [Google Scholar]
  30. Johansson RC, Tsur Y, Roe TL, Doukkali R, Dinar A. 2002.. Pricing irrigation water: a review of theory and practice. . Water Policy 4:(2):173199
    [Crossref] [Google Scholar]
  31. Khan HF, Brown CM. 2019.. Effect of hydrogeologic and climatic variability on performance of a groundwater market. . Water Resour. Res. 55:(5):430421
    [Crossref] [Google Scholar]
  32. Kuwayama Y, Brozović N. 2013.. The regulation of a spatially heterogeneous externality: tradable groundwater permits to protect streams. . J. Environ. Econ. Manag. 66:(2):36482
    [Crossref] [Google Scholar]
  33. Langevin CD, Hughes JD, Banta ER, Niswonger RG, Panday S, Provost AM. 2017.. Documentation for the MODFLOW 6 groundwater flow model. Tech. Methods Rep. 6–A55 , US Geol. Surv., Reston, VA:
    [Google Scholar]
  34. Lee GE, Rollins K, Singletary L. 2020.. The relationship between priority and value of irrigation water used with prior appropriation water rights. . Land Econ. 96:(3):38498
    [Crossref] [Google Scholar]
  35. Lee S, Zhao J. 2021.. Adaptation to climate change: extreme events versus gradual changes. . J. Econ. Dyn. Control 133::104262
    [Crossref] [Google Scholar]
  36. Li H, Zhao J. 2018.. Rebound effects of new irrigation technologies: the role of water rights. . Am. J. Agric. Econ. 100:(3):786808
    [Crossref] [Google Scholar]
  37. Libecap GD. 2011.. Institutional path dependence in climate adaptation: Coman's “Some Unsettled Problems of Irrigation. .” Am. Econ. Rev. 101:(1):6480
    [Crossref] [Google Scholar]
  38. Manning DT, Rad MR, Suter JF, Goemans C, Xiang Z, Bailey R. 2020.. Non-market valuation in integrated assessment modeling: the benefits of water right retirement. . J. Environ. Econ. Manag. 103::102341
    [Crossref] [Google Scholar]
  39. Manning DT, Suter JF. 2019.. Production externalities and the gains from management in a spatially-explicit aquifer. . J. Agric. Resour. Econ. 44:(1):194211
    [Google Scholar]
  40. Meinzen-Dick R. 2007.. Beyond panaceas in water institutions. . PNAS 104:(39):152005
    [Crossref] [Google Scholar]
  41. Meinzen-Dick R, Janssen MA, Kandikuppa S, Chaturvedi R, Rao K, Theis S. 2018.. Playing games to save water: collective action games for groundwater management in Andhra Pradesh, India. . World Dev. 107::4053
    [Crossref] [Google Scholar]
  42. Merrill NH, Guilfoos T. 2018.. Optimal groundwater extraction under uncertainty and a spatial stock externality. . Am. J. Agric. Econ. 100:(1):22038
    [Crossref] [Google Scholar]
  43. Mitra A, Balasubramanya S, Brouwer R. 2023.. Can cash incentives modify groundwater pumping behaviors? Evidence from an experiment in Punjab. . Am. J. Agric. Econ. 105:(3):86187
    [Crossref] [Google Scholar]
  44. Monger RG, Suter JF, Manning DT, Schneekloth JP. 2018.. Retiring land to save water: participation in Colorado's Republican River Conservation Reserve enhancement program. . Land Econ. 94:(1):3651
    [Crossref] [Google Scholar]
  45. Negri DH. 1989.. The common property aquifer as a differential game. . Water Resour. Res. 25:(1):915
    [Crossref] [Google Scholar]
  46. Nordhaus W. 2015.. Climate clubs: overcoming free-riding in international climate policy. . Am. Econ. Rev. 105:(4):133970
    [Crossref] [Google Scholar]
  47. Obembe O, Hendricks NP, Jagadish K. 2023.. Changes in groundwater irrigation withdrawals due to climate change in Kansas. . Environ. Res. Lett. 18::094041
    [Crossref] [Google Scholar]
  48. Oehninger EB, Lin Lawell CYC. 2021.. Property rights and groundwater management in the High Plains Aquifer. . Resour. Energy Econ. 63::101147
    [Crossref] [Google Scholar]
  49. Ostrom E. 1990.. Governing the Commons. New York:: Cambridge Univ. Press
    [Google Scholar]
  50. Ostrom E. 2002.. Common-pool resources and institutions: toward a revised theory. . In Handbook of Agricultural Economics, Vol. 2A, Agriculture and Its External Linkages, ed. BL Gardner, GC Rausser , pp. 131539. Amsterdam:: North Holland
    [Google Scholar]
  51. Ostrom E. 2009.. A general framework for analyzing sustainability of social-ecological systems. . Science 325:(5939):41922
    [Crossref] [Google Scholar]
  52. Ostrom E, Walker J, Gardner R. 1992.. Covenants with and without a sword: self-governance is possible. . Am. Political Sci. Rev. 86:(2):40417
    [Crossref] [Google Scholar]
  53. Partridge T, Winter J, Kendall A, Basso B, Pei L, Hyndman D. 2023.. Irrigation benefits outweigh costs in more US croplands by mid-century. . Commun. Earth Environ. 4::274
    [Crossref] [Google Scholar]
  54. Perez-Quesada G, Hendricks NP. 2021.. Lessons from local governance and collective action efforts to manage irrigation withdrawals in Kansas. . Agric. Water Manag. 247::106736
    [Crossref] [Google Scholar]
  55. Pfeiffer L, Lin CYC. 2012.. Groundwater pumping and spatial externalities in agriculture. . J. Environ. Econ. Manag. 64:(1):1630
    [Crossref] [Google Scholar]
  56. Pfeiffer L, Lin CYC. 2014.. Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. . J. Environ. Econ. Manag. 67:(2):189208
    [Crossref] [Google Scholar]
  57. Pray C, Nagarajan L, Li L, Huang J, Hu R, et al. 2011.. Potential impact of biotechnology on adaption of agriculture to climate change: the case of drought tolerant rice breeding in Asia. . Sustainability 3:(10):172341
    [Crossref] [Google Scholar]
  58. Provencher B, Burt O. 1994.. A private property rights regime for the commons: the case for groundwater. . Am. J. Agric. Econ. 76:(4):87588
    [Crossref] [Google Scholar]
  59. Quintana Ashwell NE, Peterson JM, Hendricks NP. 2018.. Optimal groundwater management under climate change and technical progress. . Resour. Energy Econ. 51::6783
    [Crossref] [Google Scholar]
  60. Rodríguez-Flores JM, Valero Fandiño JA, Cole SA, Malek K, Karimi T, et al. 2022.. Global sensitivity analysis of a coupled hydro-economic model and groundwater restriction assessment. . Water Resour. Manag. 36:(15):611530
    [Crossref] [Google Scholar]
  61. Rojanasakul M, Flavelle C, Migliozzi B, Murray E. 2023.. America is using up its groundwater like there's no tomorrow. . The New York Times, Aug. 28. https://www.nytimes.com/interactive/2023/08/28/climate/groundwater-drying-climate-change.html
    [Google Scholar]
  62. Rosegrant MW, Ringler C, Zhu T. 2009.. Water for agriculture: maintaining food security under growing scarcity. . Annu. Rev. Environ. Resour. 34::20522
    [Crossref] [Google Scholar]
  63. Rosenberg AB. 2020.. Targeting of water rights retirement programs: evidence from Kansas. . Am. J. Agric. Econ. 102:(5):142547
    [Crossref] [Google Scholar]
  64. Rouhi R, Manning DT, Suter JF, Goemans C. 2021.. Policy leakage or policy benefit? Spatial spillovers from conservation policies in common property resources. . J. Assoc. Environ. Resour. Econ. 8:(5):92353
    [Google Scholar]
  65. Rubio SJ, Casino B. 2001.. Competitive versus efficient extraction of a common property resource: the groundwater case. . J. Econ. Dyn. Control 25:(8):111737
    [Crossref] [Google Scholar]
  66. Scheierling SM, Loomis JB, Young RA. 2006.. Irrigation water demand: a meta-analysis of price elasticities. . Water Resour. Res. 42:(1):W01411
    [Crossref] [Google Scholar]
  67. Schoengold K, Zilberman D. 2007.. The economics of water, irrigation, and development. . In Handbook of Agricultural Economics, Vol. 3, Agricultural Development: Farmers, Farm Production and Farm Markets, ed. R Evenson, P Pingali , pp. 293377. Amsterdam:: North Holland
    [Google Scholar]
  68. Shah FA, Zilberman D, Chakravorty U. 1995.. Technology adoption in the presence of an exhaustible resource: the case of groundwater extraction. . Am. J. Agric. Econ. 77:(2):29199
    [Crossref] [Google Scholar]
  69. Shah T, Bhatt S, Shah RK, Talati J. 2008.. Groundwater governance through electricity supply management: assessing an innovative intervention in Gujarat, western India. . Agric. Water Manag. 95:(11):123342
    [Crossref] [Google Scholar]
  70. Shalsi S, Ordens CM, Curtis A, Simmons CT. 2019.. Can collective action address the “tragedy of the commons” in groundwater management? Insights from an Australian case study. . Hydrogeol. J. 27::247183
    [Crossref] [Google Scholar]
  71. Siebert S, Burke J, Faures J-M, Frenken K, Hoogeveen J, et al. 2010.. Groundwater use for irrigation—a global inventory. . Hydrol. Earth Syst. Sci. 14:(10):186380
    [Crossref] [Google Scholar]
  72. Smith SM, Andersson K, Cody KC, Cox M, Ficklin D. 2017.. Responding to a groundwater crisis: the effects of self-imposed economic incentives. . J. Assoc. Environ. Resour. Econ. 4:(4):9851023
    [Google Scholar]
  73. Tack J, Barkley A, Hendricks N. 2017.. Irrigation offsets wheat yield reductions from warming temperatures. . Environ. Res. Lett. 12:(11):114027
    [Crossref] [Google Scholar]
  74. Thompson BH, Leshy JD, Abrams RH, Zellmer SB. 2018.. Legal Control of Water Resources: Cases and Materials. St. Paul, MN:: West Academic
    [Google Scholar]
  75. Tsur Y, Graham-Tomasi T. 1991.. The buffer value of groundwater with stochastic surface water supplies. . J. Environ. Econ. Manag. 21:(3):20124
    [Crossref] [Google Scholar]
  76. Tsvetanov T, Earnhart D. 2020.. The effectiveness of a water right retirement program at conserving water. . Land Econ. 96:(1):5674
    [Crossref] [Google Scholar]
  77. Verma S, Krishnan S. 2012.. Andhra Pradesh Farmer Managed Groundwater Systems (APFAMGS): a reality check. Water Policy Res. Highlight 37 , IWMI-TATA Water Policy Prog., Mumbai:. https://www.iwmi.cgiar.org/iwmi-tata/PDFs/2012_Highlight-37.pdf
    [Google Scholar]
  78. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP. 2010.. Global depletion of groundwater resources. . Geophys. Res. Lett. 37:(20):L20402
    [Crossref] [Google Scholar]
  79. Wang J, Jiang Y, Wang H, Huang Q, Deng H. 2019.. Groundwater irrigation and management in northern China: status, trends, and challenges. . Int. J. Water Resour. Dev. 36:(4):67096
    [Crossref] [Google Scholar]
  80. White SE, Kromm DE. 1995.. Local groundwater management effectiveness in the Colorado and Kansas Ogallala region. . Nat. Resour. J. 275307
    [Google Scholar]
  81. Zaveri E, Lobell DB. 2019.. The role of irrigation in changing wheat yields and heat sensitivity in India. . Nat. Commun. 10::4144
    [Crossref] [Google Scholar]
  82. Zhao J, Kling CL. 2003.. Policy persistence in environmental regulation. . Resour. Energy Econ. 25:(3):25568
    [Crossref] [Google Scholar]
  83. Zilberman D, Zhao J, Heiman A. 2012.. Adoption versus adaptation, with emphasis on climate change. . Annu. Rev. Resour. Econ. 4::2753
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-resource-101623-100909
Loading
/content/journals/10.1146/annurev-resource-101623-100909
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error