1932

Abstract

Agroecology is often considered as the ultimate and most comprehensive solution to the many challenges of the agricultural and food system, also referred to as the agri-food system. This review investigates to what extent agroecology can become the mainstream model for transforming agriculture toward more sustainable and resilient agri-food systems within the given economic and political context. We find that enhancing agroecology will require a fully integrated multiscale systems approach from farm to region to globe. The approach must consider relevant processes and relationships, actors and stakeholders as well as drivers, sustainability indicators, and the respective assessment methods across all scales. Giving specific attention to drivers related to economy, technology, and policy we point out that agroecology needs to be economically viable for farmers and other food system actors. In particular, new and emerging technologies related to digitalization and breeding should be given more consideration in agroecological transformation. We stress the need for an analytical and operational framework and adequate multiscale policy design and suggest six areas of needed attention to support the large-scale adoption of agroecology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-102422-090105
2023-10-05
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/resource/15/1/annurev-resource-102422-090105.html?itemId=/content/journals/10.1146/annurev-resource-102422-090105&mimeType=html&fmt=ahah

Literature Cited

  1. Alkan Olsson J, Bockstaller C, Stapleton LM, Ewert F, Knapen R et al. 2009. A goal oriented indicator framework to support integrated assessment of new policies for agri-environmental systems. Environ. Sci. Policy 12:562–72
    [Google Scholar]
  2. Altieri MA. 1989. Agroecology: a new research and development paradigm for world agriculture. Agric. Ecosyst. Environ. 27:37–46
    [Google Scholar]
  3. Altieri MA. 1995. Agroecology: The Science of Sustainable Agriculture Boca Raton, FL: CRC Press. , 2nd ed..
    [Google Scholar]
  4. Altieri MA. 2002. Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. 93:1–24
    [Google Scholar]
  5. Altieri MA, Toledo VM. 2011. The agroecological revolution in Latin America: rescuing nature, ensuring food sovereignty and empowering peasants. J. Peasant Stud. 38:587–612
    [Google Scholar]
  6. Andersen MM, Landes X, Xiang W, Anyshchenko A, Falhof J et al. 2015. Feasibility of new breeding techniques for organic farming. Trends Plant Sci. 20:426–34
    [Google Scholar]
  7. Antle JM, Basso B, Conant RT, Godfray HCJ, Jones JW et al. 2017. Towards a new generation of agricultural system data, models and knowledge products: design and improvement. Agric. Syst. 155:255–68
    [Google Scholar]
  8. Arroyo-Lambaer D, Uscanga A, Piña Tejeda VM, Vázquez-Barrios V, Reverchon F et al. 2021. Cognitive maps across multiple social sectors: shared and unique perceptions on the quality of agricultural soils in Mexico. Front. Sustain. Food Syst. 4:448
    [Google Scholar]
  9. Asseng S, Asche F. 2019. Future farms without farmers. Sci. Robot. 4:eaaw1785
    [Google Scholar]
  10. Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB et al. 2015. Rising temperatures reduce global wheat production. Nat. Clim. Change 5:143–47
    [Google Scholar]
  11. Atta-Krah K, Chotte JL, Gascuel C, Gitz V, Hainzelin E et al. 2021. Agroecological transformation for sustainable food systems: insight on France-CGIAR research Rep. 26 Agropolis Int. Montpellier, Fr.:
    [Google Scholar]
  12. Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI. 2019. Genetic strategies for improving crop yields. Nature 575:109–18
    [Google Scholar]
  13. Barba-Escoto L, van Wijk MT, López-Ridaura S. 2020. Non-linear interactions driving food security of smallholder farm households in the western highlands of Guatemala. Front. Sustain. Food Syst. 4:51
    [Google Scholar]
  14. Barrett CB. 2020. Actions now can curb food systems fallout from COVID-19. Nat. Food 1:319–20
    [Google Scholar]
  15. Basso B. 2021. Precision conservation for a changing climate. Nat. Food 2:322–23
    [Google Scholar]
  16. Basso B, Antle J. 2020. Digital agriculture to design sustainable agricultural systems. Nat. Sustain. 3:254–56
    [Google Scholar]
  17. Baylis K, Heckelei T, Hertel TW. 2021. Agricultural trade and environmental sustainability. Annu. Rev. Resour. Econ. 13:379–401
    [Google Scholar]
  18. Behnassi M, El Haiba M. 2022. Implications of the Russia–Ukraine war for global food security. Nat. Hum. Behav. 6:754–55
    [Google Scholar]
  19. Bellon-Maurel V, Huyghe C. 2017. Putting agricultural equipment and digital technologies at the cutting edge of agroecology. Oilseeds Fats Crops Lipids 24:D307
    [Google Scholar]
  20. Bellon-Maurel V, Lutton E, Bisquert P, Brossard L, Chambaron-Ginhac S et al. 2022. Digital revolution for the agroecological transition of food systems: a responsible research and innovation perspective. Agric. Syst. 203:103524
    [Google Scholar]
  21. Benítez M, Rosell JA, Perfecto I. 2022. Editorial: mathematical modeling and complex systems in agroecology. Front. Sustain. Food Syst. 6:829551
    [Google Scholar]
  22. Blei DM, Ng A, Jordan MI. 2003. Latent Dirichlet Allocation. J. Mach Learn. Res. 3:993–1022
    [Google Scholar]
  23. BLW (Bundesamt Landwirt.) 2020. Forschungskonzept Land- und Ernährungswirtschaft 2021–2024 Rep. Swiss Fed. Off. Agric. (FOAG) Bern, Switz.:
    [Google Scholar]
  24. Bolwig S, Gibbon P, Jones S. 2009. The economics of smallholder organic contract farming in tropical Africa. World Dev. 37:1094–104
    [Google Scholar]
  25. Bottazzi P, Boillat S. 2021. Agroecological farmer movements and advocacy coalitions in Sub-Saharan Africa: between de-politicization and re-politicization. The Palgrave Handbook of Environmental Labour Studies N Räthzel, D Stevis, D Uzzell 415–40. Cham, Switz.: Springer Int.
    [Google Scholar]
  26. Britz W, Hertel TW. 2011. Impacts of EU biofuels directives on global markets and EU environmental quality: an integrated PE, global CGE analysis. Agric. Ecosyst. Environ. 142:102–9
    [Google Scholar]
  27. Brondizio ES, Settele J, Díaz S, Ngo HT. 2019. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services Rep. IPBES Secr. Bonn, Ger:.
    [Google Scholar]
  28. Buchholzer M, Frommer WB. 2022. An increasing number of countries regulate genome editing in crops. New Phytol. 237:12–15
    [Google Scholar]
  29. Bundesrat 2022. Zukünftige ausrichtung der agrarpolitik Rep. Schweiz. Eidgenoss. Bern, Switz.:
    [Google Scholar]
  30. Campbell BM, Beare DJ, Bennett EM, Hall-Spencer JM, Ingram JSI et al. 2017. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22: https://doi.org/10.5751/ES-09595-220408
    [Crossref] [Google Scholar]
  31. Caquet T, Gascuel C, Tixier-Boichard M. 2020. Agroecology: Research for the Transition of Agri-Food Systems and Territories Versailles, Fr.: Quae
    [Google Scholar]
  32. Carducci B, Keats EC, Ruel M, Haddad L, Osendarp SJM, Bhutta ZA. 2021. Food systems, diets and nutrition in the wake of COVID-19. Nat. Food 2:68–70
    [Google Scholar]
  33. Cassman KG. 1999. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. PNAS 96:5952–59
    [Google Scholar]
  34. Chavas JP. 2011. Agricultural policy in an uncertain world. Eur. Rev. Agric. Econ. 38:383–407
    [Google Scholar]
  35. Clapp J. 2021. The problem with growing corporate concentration and power in the global food system. Nat. Food 2:404–8
    [Google Scholar]
  36. Clark M, Hill J, Tilman D. 2018. The diet, health, and environment trilemma. Annu. Rev. Environ. Resour. 43:109–34
    [Google Scholar]
  37. Colley MR, Dawson JC, McCluskey C, Myers JR, Tracy WF, van Bueren ETL. 2021. Exploring the emergence of participatory plant breeding in countries of the Global North—a review. J. Agric. Sci. 159:320–38
    [Google Scholar]
  38. Coq J-FL, Sabourin E, Bonin M, Gresh SF, Marzin J et al. 2020. Public policy support for agroecology in Latin America: lessons and perspectives. Glob. J. Ecol. 5:129–38
    [Google Scholar]
  39. Dalgaard T, Hutchings NJ, Porter JR. 2003. Agroecology, scaling and interdisciplinarity. Agric. Ecosyst. Environ. 100:39–51
    [Google Scholar]
  40. D'Annolfo R, Gemmill-Herren B, Graeub B, Garibaldi LA. 2017. A review of social and economic performance of agroecology. Int. J. Agric. Sustain. 15:632–44
    [Google Scholar]
  41. De Leijster V, Verburg RW, Santos MJ, Wassen MJ, Martinez-Mena M et al. 2020. Almond farm profitability under agroecological management in southeastern Spain: accounting for externalities and opportunity costs. Agric. Syst. 183:102878
    [Google Scholar]
  42. De Ponti T, Rijk B, Van Ittersum MK. 2012. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108:1–9
    [Google Scholar]
  43. De Schutter O. 2011. Report submitted by the Special Rapporteur on the right to food United Nations Gen. Assemb., Hum. Rights Counc. UN Doc. A/HRC/16/49, Dec. 20. http://www.srfood.org/images/stories/pdf/officialreports/20110308_a-hrc-16-49_agroecology_en.pdf
    [Google Scholar]
  44. De Schutter O, Jacobs N, Clement C. 2020. A ‘common food policy’ for Europe: how governance reforms can spark a shift to healthy diets and sustainable food systems. Food Policy 96:101849
    [Google Scholar]
  45. Deguine J-P, Aubertot J-N, Bellon S, Côte F, Lauri P-E et al. 2023. Agroecological crop protection for sustainable agriculture. Advances in Agronomy, Vol. 178 DL Sparks 1–59. Cambridge, MA: Elsevier
    [Google Scholar]
  46. Dessart FJ, Barreiro-Hurle J, van Bavel R. 2019. Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review. Eur. Rev. Agric. Econ. 46:417–71
    [Google Scholar]
  47. Dethier J-J, Effenberger A. 2012. Agriculture and development: a brief review of the literature. Econ. Syst. 36:175–205
    [Google Scholar]
  48. de Wit K. 1968. Theory and model Inaugural address Univ. Wageningen, Neth:.
    [Google Scholar]
  49. de Wit Montenegro M. 2022. Can agroecology and CRISPR mix? The politics of complementarity and moving toward technology sovereignty. Agric. Human Values 39:733–55
    [Google Scholar]
  50. Di Falco S, Chavas JP. 2009. On crop biodiversity, risk exposure, and food security in the highlands of Ethiopia. Am. J. Agric. Econ. 91:599–611
    [Google Scholar]
  51. Ditzler L, Driessen C. 2022. Automating agroecology: How to design a farming robot without a monocultural mindset?. J. Agric. Environ. Ethics 35:2
    [Google Scholar]
  52. Doernberg A, Zasada I, Bruszewska K, Skoczowski B, Piorr A. 2016. Potentials and limitations of regional organic food supply: a qualitative analysis of two food chain types in the Berlin Metropolitan region. Sustainability 8:1125
    [Google Scholar]
  53. Doi T, Sakurai G, Iizumi T. 2020. Seasonal predictability of four major crop yields worldwide by a hybrid system of dynamical climate prediction and eco-physiological crop-growth simulation. Front. Sustain. Food Syst. 4:84
    [Google Scholar]
  54. Donat M, Geistert J, Grahmann K, Bloch R, Bellingrath-Kimura SD. 2022. Patch cropping—a new methodological approach to determine new field arrangements that increase the multifunctionality of agricultural landscapes. Comput. Electron. Agric. 197:106894
    [Google Scholar]
  55. Doré T, Bellon S. 2019. Les Mondes de l'Agroécologie Versailles, Fr.: Quae
    [Google Scholar]
  56. Ehlers MH, Finger R, El Benni N, Gocht A, Sorensen CAG et al. 2022. Scenarios for European agricultural policymaking in the era of digitalisation. Agric. Syst. 196:103318
    [Google Scholar]
  57. Ehlers MH, Huber R, Finger R. 2021. Agricultural policy in the era of digitalisation. Food Policy 100:102019
    [Google Scholar]
  58. Ericksen PJ. 2008. Conceptualizing food systems for global environmental change research. Glob. Environ. Change 18:234–45
    [Google Scholar]
  59. Eur. Comm 2020. Towards a sustainable food system Rep. Eur. Comm. Brussels: https://research-and-innovation.ec.europa.eu/document/download/c8e97599-e5f5-43d8-a962-d9a0116960df_en
    [Google Scholar]
  60. Eur. Comm 2021. Study on the status of new genomic techniques under Union law and in light of the Court of Justice ruling in Case C-528/16 Work. Doc. Comm. Staff, Eur. Comm. Brussels: https://food.ec.europa.eu/document/download/5135278b-3098-4011-a286-a316209c01cd_en?filename=gmo_mod-bio_ngt_eu-study.pdf
    [Google Scholar]
  61. Ewert F, van Bussel L, Zhao G., Hoffmann H, Gaiser T, Specka X et al. 2015. Uncertainties in scaling-up crop models for large-area climate-change impact assessments. Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison Project (AgMIP) C Rosenzweig, D Hillel 262–77. Singapore: World Sci. Publ.
    [Google Scholar]
  62. Ewert F, van Ittersum MK, Bezlepkina I, Therond O, Andersen E et al. 2009. A methodology for enhanced flexibility of integrated assessment in agriculture. Environ. Sci. Policy 12:546–61
    [Google Scholar]
  63. Ewert F, van Ittersum MK, Heckelei T, Therond O, Bezlepkina I, Andersen E. 2011. Scale changes and model linking methods for integrated assessment of agri-environmental systems. Agric. Ecosyst. Environ. 142:6–17
    [Google Scholar]
  64. Fakhri M. 2021. A trade agenda for the right to food. Development 64:212–19
    [Google Scholar]
  65. Fan S, Teng P, Chew P, Smith G, Copeland L. 2021. Food system resilience and COVID-19—lessons from the Asian experience. Glob. Food Secur. 28:100501
    [Google Scholar]
  66. FAO (Food Agric. Organ. United Nations) 2014. Agroecology for Food Security and Nutrition: Proceedings of the FAO International Symposium Rome: FAO
    [Google Scholar]
  67. FAO (Food Agric. Organ. United Nations) 2018a. Scaling up Agroecology to Achieve the Sustainable Development Goals. Proceedings of the Second FAO International Symposium Rome: FAO
    [Google Scholar]
  68. FAO (Food Agric. Organ. United Nations) 2018b. The 10 elements of agroecology: guiding the transition to sustainable food and agricultural systems Rep. Food Agric. Organ. United Nations Rome: http://www.fao.org/3/i9037en/i9037en.pdf
    [Google Scholar]
  69. FAO, IFAD, UNICEF, WFP, WHO 2022. The State of Food Security and Nutrition in the World. Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable Rome: FAO
    [Google Scholar]
  70. Fernie AR, Yang JB. 2019. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12:615–31
    [Google Scholar]
  71. Finger R, Droste N, Bartkowski B, Ang F. 2022. A note on performance indicators for agricultural economic journals. J. Agric. Econ. 73:614–20
    [Google Scholar]
  72. Finger R, El Benni N. 2021. Farm income in European agriculture: new perspectives on measurement and implications for policy evaluation. Eur. Rev. Agric. Econ. 48:253–65
    [Google Scholar]
  73. Finger R, Swinton SM, El Benni N, Walter A 2019. Precision farming at the nexus of agricultural production and the environment. Annu. Rev. Resour. Econ. 11:313–35
    [Google Scholar]
  74. Folstad A. 2008. Living Labs for innovation and development of information and communication technology: a literature review. Electron. J. Organ. Virtualness 10:99–131
    [Google Scholar]
  75. Francis CA, Harwood RR, Parr JF. 1986. The potential for regenerative agriculture in the developing world. Am. J. Altern. Agric. 1:65–74
    [Google Scholar]
  76. Francis CA, Lieblein G, Gliessman S, Breland TA, Creamer N et al. 2003. Agroecology: the ecology of food systems. J. Sustain. Agric. 22:99–118
    [Google Scholar]
  77. Gardebroek C, Lansink AGJMO. 2004. Farm-specific adjustment costs in Dutch pig farming. J. Agric. Econ. 55:3–24
    [Google Scholar]
  78. Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG et al. 2013. Sustainable intensification in agriculture: premises and policies. Science 341:33–34
    [Google Scholar]
  79. Gascuel-Odoux C, Lescourret F, Dedieu B, Detang-Dessendre C, Faverdin P et al. 2022. A research agenda for scaling up agroecology in European countries. Agron. Sustain. Dev. 42:53
    [Google Scholar]
  80. Giller KE, Hijbeek R, Andersson JA, Sumberg J. 2021. Regenerative agriculture: an agronomic perspective. Outlook Agric. 50:13–25
    [Google Scholar]
  81. Giller KE, Witter E, Corbeels M, Tittonell P. 2009. Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crops Res. 114:23–34
    [Google Scholar]
  82. Giraldo OF, Rosset PM. 2022. Emancipatory agroecologies: social and political principles. J. Peasant Stud. 50:820–50
    [Google Scholar]
  83. Gliessman S. 2015. Agroecology: a growing field. Agroecol. Sustain. Food Syst. 39:1–2
    [Google Scholar]
  84. Gliessman S. 2016. Transforming food systems with agroecology. Agroecol. Sustain. Food Syst. 40:187–89
    [Google Scholar]
  85. Gliessman S. 2018. Defining agroecology. Agroecol. Sustain. Food Syst. 42:599–600
    [Google Scholar]
  86. Gliessman S. 2020. Investing in agroecology in Africa. Agroecol. Sustain. Food Syst. 44:1253–54
    [Google Scholar]
  87. Gliessman S. 2021. Agroecology and the transition to sustainability in West African food systems. Agroecol. Sustain. Food Syst. 45:157–58
    [Google Scholar]
  88. Gliessman S, de Wit Montenegro M. 2021. Agroecology at the UN food systems summit. Agroecol. Sustain. Food Syst. 45:1417–21
    [Google Scholar]
  89. Gliessman S, Ferguson BG. 2020. Keeping up with the agroecology movement: priorities for agroecology and sustainable food systems. Agroecol. Sustain. Food Syst. 44:1–2
    [Google Scholar]
  90. Gliessman S, Tittonell P. 2015. Agroecology for food security and nutrition. Agroecol. Sustain. Food Syst. 39:131–33
    [Google Scholar]
  91. Gliessman SR. 2004. Integrating agroecological processes into cropping systems research. J. Crop. Improv. 11:61–80
    [Google Scholar]
  92. Gliessman SR. 2014. Agroecology: The Ecology of Sustainable Food Systems Boca Raton, FL: CRC Press. , 3rd ed..
    [Google Scholar]
  93. Gliessman SR, Garcia RE, Amador MA. 1981. The ecological basis for the application of traditional agricultural technology in the management of tropical agro-ecosystems. Agro-Ecosystems 7:173–85
    [Google Scholar]
  94. Grossniklaus U, Messmer M, Peter R, Romeis J, Studer B. 2020. Pflanzenzüchtungvon klassischer Kreuzung bis Genom-Editierung Factsheet 15 Swiss Acad. Bern, Switz: https://zenodo.org/record/3696456
    [Google Scholar]
  95. Grovermann C, Quiedeville S, Muller A, Leiber F, Stolze M, Moakes S. 2021. Does organic certification make economic sense for dairy farmers in Europe?–A latent class counterfactual analysis. Agric. Econ. 52:1001–12
    [Google Scholar]
  96. Hernández-Ochoa IM, Gaiser T, Kersebaum KC, Webber H, Seidel SJ et al. 2022. Model-based design of crop diversification through new field arrangements in spatially heterogeneous landscapes. A review. Agron. Sustain. Dev. 42:74
    [Google Scholar]
  97. Hertel T, Elouafi I, Tanticharoen M, Ewert F. 2021. Diversification for enhanced food systems resilience. Nat. Food 2:832–34
    [Google Scholar]
  98. HLPE (High Level Panel Experts Food Secur. Nutr. Comm. World Food Secur.) 2017. Nutrition and food systems. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on Food Security and Nutrition Rep. HLPE Rome:
    [Google Scholar]
  99. HLPE (High Level Panel Experts Food Secur. Nutr. Comm. World Food Secur.) 2019. Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. Rep. 14 HLPE Rome:
    [Google Scholar]
  100. HLPE (High Level Panel Experts Food Secur. Nutr. Comm. World Food Secur.) 2020. Food security and nutrition: building a global narrative towards 2030. Rep. HLPE Rome:
    [Google Scholar]
  101. Hobbs PR, Sayre K, Gupta R. 2008. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B 363:543–55
    [Google Scholar]
  102. Hoffman MD, Blei DM, Bach F 2010. Online learning for latent Dirichlet allocation. Advances in Neural Information Processing Systems 23 (NIPS 2010) J Lafferty, C Williams, J Shawe-Taylor, R Zemel, A Culotta 1–9. San Diego: NeurIPS
    [Google Scholar]
  103. IDS & IPES-Food 2022. Agroecology, regenerative agriculture, and nature-based solutions: competing framings of food system sustainability in global policy and funding spaces Rep. IPES-Food Brussels:
    [Google Scholar]
  104. Ingram J. 2011. A food systems approach to researching food security and its interactions with global environmental change. Food Secur. 3:417–31
    [Google Scholar]
  105. Ingram JSI, Gregory PJ, Izac AM. 2008. The role of agronomic research in climate change and food security policy. Agric. Ecosyst. Environ. 126:4–12
    [Google Scholar]
  106. INKOTA 2019. Strengthening agroecology for a fundamental transformation of agri-food systems. Position Pap. INKOTA Berlin: https://www.worldfuturecouncil.org/position-paper-strengthening-agroecology/
    [Google Scholar]
  107. IPCC (Intergov. Panel Clim. Change) 2022. Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change H-O Pörtner, DC Roberts, M Tignor, ES Poloczanska, K Mintenbeck et al. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  108. Isaac ME, Isakson SR, Dale B, Levkoe CZ, Hargreaves SK et al. 2018. Agroecology in Canada: towards an integration of agroecological practice, movement, and science. Sustainability 10:3299
    [Google Scholar]
  109. Iyabano A, Klerkx L, Faure G, Toillier A. 2022. Farmers’ Organizations as innovation intermediaries for agroecological innovations in Burkina Faso. Int. J. Agric. Sustain. 20:857–73
    [Google Scholar]
  110. Iyer P, Bozzola M, Hirsch S, Meraner M, Finger R. 2020. Measuring farmer risk preferences in Europe: a systematic review. J. Agric. Econ. 71:3–26
    [Google Scholar]
  111. Jacobi J, Valdez GVV, Benabderrazik K. 2021. Towards political ecologies of food. Nat. Food 2:835–37
    [Google Scholar]
  112. Jansen K. 2015. The debate on food sovereignty theory: agrarian capitalism, dispossession and agroecology. J. Peasant Stud. 42:213–32
    [Google Scholar]
  113. Kearns P, Dima O, Nowak A, Napiorkowski M, Magan J et al. 2021. White Paper on the Regulation of Genome Editing in Agriculture. Brussels: Re-Imagine Europa
    [Google Scholar]
  114. Knowler D, Bradshaw B. 2007. Farmers’ adoption of conservation agriculture: a review and synthesis of recent research. Food Policy 32:25–48
    [Google Scholar]
  115. LaCanne CE, Lundgren JG. 2018. Regenerative agriculture: merging farming and natural resource conservation profitably. PeerJ 6:e4428
    [Google Scholar]
  116. Lacoste M, Cook S, McNee M, Gale D, Ingram J et al. 2022. On-farm experimentation to transform global agriculture. Nat. Food 3:11–18
    [Google Scholar]
  117. Lampkin N, Schwarz G, Bellon S. 2020. Policies for agroecology in Europe, building on experiences in France, Germany and the United Kingdom. Landbauforsch. J. Sustain. Organic Agric. Syst. 70:103–12
    [Google Scholar]
  118. Leffelar PA 1998. On Systems Analysis and Simulation of Ecological Processes Dordrecht, Neth: Kluwer Academic
    [Google Scholar]
  119. Leip A, Marchi G, Koeble R, Kempen M, Britz W, Li C. 2008. Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe. Biogeosciences 5:73–94
    [Google Scholar]
  120. Lemarie S, Marette S. 2022. The socio-economic factors affecting the emergence and impacts of new genomic techniques in agriculture: a scoping review. Trends Food Sci. Technol. 129:38–48
    [Google Scholar]
  121. Leopoldina 2019. Towards a scientifically justified, differentiated regulation of genome edited plants in the EU Statement, Natl. Akad. Wissensch. Leopoldina Halle, Ger.: https://www.leopoldina.org/uploads/tx_leopublication/2019_Stellungnahme_Genomeditierte_Pflanzen_web.pdf
    [Google Scholar]
  122. Leveau L, Bénel A, Cahier J-P, Pinet F, Salembier P et al. 2019. Information and communication technology (ICT) and the agroecological transition. Agroecological Transitions: From Theory to Practice in Local Participatory Design J-E Bergez, E Audouin, O Therond 263–87. Cham, Switz: Springer
    [Google Scholar]
  123. Loconto AM, Fouilleux E. 2019. Defining agroecology: exploring the circulation of knowledge in FAO's Global Dialogue. Int. J. Soc. Agric. Food 25:116–37
    [Google Scholar]
  124. Lotz LAP, van de Wiel CCM, Smulders MJM. 2020. Genetic engineering at the heart of agroecology. Outlook Agric. 49:21–28
    [Google Scholar]
  125. Marton TA, Storm H. 2021. The case of organic dairy conversion in Norway: assessment of multivariate neighbourhood effects. Q. Open 1:qoab009
    [Google Scholar]
  126. McPhee C, Bancerz M, Mambrini-Doudet M, Chrétien F, Huyghe C, Gracia-Garza J. 2021. The defining characteristics of agroecosystem living labs. Sustainability 13:1718
    [Google Scholar]
  127. Mendoza TC. 2004. Evaluating the benefits of organic farming in rice agroecosystems in the Philippines. J. Sustain. Agric. 24:93–115
    [Google Scholar]
  128. Meuwissen MPM, Feindt PH, Spiegel A, Termeer CJAM, Mathijs E et al. 2019. A framework to assess the resilience of farming systems. Agric. Syst. 176:102656
    [Google Scholar]
  129. Miao RQ, Khanna M. 2020. Harnessing advances in agricultural technologies to optimize resource utilization in the food-energy-water nexus. Annu. Rev. Resour. Econ. 12:65–85
    [Google Scholar]
  130. Mier y Terán Giménez Cacho M, Giraldo OF, Aldasoro M, Morales H, Ferguson BG et al. 2018. Bringing agroecology to scale: key drivers and emblematic cases. Agroecol. Sustain. Food Syst. 42:637–65
    [Google Scholar]
  131. Miles A, DeLonge MS, Carlisle L. 2017. Triggering a positive research and policy feedback cycle to support a transition to agroecology and sustainable food systems. Agroecol. Sustain. Food Syst. 41:855–79
    [Google Scholar]
  132. Mohring N, Finger R. 2022. Pesticide-free but not organic: adoption of a large-scale wheat production standard in Switzerland. Food Policy 106:102188
    [Google Scholar]
  133. Mottet A, Bicksler A, Lucantoni D, De Rosa F, Scherf B et al. 2020. Assessing transitions to sustainable agricultural and food systems: a tool for agroecology performance evaluation (TAPE). Front. Sustain. Food Syst. 4:579154
    [Google Scholar]
  134. Mouratiadou I, Latka C, van der Hilst F, Müller C, Berges R et al. 2021. Quantifying sustainable intensification of agriculture: the contribution of metrics and modelling. Ecol. Indic. 129:107870
    [Google Scholar]
  135. Mugwanya N. 2019. Why agroecology is a dead end for Africa. Outlook Agric 48:2113–16
    [Google Scholar]
  136. Muller A, Schader C, Scialabba NEH, Bruggemann J, Isensee A et al. 2017. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8:1290
    [Google Scholar]
  137. Muller B, Hoffmann F, Heckelei T, Muller C, Hertel TW et al. 2020. Modelling food security: bridging the gap between the micro and the macro scale. Glob. Environ. Change 63:102085
    [Google Scholar]
  138. Munoz EFP, Niederle PA, de Gennaro BC, Roselli L. 2021. Agri-food markets towards agroecology: tensions and compromises faced by small-scale farmers in Brazil and Chile. Sustainability 13:3096
    [Google Scholar]
  139. NAS (Natl. Acad. Sci. Med.) 2016. Genetically Engineered Crops: Past Experience and Future Prospects Washington, DC: Natl. Acad. Sci. Med.
    [Google Scholar]
  140. Nelson GC, Valin H, Sands RD, Havlík P, Ahammad H et al. 2014. Climate change effects on agriculture: economic responses to biophysical shocks. PNAS 111:3274–79
    [Google Scholar]
  141. Niggli U. 2015a. Incorporating agroecology into organic research—an ongoing challenge. Sustain. Agric. Res. 4:149–57
    [Google Scholar]
  142. Niggli U. 2015b. Sustainability of organic food production: challenges and innovations. Proc. Nutr. Soc. 74:83–88
    [Google Scholar]
  143. Niggli U, Riedel J. 2020. Agroecology empowers a new, solution-oriented dialogue. Landbauforschung 70:15–20
    [Google Scholar]
  144. Niggli U, Sonnevelt M, Kummer S. 2021. Pathways to advance agroecology for a successful transformation to sustainable food systems Food Syst. Summit Brief, United Nations Food Syst Summit, New York:
    [Google Scholar]
  145. Nóia Júnior RD, Ewert F, Webber H, Martre P, Hertel TW et al. 2022. Needed global wheat stock and crop management in response to the war in Ukraine. Glob. Food Secur. Agric. Policy Econ. Environ. 35:100662
    [Google Scholar]
  146. Northrup DL, Basso B, Wang MQ, Morgan CLS, Benfey PN. 2021. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. PNAS 118:e2022666118
    [Google Scholar]
  147. Ong TWY, Liao W. 2020. Agroecological transitions: a mathematical perspective on a transdisciplinary problem. Front. Sustain. Food Syst. 4:91
    [Google Scholar]
  148. Ortiz-Bobea A, Ault TR, Carrillo CM, Chambers RG, Lobel DB. 2021. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11:306–12
    [Google Scholar]
  149. Osendarp S, Verburg G, Bhutta Z, Black RE, de Pee S et al. 2022. Act now before Ukraine war plunges millions into malnutrition. Nature 604:620–24
    [Google Scholar]
  150. Pappalardo S, Andrade D 2022. Drones for good: UAS applications in agroecology and organic farming. Drones and Geographical Information Technologies in Agroecology and Organic Farming Contributions to Technological Sovereignty M De Marchi, A Diantini, SE Pappalardo 122–48. Boca Raton, FL: CRC Press
    [Google Scholar]
  151. Pereira L, Wynberg R, Reis Y. 2018. Agroecology: The future of sustainable farming?. Environment 60:4–17
    [Google Scholar]
  152. Place F, Niederle P, Sinclair F, Carmona NE, Guéneau S et al. 2022. Agroecologically-conducive policies: a review of recent advances and remaining challenges Work. Pap. 1 Transf. Partnersh. Platf. Agroecol. Bogor, Indones: https://www.cifor.org/publications/pdf_files/WPapers/TPP-WP-1.pdf
    [Google Scholar]
  153. Pretty J. 2008. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. B 363:447–65
    [Google Scholar]
  154. Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB et al. 2018. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1:441–46
    [Google Scholar]
  155. Pretty J, Bharucha ZP. 2014. Sustainable intensification in agricultural systems. Ann. Bot. 114:1571–96
    [Google Scholar]
  156. Purnhagen KP, Clemens S, Eriksson D, Fresco LO, Tosun J et al. 2021. Europe's farm to fork strategy and its commitment to biotechnology and organic farming: Conflicting or complementary goals?. Trends Plant Sci. 26:600–6
    [Google Scholar]
  157. Purnhagen KP, Wesseler JHH. 2019. Maximum versus minimum harmonization: what to expect from the institutional and legal battles in the EU on gene editing technologies. Pest Manag. Sci. 75:2310–15
    [Google Scholar]
  158. Qaim M. 2009. The economics of genetically modified crops. Annu. Rev. Resour. Econ. 1:665–94
    [Google Scholar]
  159. Qaim M. 2020. Role of new plant breeding technologies for food security and sustainable agricultural development. Appl. Econ. Perspect. Policy 42:129–50
    [Google Scholar]
  160. Qaim M, Zilberman D. 2003. Yield effects of genetically modified crops in developing countries. Science 299:900–2
    [Google Scholar]
  161. Reidsma P, Janssen S, Jansen J, van Ittersum MK. 2018. On the development and use of farm models for policy impact assessment in the European Union—a review. Agric. Syst. 159:111–25
    [Google Scholar]
  162. Rodale R. 1983. Breaking new ground: the search for a sustainable agriculture. Futurist 1:15–20
    [Google Scholar]
  163. Rose DC, Chilvers J. 2018. Agriculture 4.0: broadening responsible innovation in an era of smart farming. Front Sustain. Food Syst. 2:87
    [Google Scholar]
  164. Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ et al. 2013. The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170:166–82
    [Google Scholar]
  165. Schaub S, Buchmann N, Luscher A, Finger R. 2020. Economic benefits from plant species diversity in intensively managed grasslands. Ecol. Econ. 168:106488
    [Google Scholar]
  166. Schulp CJE, Komossa F, Scherer L, van der Zanden EH, Debolini M, Piorr A. 2022. The role of different types of actors in the future of sustainable agriculture in a Dutch peri-urban area. Environ. Manag. 70:401–19
    [Google Scholar]
  167. Seppelt R, Arndt C, Beckmann M, Martin EA, Hertel TW. 2021. Deciphering the biodiversity-production mutualism in the global food security debate. Trends Ecol. Evol. 35:1011–20
    [Google Scholar]
  168. Serra T, Zilberman D, Gil JM. 2008. Differential uncertainties and risk attitudes between conventional and organic producers: the case of Spanish arable crop farmers. Agric. Econ. 39:219–29
    [Google Scholar]
  169. Seufert V, Ramankutty N. 2017. Many shades of gray—the context-dependent performance of organic agriculture. Sci. Adv. 3:e1602638
    [Google Scholar]
  170. Seufert V, Ramankutty N, Foley JA. 2012. Comparing the yields of organic and conventional agriculture. Nature 485:229–32
    [Google Scholar]
  171. Snapp SS, Kebede Y, Wollenberg EK, Dittmer KM, Brickman S et al. 2021. Agroecology & climate change rapid evidence review: performance of agroecological approaches in low- and middle-income countries. Rep. CGIAR Paris:
    [Google Scholar]
  172. Springmann M, Clark M, Mason-D'Croz D, Wiebe K, Bodirsky BL et al. 2018. Options for keeping the food system within environmental limits. Nature 562:519–25
    [Google Scholar]
  173. Ssebunya BR, Morawetz UB, Schader C, Stolze M, Schmid E. 2019. Group membership and certification effects on incomes of coffee farmers in Uganda. Eur. Rev. Agric. Econ. 46:109–32
    [Google Scholar]
  174. Stassart PM, Crivits M, Hermesse J, Tessier L, Van Damme J, Dessein J. 2018. The generative potential of tensions within Belgian agroecology. Sustainability 10:2094
    [Google Scholar]
  175. Steen K, van Bueren E. 2017. Urban living labs: a living lab way of working Rep. AMS Amsterdam:
    [Google Scholar]
  176. Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347:736–47
    [Google Scholar]
  177. Struik PC, Kuyper TW, Brussaard L, Leeuwis C. 2014. Deconstructing and unpacking scientific controversies in intensification and sustainability: why the tensions in concepts and values?. Curr. Opin. Environ. Sustain. 8:80–88
    [Google Scholar]
  178. Tittonell P. 2014. Ecological intensification of agriculture—sustainable by nature. Curr. Opin. Environ. Sustain. 8:53–61
    [Google Scholar]
  179. Tittonell P. 2020. Assessing resilience and adaptability in agroecological transitions. Agric. Syst. 184:102862
    [Google Scholar]
  180. Tittonell P, El Mujtar V, Felix G, Kebede Y, Laborda L et al. 2022. Regenerative agriculture—agroecology without politics?. Front. Sustain. Food Syst. 6:844261
    [Google Scholar]
  181. Tittonell P, Piñeiro G, Garibaldi LA, Dogliotti S, Olff H, Jobbagy EG. 2020. Agroecology in large scale farming—a research agenda. Front. Sustain. Food Syst. 4:584605
    [Google Scholar]
  182. Trnka M, Rotter RP, Ruiz-Ramos M, Kersebaum KC, Olesen JE et al. 2014. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change 4:637–43
    [Google Scholar]
  183. van der Ploeg JD. 2021. The political economy of agroecology. J. Peasant Stud. 48:274–97
    [Google Scholar]
  184. van der Ploeg JD, Barjolle D, Bruil J, Brunori G, Costa Madureira LM et al. 2019. The economic potential of agroecology: empirical evidence from Europe. J. Rural. Stud. 71:46–61
    [Google Scholar]
  185. van Ittersum MK, Ewert F, Heckelei T, Wery J, Alkan Olsson J et al. 2008. Integrated assessment of agricultural systems—a component-based framework for the European Union (SEAMLESS). Agric. Syst. 96:150–65
    [Google Scholar]
  186. Vandermeer J. 2020. Confronting complexity in agroecology: simple models from Turing to Simon. Front Sustain. Food Syst. 4:95
    [Google Scholar]
  187. Vicente-Vicente JL, Doernberg A, Zasada I, Ludlow D, Staszek D et al. 2021. Exploring alternative pathways toward more sustainable regional food systems by foodshed assessment—city region examples from Vienna and Bristol. Environ. Sci. Policy 124:401–12
    [Google Scholar]
  188. von Braun J, Afsana K, Fresco LO, Hassan M. 2021. Food systems: seven priorities to end hunger and protect the planet. Nature 597:28–30
    [Google Scholar]
  189. Walter A, Finger R, Huber R, Buchmann N. 2017. Smart farming is key to developing sustainable agriculture. PNAS 114:6148–50
    [Google Scholar]
  190. Wesseler J, Politiek H, Zilberman D. 2019. The economics of regulating new plant breeding technologies—implications for the bioeconomy illustrated by a survey among Dutch plant breeders. Front. Plant Sci. 10:1597
    [Google Scholar]
  191. Wezel A, Bellon S, Doré T, Francis C, Vallod D, David C. 2009. Agroecology as a science, a movement and a practice. A review. Agron. Sustain. Dev. 29:503–15
    [Google Scholar]
  192. Wezel A, Casagrande M, Celette F, Vian JF, Ferrer A, Peigné J. 2014. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34:1–20
    [Google Scholar]
  193. Wezel A, Herren BG, Kerr RB, Barrios E, Gonçalves ALR, Sinclair F. 2020. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron. Sustain. Dev. 40:40
    [Google Scholar]
  194. Wezel A, Soldat V. 2009. A quantitative and qualitative historical analysis of the scientific discipline of agroecology. Int. J. Agric. Sustain. 7:3–18
    [Google Scholar]
  195. Wheeler T, von Braun J. 2013. Climate change impacts on global food security. Science 341:508–13
    [Google Scholar]
  196. Willett W, Rockstrom J, Loken B, Springmann M, Lang Tet al 2020. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393:447–92
    [Google Scholar]
  197. Wuepper D, Finger R. 2023. Regression discontinuity designs in agricultural and environmental economics. Eur. Rev. Agric. Econ. 50: https://doi.org/10.1093/erae/jbac023
    [Crossref] [Google Scholar]
  198. Wuest SE, Peter R, Niklaus PA. 2021. Ecological and evolutionary approaches to improving crop variety mixtures. Nat. Ecol. Evol. 5:1068–77
    [Google Scholar]
  199. Zhao C, Liu B, Piao S, Wang X, Lobell DB et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. PNAS 114:9326–31
    [Google Scholar]
/content/journals/10.1146/annurev-resource-102422-090105
Loading
/content/journals/10.1146/annurev-resource-102422-090105
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error