1932

Abstract

This review provides a description of common and distinct characteristics of economic and ecological systems; examples of the ways in which these characteristics can be incorporated into models adequately describing the coevolution of the two-component systems to produce a unified ecological-economic system in time, space, and appropriate scale; and a discussion of policy design when the policy maker takes into account this coevolution, along with potential biases when the coevolution is ignored. We propose the development of integrated assessment models of the coevolving systems that will embody the variety of common and distinct characteristics identified in this survey. We expect that such an approach will provide useful insights into the efficient management of coevolving ecological-economic systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-103020-083100
2021-10-05
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/resource/13/1/annurev-resource-103020-083100.html?itemId=/content/journals/10.1146/annurev-resource-103020-083100&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmed R, Segerson K. 2011. Collective voluntary agreements to eliminate polluting products. Resour. Energy Econ. 33:3572–88
    [Google Scholar]
  2. Arnol'd VI 1986. Catastrophe Theory Berlin: Springer-Verlag
    [Google Scholar]
  3. Arrow KJ. 1969. The organization of economic activity: issues pertinent to the choice of market versus non-market allocation. Joint Economic Committee, TheAnalysis and Evaluation of Public Expenditures: The PPB System 47–64 Washington, DC: Gov. Print. Off.
    [Google Scholar]
  4. Arrow KJ, Cropper ML, Gollier C, Groom B, Heal GM et al. 2014a. Should governments use a declining discount rate in project analysis?. Rev. Environ. Econ. Policy 8:2145–63
    [Google Scholar]
  5. Arrow KJ, Ehrlich PR, Levin SA 2014b. Some perspectives on linked ecosystems and socioeconomic systems. Environment and Development Economics: Essays in Honour of Sir Partha Dasgupta S Barrett, K-G Maler, ES Maskin 95–119 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  6. Athanassoglou S, Xepapadeas A. 2012. Pollution control with uncertain stock dynamics: when, and how, to be precautious. J. Environ. Econ. Manag. 63:3304–20
    [Google Scholar]
  7. Bansal R, Kiku D, Ochoa M. 2016. Price of long-run temperature shifts in capital markets. NBER Work. Pap. 22529. https://www.nber.org/papers/w22529
    [Google Scholar]
  8. Barnett M, Brock W, Hansen LP. 2020. Pricing uncertainty induced by climate change. Rev. Financ. Stud. 33:1024–66
    [Google Scholar]
  9. Başar T, Olsder GJ. 1982. Dynamic Noncooperative Game Theory New York: Academic
    [Google Scholar]
  10. Baskett ML, Micheli F, Levin SA. 2007. Designing marine reserves for interacting species: insights from theory. Biol. Conserv. 137:2163–79
    [Google Scholar]
  11. Bonachela JA, Pringle RM, Sheffer E, Coverdale TC, Guyton JA et al. 2015. Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science 347:6222651–55
    [Google Scholar]
  12. Brock WA. 1988. Nonlinearity and complex dynamics in economics and finance. The Economy as an Evolving Complex System, Vol. 5 PW Anderson, K Arrow, D Pines 77–98 Boca Raton, FL: CRC Press
    [Google Scholar]
  13. Brock WA, Engström G, Xepapadeas A 2014a. Energy balance climate models, damage reservoirs, and the time profile of climate change policy. The Oxford Handbook of the Macroeconomics of Global Warming L Bernard, W Semmler 19–52 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  14. Brock WA, Starrett D 2004. Managing systems with non-convex positive feedback. The Economics of Non-Convex Ecosystems P Dasgupta, K-G Mäler 77–104 Dordrecht, Neth: Kluwer
    [Google Scholar]
  15. Brock WA, Xepapadeas A. 2002. Optimal ecosystem management when species compete for limiting resources. J. Environ. Econ. Manag. 44:189–230
    [Google Scholar]
  16. Brock WA, Xepapadeas A. 2003. Valuing biodiversity from an economic perspective: a unified economic, ecological and genetic approach. Am. Econ. Rev. 93:51597–614
    [Google Scholar]
  17. Brock WA, Xepapadeas A. 2008. Diffusion-induced instability and pattern formation in infinite horizon recursive optimal control. J. Econ. Dyn. Control 32:92745–87
    [Google Scholar]
  18. Brock WA, Xepapadeas A. 2010. Pattern formation, spatial externalities and regulation in coupled economic-ecological systems. J. Environ. Econ. Manag. 59:2149–64
    [Google Scholar]
  19. Brock WA, Xepapadeas A. 2017. Climate change policy under polar amplification. Eur. Econ. Rev. 94:263–82
    [Google Scholar]
  20. Brock WA, Xepapadeas A. 2021. Regional climate policy under deep uncertainty: robust control and distributional concerns. Environ. Dev. Econ. 26:211–38
    [Google Scholar]
  21. Brock WA, Xepapadeas A, Yannacopoulos AN. 2014b. Optimal control in space and time and the management of environmental resources. Annu. Rev. Resour. Econ. 6:33–68
    [Google Scholar]
  22. Brock WA, Xepapadeas A, Yannacopoulos AN. 2014c. Robust control and hot spots in spatiotemporal economic systems. Dyn. Games Appl. 4:257–89
    [Google Scholar]
  23. Brozovic N, Sunding D, Zilberman D. 2010. On the spatial nature of the groundwater pumping externality. Resour. Energy Econ. 32:2154–64
    [Google Scholar]
  24. Camacho C, Pérez-Barahona A. 2015. Land use dynamics and the environment. J. Econ. Dyn. Control 52:96–118
    [Google Scholar]
  25. Carpenter SR, Ludwig D, Brock W 1999. Management of lakes subject to potentially irreversible change. Ecol. Appl. 9:3751–71
    [Google Scholar]
  26. Chave J, Levin SA. 2003. Scale and scaling in ecological and economic systems. Environ. Resour. Econ. 26:527–57
    [Google Scholar]
  27. Clark CW. 1976. Mathematical Bioeconomics: The Optimal Control of Renewable Resources New York: Wiley-Intersci.
    [Google Scholar]
  28. Coase R. 1960. The problem of social cost. J. Law Econ. 3:1–44
    [Google Scholar]
  29. Costello C, Polasky S. 2008. Optimal harvesting of stochastic spatial resources. J. Environ. Econ. Manag. 56:1–18
    [Google Scholar]
  30. Couzin ID, Krause J, Franks NR, Levin SA. 2005. Effective leadership and decision making in animal groups on the move. Nature 433:513–16
    [Google Scholar]
  31. Crawford JD. 1991. Introduction to bifurcation theory. Rev. Mod. Phys. 63:4991–1037
    [Google Scholar]
  32. Crépin A-S. 2007. Using fast and slow processes to manage resources with thresholds. Environ. Resour. Econ. 36:2191–213
    [Google Scholar]
  33. Crépin A-S, Norberg J, Mäler K-G. 2011. Coupled economic-ecological systems with slow and fast dynamics—modelling and analysis method. Ecol. Econ. 70:81448–58
    [Google Scholar]
  34. Daily GC. 1997. Nature's Services: Societal Dependence on Natural Ecosystems Washington, DC: Island Press
    [Google Scholar]
  35. Dasgupta P. 2008. Discounting climate change. J. Risk Uncertain. 37:2141–69
    [Google Scholar]
  36. Dasgupta P, Mäler K-G 2004. The Economics of Non-Convex Ecosystems Dordrecht, Neth: Kluwer
    [Google Scholar]
  37. Dasgupta P, Maskin E. 2005. Uncertainty and hyperbolic discounting. Am. Econ. Rev. 95:41290–99
    [Google Scholar]
  38. Dawson NL, Segerson K. 2008. Voluntary agreements with industries: participation incentives with industry-wide targets. Land Econ 84:197–114
    [Google Scholar]
  39. de Finetti B. 1931. Sul significato soggettivo della probabilità. Fund. Math. 17:298–329
    [Google Scholar]
  40. de Frutos J, Martín-Herran G. 2019. Spatial effects and strategic behavior in a multiregional transboundary pollution dynamic game. J. Environ. Econ. Manag. 97:C182–207
    [Google Scholar]
  41. de Zeeuw A 2014a. Differential games and environmental economics. Dynamic Games in Economics. Dynamic Modeling and Econometrics in Economics and Finance, Vol. 16 J Haunschmied, V Veliov, S Wrzaczek 135–59 Berlin/Heidelberg: Springer
    [Google Scholar]
  42. de Zeeuw A. 2014b. Regime shifts in resource management. Annu. Rev. Resour. Econ. 6:85–104
    [Google Scholar]
  43. Desmet K, Rossi-Hansberg E. 2015. On the spatial economic impact of global warming. J. Urban Econ. 88:16–27
    [Google Scholar]
  44. Diekert FK, Hjermann , Nævdal E, Stenseth N-C. 2010. Noncooperative exploitation of multi-cohort fisheries—the role of gear selectivity in the North-East Arctic cod fishery. Resour. Energy Econ. 32:78–92
    [Google Scholar]
  45. Ellsberg D. 1961. Risk, ambiguity, and the Savage axioms. Q. J. Econ. 75:4643–69
    [Google Scholar]
  46. Epanchin-Nieli RS, Wilen JE 2012. Optimal spatial control of biological invasions. J. Environ. Econ. Manag. 63:2260–70
    [Google Scholar]
  47. Flierl G, Grünbaum D, Levins S, Olson D. 1999. From individuals to aggregations: the interplay between behavior and physics. J. Theor. Biol. 196:4397–454
    [Google Scholar]
  48. Francis J. 2017. Why are Arctic linkages to extreme weather still up in the air?. Bull. Am. Meteorol. Soc. 98:122251–57
    [Google Scholar]
  49. Francis J, Skific N. 2015. Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philos. Trans. R. Soc. A 373:20140170
    [Google Scholar]
  50. Gilboa I, Postlewaite A, Schmeidler D. 2008. Probability and uncertainty in economic modeling. J. Econ. Perspect. 22:3173–88
    [Google Scholar]
  51. Gilboa I, Schmeidler D. 1989. Maxmin expected utility with non-unique prior. J. Math. Econ. 18:2141–53
    [Google Scholar]
  52. Goetz RU, Zilberman D. 2000. The dynamics of spatial pollution: the case of phosphorus runoff from agricultural land. J. Econ. Dyn. Control 24:1143–63
    [Google Scholar]
  53. Goldenfeld N. 1992. Lectures on Phase Transitions and the Renormalization Group Reading, MA: Addison-Wesley
    [Google Scholar]
  54. Gollier C. 2012. Pricing the Planet's Future: The Economics of Discounting in an Uncertain World Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  55. Golubitsky M. 1978. An introduction to catastrophe theory and its applications. SIAM Rev 20:2352–87
    [Google Scholar]
  56. Grass D, Xepapadeas A, de Zeeuw A. 2017. Optimal management of ecosystem services with pollution traps: the lake model revisited. J. Assoc. Environ. Resour. Econ. 4:41121–54
    [Google Scholar]
  57. Grimsrud K, Huffaker R. 2006. Solving multidimensional bioeconomic problems with singular-perturbation reduction methods: application to managing pest resistance to pesticidal crops. J. Environ. Econ. Manag. 51:336–53
    [Google Scholar]
  58. Hagstrom GI, Levin SA. 2017. Marine ecosystems as complex adaptive systems: emergent patterns, critical transitions, and public goods. Ecosystems 20:458–76
    [Google Scholar]
  59. Hansen LP, Sargent TJ. 2008. Robustness in Economic Dynamics Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  60. Hardin G. 1968. The tragedy of the commons. Science 162:38591243–48
    [Google Scholar]
  61. Hassler J, Krusell P. 2012. Economics and climate change: integrated assessment in a multi-region world. J. Eur. Econ. Assoc. 10:5974–1000
    [Google Scholar]
  62. Hastings A. 1982. Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates. J. Math. Biol. 16:149–55
    [Google Scholar]
  63. Hastings A, Harrison S. 1994. Metapopulation dynamics and genetics. Annu. Rev. Ecol. Evol. Syst. 25:167–88
    [Google Scholar]
  64. Heal G, Milner A. 2014. Uncertainty and decision making in climate change economics. Rev. Environ. Econ. Policy 8:1120–37
    [Google Scholar]
  65. High-Level Comm. Carbon Prices 2017. Report of the High-Level Commission on Carbon Prices Washington, DC: World Bank
    [Google Scholar]
  66. Holling CS. 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4:1–23
    [Google Scholar]
  67. Hutchinson GE. 1961. The paradox of the plankton. Am. Nat. 95:882137–45
    [Google Scholar]
  68. IPCC (Intergov. Panel Clim. Change) 2013. Climate Change 2013: the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al. Cambridge, UK/New York: Cambridge Univ. Press
    [Google Scholar]
  69. Jørgensen S, Martin-Herran G, Zaccour G. 2010. Dynamic games in the economics and management of pollution. Environ. Model. Assess. 15:6443–67
    [Google Scholar]
  70. Keynes JM. 1921. A Treatise on Probability London: Macmillan
    [Google Scholar]
  71. Klibanoff P, Marinacci M, Mukerji S. 2005. A smooth model of decision making under ambiguity. Econometrica 73:1849–92
    [Google Scholar]
  72. Knight F. 1921. Risk, Uncertainty and Profit Boston: Houghton Mifflin
    [Google Scholar]
  73. Kossioris G, Plexousakis M, Xepapadeas A, de Zeeuw A. 2011. On the optimal taxation of common-pool resources. J. Econ. Dyn. Control 35:111868–79
    [Google Scholar]
  74. Kossioris G, Plexousakis M, Xepapadeas A, de Zeeuw A, Mäler K-G. 2008. Feedback Nash equilibria for non-linear differential games in pollution control. J. Econ. Dyn. Control 32:41312–31
    [Google Scholar]
  75. Kroetz K, Sanchirico JN. 2015. The bioeconomics of spatial-dynamic systems in natural resource management. Annu. Rev. Resour. Econ. 7:189–231
    [Google Scholar]
  76. Krugman PR. 1996. The Self-Organizing Economy Cambridge, MA: Blackwell
    [Google Scholar]
  77. Krugman PR. 1998. Space: the final frontier. J. Econ. Perspect. 12:2161–74
    [Google Scholar]
  78. Kuwayama Y, Brozovic N. 2013. The regulation of a spatially heterogeneous externality: tradable groundwater permits to protect streams. J. Environ. Econ. Manag. 66:2364–82
    [Google Scholar]
  79. Laffont J-J. 1976. Decentralization with externalities. Eur. Econ. Rev. 7:359–75
    [Google Scholar]
  80. Lenton TM, Held H, Kriegler E, Hall J, Lucht W et al. 2008. Tipping elements in the Earth's climate system. PNAS 105:61786–93
    [Google Scholar]
  81. Levin SA. 1974. Dispersion and population interactions. Am. Nat. 108:960207–28
    [Google Scholar]
  82. Levin SA. 1976. Population dynamic models in heterogeneous environments. Annu. Rev. Ecol. Syst. 7:287–310
    [Google Scholar]
  83. Levin SA 1991. The problem of relevant detail. Differential Equations Models in Biology, Epidemiology and Ecology. Lecture Notes in Biomathematics S Busenberg, M Martelli 9–15 Berlin: Springer-Verlag
    [Google Scholar]
  84. Levin SA. 1992. The problem of pattern and scale in ecology. Ecology 73:1943–67
    [Google Scholar]
  85. Levin SA. 1998. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431–36
    [Google Scholar]
  86. Levin SA. 1999. Fragile Dominion: Complexity and the Commons Reading, MA: Perseus
    [Google Scholar]
  87. Levin SA. 2014. Public goods in relation to competition, cooperation, and spite. PNAS 111:10838–45
    [Google Scholar]
  88. Levin SA 2020. Collective cooperation: from ecological communities to global governance and back. Unsolved Problems in Ecology A Dobson, RD Holt, D Tilman 311–17 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  89. Levin SA, Aniyar S, Baumol W, Bliss C, Bolin B et al. 1998. Resilience in natural and socioeconomic systems. Environ. Dev. Econ. 3:2221–62
    [Google Scholar]
  90. Levin SA, Segel L. 1985. Pattern generation in space and aspect. SIAM Rev 27:45–67
    [Google Scholar]
  91. Levin SA, Xepapadeas A. 2017. Transboundary capital and pollution flows and the emergence of regional inequalities. Discrete Contin. Dyn. Syst. B 22:3913–22
    [Google Scholar]
  92. Levin SA, Xepapadeas T, Crépin A-S, Norberg J, de Zeeuw A et al. 2013. Social-ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ. 18:2111–32
    [Google Scholar]
  93. Lewontin R, Cohen D 1969. On population growth in a randomly varying environment. PNAS 62:1056–60
    [Google Scholar]
  94. Ludwig D, Jones DD, Holling CS. 1978. Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol. 47:1315–32
    [Google Scholar]
  95. Ludwig D, Walters CJ. 1985. Are age-structured models appropriate for catch-effort data?. Can. J. Fish. Aquat. Sci. 42:1066–72
    [Google Scholar]
  96. Maccheroni F, Marinacci M, Rustichini A. 2006. Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74:61447–98
    [Google Scholar]
  97. MacDougall AH, Swart NC, Knutti R. 2017. The uncertainty in the transient climate response to cumulative CO2 emissions arising from the uncertainty in physical climate parameters. Bull. Am. Meteorol. Soc. 30:2813–27
    [Google Scholar]
  98. Mäler K-G 1989. The acid rain game. Valuation Methods and Policy Making in Environmental Economics, Vol. 36 H Folmer, E van Ierland 231–52 Amsterdam: Elsevier
    [Google Scholar]
  99. Mäler K-G, de Zeeuw A. 1998. The acid rain differential game. Environ. Resour. Econ. 12:2167–84
    [Google Scholar]
  100. Mäler K-G, Fisher A 2005. Environment, uncertainty, and option values. Handbook of Environmental Economics, Vol. 2: Valuing Environmental Changes K-G Mäler, JR Vincent 571–620 Amsterdam: North-Holland
    [Google Scholar]
  101. Mäler K-G, Xepapadeas A, de Zeeuw A. 2003. The economics of shallow lakes. Environ. Resour. Econ. 26:4603–24
    [Google Scholar]
  102. Matthews HD, Gillett NP, Stott PA, Zickfield K. 2009. The proportionality of global warming to cumulative carbon emissions. Nature 459:829–33
    [Google Scholar]
  103. May RM. 1976. Simple mathematical models with very complicated dynamics. Nature 261:459–67
    [Google Scholar]
  104. McManus LC, Watson JR, Vasconcelos VV, Levin SA. 2019. Stability and recovery of coral-algae systems: the importance of recruitment seasonality and grazing influence. Theor. Ecol. 12:61–72
    [Google Scholar]
  105. Meinshausen M, Meinshausen N, Hare W, Raper SC, Frieler K et al. 2009. Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–63
    [Google Scholar]
  106. Meron E. 2015. Nonlinear Physics of Ecosystems Boca Raton, FL: CRC Press
    [Google Scholar]
  107. Millenn. Ecosyst. Assess 2005. Ecosystems and Human Well-Being, Vol. 3: Policy Responses Washington, DC: Island Press
    [Google Scholar]
  108. Mumby PJ, Hastings A, Edwards HJ. 2007. Thresholds and the resilience of Caribbean coral reefs. Nature 450:98–101
    [Google Scholar]
  109. Nyborg K, Anderies JM, Dannenberg A, Lindahl T, Schill C et al. 2016. Social norms as solutions. Science 354:630842–43
    [Google Scholar]
  110. OECD (Organ. Econ. Co-op. Dev.) 2017a. Alternatives to traditional regulation Rep., OECD, Paris: http://www.oecd.org/gov/regulatory-policy/42245468.pdf
    [Google Scholar]
  111. OECD (Organ. Econ. Co-op. Dev.) 2017b. Policy Instruments for the Environment (PINE) Database Policy Instrument Database, OECD Paris: http://oe.cd/pine
    [Google Scholar]
  112. Okubo A, Levin SA. 2001. Diffusion and Ecological Problems: Modern Perspectives New York: Springer. , 2nd ed..
    [Google Scholar]
  113. Ostrom E. 1990. Governing the Commons: The Evolution of Institutions for Collective Action Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  114. Pearce D, Atkinson G, Mourato S. 2006. Cost-Benefit Analysis and the Environment: Recent Developments Paris: OECD
    [Google Scholar]
  115. Petrakis E, Sartzetakis ES, Xepapadeas A. 2005. Environmental information provision as a public policy instrument. B.E. J. Econ. Anal. Policy 4:11–33
    [Google Scholar]
  116. Pfeiffer L, Lin C-YC. 2010. The effect of irrigation technology on groundwater use. Choices 25:31–6
    [Google Scholar]
  117. Pigou AC. 1920. The Economics of Welfare London: Macmillan
    [Google Scholar]
  118. Pindyck RS. 2013. Climate change policy: What do the models tell us?. J. Econ. Lit. 51:3860–72
    [Google Scholar]
  119. Pinsky ML, Worm B, Fogarty MF, Sarmiento JL, Levin SA. 2013. Marine taxa track local climate velocities. Science 341:61511239–42
    [Google Scholar]
  120. Polasky S, de Zeeuw A, Wagener F. 2011. Optimal management with potential regime shifts. J. Environ. Econ. Manag. 62:2229–40
    [Google Scholar]
  121. Pringle RM, Tarnita CE. 2017. Spatial self-organization of ecosystems: integrating multiple mechanisms of regular-pattern formation. Annu. Rev. Entomol. 62:359–77
    [Google Scholar]
  122. Pyke GH, Pulliam HR, Charnov EL. 1977. Optimal foraging: a selective review of theory and tests. Q. Rev. Biol. 52:2137–54
    [Google Scholar]
  123. Ramsey FP. 1926. Truth and probability. The Foundations of Mathematics and Other Logical Essays RB Braithwaite 156–98 London/New York: Kegan, Paul, Trench, Trubner & Co./Harcourt, Brace & Co.
    [Google Scholar]
  124. Rietkerk M, van de Koppel J. 2008. Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23:3169–75
    [Google Scholar]
  125. Robinson EJZ. 2016. Resource-dependent livelihoods and the natural resource base. Annu. Rev. Resour. Econ. 8:281–302
    [Google Scholar]
  126. Roseta-Palma C, Xepapadeas A 2004. Robust control in water management. J. Risk Uncertain. 29:121–34
    [Google Scholar]
  127. Roseta-Palma C, Xepapadeas A 2013. Instabilities and robust control in natural resource management. Port. Econ. J. 12:161–80
    [Google Scholar]
  128. Samuelson PA, Nordhaus WD. 1989. Economics New York: McGraw-Hill. , 13th ed..
    [Google Scholar]
  129. Sanchirico J, Wilen J. 2005. Optimal spatial management of renewable resources: matching policy scope to ecosystem scale. J. Environ. Econ. Manag. 50:23–46
    [Google Scholar]
  130. Savage LJ. 1954. The Foundations of Statistics New York: John Wiley & Sons
    [Google Scholar]
  131. Scheffer M. 2009. Critical Transitions in Nature and Society Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  132. Scheffer M, Carpenter SR. 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18:12648–56
    [Google Scholar]
  133. Segerson K, Miceli TJ. 1998. Voluntary environmental agreements: good or bad news for environmental protection?. J. Environ. Econ. Manag. 36:2109–30
    [Google Scholar]
  134. Simon HA. 1947. Administrative Behavior New York: Macmillan
    [Google Scholar]
  135. Skellam JG. 1951. Random dispersal in theoretical populations. Biometrika 38:1–2196–218
    [Google Scholar]
  136. Smith M, Sanchirico J, Wilen J. 2009. The economics of spatial-dynamic processes: applications to renewable resources. J. Environ. Econ. Manag. 57:104–21
    [Google Scholar]
  137. Smith M, Wilen J. 2003. Economic impacts of marine reserves: the importance of spatial behavior. J. Environ. Econ. Manag. 46:183–206
    [Google Scholar]
  138. Srivastava V, Reverdy P, Leonard NE. 2013. On optimal foraging and multi-armed bandits. In 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton)pp. 49499 Piscataway, NJ: IEEE https://ieeexplore.ieee.org/document/6736565
    [Google Scholar]
  139. Starrett D. 1972. Fundamental nonconvexities, in the theory of externalities. J. Econ. Theory 4:180–99
    [Google Scholar]
  140. Staver AC, Levin SA. 2012. Integrating theoretical climate and fire effects on savanna and forest systems. Am. Nat. 180:2211–24
    [Google Scholar]
  141. Stavins RN. 2003. Experience with market-based environmental policy instruments. In Handbook of Environmental Economics, Vol. 1: Environmental Degradation and Institutional Responsesed. K-G Mäler, JR Vincentpp. 355435 Amsterdam: Elsevier
    [Google Scholar]
  142. Thom R. 1969. Topological models in biology. Topology 8:313–35
    [Google Scholar]
  143. Touboul JD, Staver AC, Levin SA 2018. On the complex dynamics of savanna landscapes. PNAS 115:7E1336–45
    [Google Scholar]
  144. Turing AM. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237:37–72
    [Google Scholar]
  145. van der Ploeg F, de Zeeuw A. 2018. Climate tipping and economic growth: precautionary capital and the price of carbon. J. Eur. Econ. 16:51577–617
    [Google Scholar]
  146. Volterra V. 1926. Variazioni e fluttuazioni del numero d'individui in specie animale conviventi. Mem. R. Accad. Naz. Lincei 2:31–113
    [Google Scholar]
  147. von Neumann J, Morgenstern O. 1947. Theory of Games and Economic Behavior Princeton, NJ: Princeton Univ. Press. , 2nd ed..
    [Google Scholar]
  148. Weitzman ML. 2001. Gamma discounting. Am. Econ. Rev. 91:260–71
    [Google Scholar]
  149. Weitzman ML. 2009. On modeling and interpreting the economics of catastrophic climate change. Rev. Econ. Stat. 91:1–19
    [Google Scholar]
  150. Weitzman ML. 2011. Fat-tailed uncertainty in the economics of catastrophic climate change. Rev. Environ. Econ. Policy 5:2275–92
    [Google Scholar]
  151. Wilen J. 2007. Economics of spatial dynamic processes. Am. J. Agric. Econ. 89:51134–44
    [Google Scholar]
  152. Wilson KG. 1975. The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47:4773–840
    [Google Scholar]
  153. Xabadia A, Goetz R, Zilberman D. 2006. Control of accumulating stock pollution by heterogeneous producers. J. Econ. Dyn. Control 30:71105–30
    [Google Scholar]
  154. Xepapadeas AP. 1992. Environmental policy design and dynamic nonpoint-source pollution. J. Environ. Econ. Manag. 23:122–39
    [Google Scholar]
/content/journals/10.1146/annurev-resource-103020-083100
Loading
/content/journals/10.1146/annurev-resource-103020-083100
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error