1932

Abstract

In recent decades, discrete choice experiment research applied to food choices has grown rapidly. Empirical applications include investigations of consumer preferences and demand for various food attributes, labeling programs, novel products and applications, and new food technologies. Methodological contributions include advances in the form of new theories, elicitation methods, and modeling. This study focuses on the latter and () reviews recent methodological contributions in the food choice experiment literature, () examines existing knowledge gaps, and () discusses possible future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-111820-023242
2022-10-05
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/resource/14/1/annurev-resource-111820-023242.html?itemId=/content/journals/10.1146/annurev-resource-111820-023242&mimeType=html&fmt=ahah

Literature Cited

  1. Ahn S, Lusk JL. 2021. Non-pecuniary effects of sugar-sweetened beverage policies. Am. J. Agric. Econ. 103:153–69
    [Google Scholar]
  2. Alemu MH, Olsen SB. 2018. Can a Repeated Opt-Out Reminder remove hypothetical bias in discrete choice experiments?. Eur. Rev. Agric. Econ. 45:5749–82
    [Google Scholar]
  3. Alfnes F, Guttormsen AG, Steine G, Kolstad K. 2006. Consumers’ willingness to pay for the color of salmon: a choice experiment with real economic incentives. Am. J. Agric. Econ. 88:41050–61
    [Google Scholar]
  4. Aprile MC, Caputo V, Nayga RM. 2012. Consumers’ valuation of food quality labels: the case of the European geographic indication and organic farming labels. Int. J. Consum. Stud. 36:2158–65
    [Google Scholar]
  5. Aravena C, Martinsson P, Scarpa R. 2014. Does money talk? The effect of a monetary attribute on the marginal values in a choice experiment. Energy Econ 44:483–91
    [Google Scholar]
  6. Arentze T, Borgers A, Timmermans H, DelMistro R. 2003. Transport stated choice responses: effects of task complexity, presentation format and literacy. Transp. Res. E Logist. Transp. Rev. 39:3229–44
    [Google Scholar]
  7. Atzori R, Pellegrini A, Lombardi GV, Scarpa R. 2022. Response-times and subjective complexity of food choices: a web-based experiment across 3 countries. Soc. Sci. Comput. Rev. In press
    [Google Scholar]
  8. Balcombe K, Bitzios M, Fraser I, Haddock-Fraser J. 2014. Using attribute importance rankings within discrete choice experiments: an application to valuing bread attributes. J. Agric. Econ. 65:2446–62
    [Google Scholar]
  9. Balcombe K, Chalak A, Fraser I. 2009. Model selection for the mixed logit with Bayesian estimation. J. Environ. Econ. Manag. 57:2226–37
    [Google Scholar]
  10. Balcombe K, Fraser I, Mcsorley E. 2015. Visual attention and attribute attendance in multi-attribute choice experiments. J. Appl. Econom. 30:3447–67
    [Google Scholar]
  11. Bansal P, Daziano RA, Achtnicht M. 2018. Extending the logit-mixed logit model for a combination of random and fixed parameters. J. Choice Model. 27:88–96
    [Google Scholar]
  12. Bateman IJ, Day BH, Jones AP, Jude S 2009. Reducing gain-loss asymmetry: a virtual reality choice experiment valuing land use change. J. Environ. Econ. Manag. 58:1106–18
    [Google Scholar]
  13. Bazzani C, Caputo V, Nayga RM, Canavari M. 2017a. Revisiting consumers’ valuation for local versus organic food using a non-hypothetical choice experiment: Does personality matter?. Food Qual. Prefer. 62:144–54
    [Google Scholar]
  14. Bazzani C, Caputo V, Nayga RM, Canavari M. 2017b. Testing commitment cost theory in choice experiments. Econ. Inq. 55:1383–96
    [Google Scholar]
  15. Bazzani C, Palma MA, Nayga RM. 2018. On the use of flexible mixing distributions in WTP space: an induced value choice experiment. Aust. J. Agric. Resour. Econ. 62:2185–98
    [Google Scholar]
  16. Bech M, Kjaer T, Lauridsen J. 2011. Does the number of choice sets matter? Results from a web survey applying a discrete choice experiment. Health Econ 20:3273–86
    [Google Scholar]
  17. Bello M, Abdulai A. 2016. Impact of ex-ante hypothetical bias mitigation methods on attribute non-attendance in choice experiments. Am. J. Agric. Econ. 98:51486–506
    [Google Scholar]
  18. Ben-Akiva M, McFadden D, Train K, Walker J, Bhat C et al. 2002. Hybrid choice models: progress and challenges. Mark. Lett. 13:3163–75
    [Google Scholar]
  19. Bhat CR. 2005. A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions. Transp. Res. B Methodol. 39:8679–707
    [Google Scholar]
  20. Bhat CR. 2008. The multiple discrete-continuous extreme value (MDCEV) model: role of utility function parameters, identification considerations, and model extensions. Transp. Res. B Methodol. 42:3274–303
    [Google Scholar]
  21. Blass AA, Lach S, Manski CF. 2010. Using elicited choice probabilities to estimate random utility models: preferences for electricity reliability. Int. Econ. Rev. 51:242140
    [Google Scholar]
  22. Bliemer MCJ, Rose JM. 2005. Efficiency and sample size requirements for stated choice studies Work. Pap., ITLS, Univ. Sydney Aust:.
    [Google Scholar]
  23. Boeri M, Scarpa R, Chorus CG. 2014. Stated choices and benefit estimates in the context of traffic calming schemes: utility maximization, regret minimization, or both?. Transp. Res. A Policy Pract. 61:121–35
    [Google Scholar]
  24. Bolduc D, Ben-Akiva M, Walker J, Michaud A. 2005. Hybrid choice models with logit kernel: applicability to large scale models. Integrated Land-Use and Transportation Models MEH Lee-Gosselin, ST Doherty 275–302 Bingley, UK: Emerald Group Publ.
    [Google Scholar]
  25. Brooks K, Lusk JL. 2010. Stated and revealed preferences for organic and cloned milk: combining choice experiment and scanner data. Am. J. Agric. Econ. 92:41229–41
    [Google Scholar]
  26. Cameron TA, DeShazo JR. 2010. Differential attention to attributes in utility-theoretic choice models. J. Choice Model. 3:373–115
    [Google Scholar]
  27. Cameron TA, Poe GL, Ethier RG, Schulze WD. 2002. Alternative non-market value-elicitation methods: Are the underlying preferences the same?. J. Environ. Econ. Manag. 44:3391–425
    [Google Scholar]
  28. Campbell D, Hutchinson WG, Scarpa R. 2008. Incorporating discontinuous preferences into the analysis of discrete choice experiments. Environ. Resour. Econ. 41:3401–17
    [Google Scholar]
  29. Campbell D, Hutchinson WG, Scarpa R. 2009. Using choice experiments to explore the spatial distribution of willingness to pay for rural landscape improvements. Environ. Plan. A 41:197–111
    [Google Scholar]
  30. Campbell D, Mørkbak MR, Olsen SB. 2018. The link between response time and preference, variance and processing heterogeneity in stated choice experiments. J. Environ. Econ. Manag. 88:18–34
    [Google Scholar]
  31. Caputo V. 2020. Does information on food safety affect consumers’ acceptance of new food technologies? The case of irradiated beef in South Korea under a new labelling system and across different information regimes. Aust. J. Agric. Resour. Econ. 64:41003–33
    [Google Scholar]
  32. Caputo V, Just D. 2022. The economics of food related policies: considering public health and malnutrition. Handbook of Agricultural Economics, Vol. 6 CB Barrett, DR Just New York: Elsevier
    [Google Scholar]
  33. Caputo V, Lusk JL. 2020. What agricultural and food policies do U.S. consumer prefer? A best-worst scaling approach. Agric. Econ. 51:175–93
    [Google Scholar]
  34. Caputo V, Lusk JL. 2022. A basket-based choice experiment: a method for food demand policy analysis. Food Policy 109:102252
    [Google Scholar]
  35. Caputo V, Lusk JL, Nayga RM. 2018a. Choice experiments are not conducted in a vacuum: the effects of external price information on choice behavior. J. Econ. Behav. Organ. 145:335–51
    [Google Scholar]
  36. Caputo V, Lusk JL, Nayga RM. 2020. Am I getting a good deal? Reference-dependent decision making when the reference price is uncertain. Am. J. Agric. Econ. 102:1132–53
    [Google Scholar]
  37. Caputo V, Nayga RM, Scarpa R. 2013a. Food miles or carbon emissions? Exploring labelling preference for food transport footprint with a stated choice study. Aust. J. Agric. Resour. Econ. 57:4465–82
    [Google Scholar]
  38. Caputo V, Scarpa R, Nayga RM. 2017. Cue versus independent food attributes: the effect of adding attributes in choice experiments. Eur. Rev. Agric. Econ. 44:2465–82
    [Google Scholar]
  39. Caputo V, Scarpa R, Nayga RM, Ortega DL. 2018b. Are preferences for food quality attributes really normally distributed? An analysis using flexible mixing distributions. J. Choice Model. 28:10–27
    [Google Scholar]
  40. Caputo V, Van Loo EJ, Scarpa R, Nayga RM, Verbeke W. 2018c. Comparing serial, and choice task stated and inferred attribute non-attendance methods in food choice experiments. J. Agric. Econ. 69:135–57
    [Google Scholar]
  41. Caputo V, Vassilopoulos A, Nayga RM, Canavari M. 2013b. Welfare effects of food miles labels. J. Consum. Aff. 47:2311–27
    [Google Scholar]
  42. Carlsson F, Frykblom P, Lagerkvist JC. 2005. Using cheap talk as a test of validity in choice experiments. Econ. Lett. 89:2147–52
    [Google Scholar]
  43. Carlsson F, Martinsson P. 2001. Do hypothetical and actual marginal willingness to pay differ in choice experiments?. J. Environ. Econ. Manag. 41:2179–92
    [Google Scholar]
  44. Carlsson F, Martinsson P. 2008. How much is too much? An investigation of the effect of the number of choice sets, context dependence and the choice of bid vectors in choice experiments. Environ. Resour. Econ. 40:2165–76
    [Google Scholar]
  45. Carson KS, Chilton SM, Hutchinson WG, Scarpa R. 2020. Public resource allocation, strategic behavior, and status quo bias in choice experiments. Public Choice 185:1–21–19
    [Google Scholar]
  46. Carson RT, Groves T. 2007. Incentive and informational properties of preference questions. Envir. Resour. Econ. 37:181–210
    [Google Scholar]
  47. Caussade S, de Dios Ortúzar J, Rizzi LI, Hensher DA. 2005. Assessing the influence of design dimensions on stated choice experiment estimates. Transp. Res. B Methodol. 39:7621–40
    [Google Scholar]
  48. Cerroni S, Watson V, Kalentakis D, Macdiarmid JI. 2019. Value-elicitation and value-formation properties of discrete choice experiment and experimental auctions. Eur. Rev. Agric. Econ. 46:13–27
    [Google Scholar]
  49. Chang JB, Lusk JL, Norwood BF. 2009. How closely do hypothetical surveys and laboratory experiments predict field behavior?. Am. J. Agric. Econ. 91:2518–34
    [Google Scholar]
  50. ChoiceMetrics 2021. Ngene 1.3 User Manual and Reference Guide. The Cutting Edge in Experimental Design Sydney, Aust: ChoiceMetrics http://www.choice-metrics.com/NgeneManual130.pdf
    [Google Scholar]
  51. Chorus CG. 2010. A new model of random regret minimization. Eur. J. Transp. Infrastruct. Res. 10:2181–96
    [Google Scholar]
  52. Collins AT. 2012. Attribute nonattendance in discrete choice models: measurement of bias, and a model for the inference of both nonattendance and taste heterogeneity PhD Diss., Inst. Transp. Logist. Stud., Bus. Sch., Univ. Sydney Aust:.
    [Google Scholar]
  53. Collins JP, Vossler CA. 2009. Incentive compatibility tests of choice experiment value elicitation questions. J. Environ. Econ. Manag. 58:2226–35
    [Google Scholar]
  54. Corsi A. 2007. Ambiguity of measured WTP for quality improvements when quantity is unconstrained: a note. Eur. Rev. Agric. Econ. 34:4501–15
    [Google Scholar]
  55. Crastes dit Sourd R. 2021. A new shifted log-normal distribution for mitigating ‘exploding’ implicit prices in mixed multinomial logit models Work. Pap., Div. Manag., Leeds Univ. UK:
    [Google Scholar]
  56. Cummings RG, Taylor LO. 1999. Unbiased value estimates for environmental goods: a cheap talk design for the contingent valuation method. Am. Econ. Rev. 89:3649–65
    [Google Scholar]
  57. Daly A, Hess S, Train K. 2012. Assuring finite moments for willingness to pay in random coefficient models. Transportation 39:119–31
    [Google Scholar]
  58. Darby K, Batte MT, Ernst S, Roe B 2008. Decomposing local: a conjoint analysis of locally produced foods. Am. J. Agric. Econ. 90:2476–86
    [Google Scholar]
  59. Day B, Bateman IJ, Carson RT, Dupont D, Louviere JJ et al. 2012. Ordering effects and choice set awareness in repeat-response stated preference studies. J. Environ. Econ. Manag. 63:173–91
    [Google Scholar]
  60. De-Magistris T, Gracia A, Nayga RM 2013. On the use of honesty priming tasks to mitigate hypothetical bias in choice experiments. Am. J. Agric. Econ. 95:51136–154
    [Google Scholar]
  61. De-Magistris T, Pascucci S. 2014. The effect of the solemn oath script in hypothetical choice experiment survey: a pilot study. Econ. Lett. 123:2252–55
    [Google Scholar]
  62. De Marchi E, Caputo V, Nayga RM, Banterle A. 2016. Time preferences and food choices: evidence from a choice experiment. Food Policy 62:99–109
    [Google Scholar]
  63. Dennis EJ, Tonsor GT, Lusk JL. 2021. Choosing quantities impacts individuals’ choice, rationality, and willingness to pay estimates. Agric. Econ. 52:6945–62
    [Google Scholar]
  64. DeShazo JR, Fermo G. 2002. Designing choice sets for stated preference methods: the effects of complexity on choice consistency. J. Environ. Econ. Manag. 44:1123–43
    [Google Scholar]
  65. Fang D, Nayga RM, West GH, Bazzani C, Yang W et al. 2021. On the use of virtual reality in mitigating hypothetical bias in choice experiments. Am. J. Agric. Econ. 103:1142–61
    [Google Scholar]
  66. Fox JA, Shogren JF, Hayes DJ, Kliebenstein JB. 1998. CVM-X: calibrating contingent values with experimental auction markets. Am. J. Agric. Econ. 80:3455–65
    [Google Scholar]
  67. Gao Z, Schroeder TC. 2009. Effects of label information on consumer willingness-to-pay for food attributes. Am. J. Agric. Econ. 91:3759–809
    [Google Scholar]
  68. Giergiczny M, Valasiuk S, Czajkowski M, De Salvo M, Signorello G. 2012. Including cost income ratio into utility function as a way of dealing with ‘exploding’ implicit prices in mixed logit models. J. For. Econ. 18:4370–80
    [Google Scholar]
  69. Gilbride TJ, Allenby GM. 2004. A choice model with conjunctive, disjunctive, and compensatory screening rules. Mark. Sci. 23:3275–467
    [Google Scholar]
  70. Glenk K, Meyerhoff J, Akaichi F, Martin-Ortega J. 2019. Revisiting cost vector effects in discrete choice experiments. Resour. Energy Econ. 57:135–55
    [Google Scholar]
  71. Grebitus C, Lusk JL, Nayga RM. 2013a. Explaining differences in real and hypothetical experimental auctions and choice experiments with personality. J. Econ. Psychol. 36:11–26
    [Google Scholar]
  72. Grebitus C, Steiner B, Veeman M. 2013b. Personal values and decision making: evidence from environmental footprint labeling in Canada. Am. J. Agric. Econ. 95:2397–403
    [Google Scholar]
  73. Hanley N, Mourato S, Wright RE. 2001. Choice modelling approaches: a superior alternative for environmental valuation?. J. Econ. Surv. 15:3435–62
    [Google Scholar]
  74. Hensher D, Louviere J, Swait J. 1998. Combining sources of preference data. J. Econom. 89:1–2197–221
    [Google Scholar]
  75. Hensher DA. 2006. Revealing differences in willingness to pay due to the dimensionality of stated choice designs: an initial assessment. Environ. Resour. Econ. 34:17–44
    [Google Scholar]
  76. Hensher DA, Greene WH. 2003. The mixed logit model: the state of practice. Transportation 30:2133–76
    [Google Scholar]
  77. Hensher DA, Rose JM, Greene WH. 2012. Inferring attribute non-attendance from stated choice data: implications for willingness to pay estimates and a warning for stated choice experiment design. Transportation 39:2235–45
    [Google Scholar]
  78. Hensher DA, Rose JM, Greene WH. 2015. Applied Choice Analysis Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  79. Hensher DA, Stopher PR, Louviere JJ. 2001. An exploratory analysis of the effect of numbers of choice sets in designed choice experiments: an airline choice application. J. Air Transp. Manag. 7:6373–79
    [Google Scholar]
  80. Hess S, Hensher DA. 2013. Making use of respondent reported processing information to understand attribute importance: a latent variable scaling approach. Transportation 40:2397–412
    [Google Scholar]
  81. Hole AR. 2011. A discrete choice model with endogenous attribute attendance. Econ. Lett. 110:3203–5
    [Google Scholar]
  82. Jacquemet N, Joule RV, Luchini S, Shogren JF. 2013. Preference elicitation under oath. J. Environ. Econ. Manag. 65:1110–32
    [Google Scholar]
  83. Johnston RJ, Boyle KJ, Adamowicz W, Bennett J, Brouwer R et al. 2017. Contemporary guidance for stated preference studies. J. Assoc. Environ. Resour. Econ. 4:2319–405
    [Google Scholar]
  84. Kaye-Blake WH, Abell WL, Zellman E. 2009. Respondents’ ignoring of attribute information in a choice modelling survey. Aust. J. Agric. Resour. Econ. 53:4547–64
    [Google Scholar]
  85. Kessels R, Goos P, Vandebroek M. 2006. A comparison of criteria to design efficient choice experiments. J. Consum. Res. 43:3409–19
    [Google Scholar]
  86. Kessels R, Jones B, Goos P, Vandebroek M. 2009. An efficient algorithm for constructing Bayesian optimal choice designs. J. Bus. Econ. Stat. 27:2279–91
    [Google Scholar]
  87. Kilders V, Caputo V. 2021. Is animal welfare promoting hornless cattle? Assessing consumer's valuation for milk from gene-edited cows under different information regimes. J. Agric. Econ. 72:3375–59
    [Google Scholar]
  88. Kling CL, Phaneuf DJ, Zhao J. 2012. From Exxon to BP: Has some number become better than no number?. J. Econ. Perspect. 26:43–26
    [Google Scholar]
  89. Kragt ME. 2013. The effects of changing cost vectors on choices and scale heterogeneity. Environ. Resour. Econ. 54:2201–21
    [Google Scholar]
  90. Lancsar E, Swait J. 2014. Reconceptualizing the external validity of discrete choice experiments. Pharmacoeconomics 32:10951–65
    [Google Scholar]
  91. Lewis KE, Grebitus C, Nayga RM. 2016. U.S. consumers’ preferences for imported and genetically modified sugar: examining policy consequentiality in a choice experiment. J. Behav. Exp. Econ. 65:1–8
    [Google Scholar]
  92. Lin W, Ortega DL, Caputo V. 2019. Are ex-ante hypothetical bias calibration methods context dependent? Evidence from online food shoppers in China. J. Consum. Aff. 53:2520–44
    [Google Scholar]
  93. List JA, Gallet CA. 2001. What experimental protocol influence disparities between actual and hypothetical stated values?. Environ. Resour. Econ. 20:3241–54
    [Google Scholar]
  94. Loomis J, Gonzalez-Caban A, Gregory R 1994. Do reminders of substitutes and budget constraints influence contingent valuation estimates?. Land Econ 70:4499–506
    [Google Scholar]
  95. Loureiro ML, Lotade J. 2005. Do fair trade and eco-labels in coffee wake up the consumer conscience?. Ecol. Econ. 53:1129–38
    [Google Scholar]
  96. Loureiro ML, Umberger WJ. 2007. A choice experiment model for beef: what US consumer responses tell us about relative preferences for food safety, country-of-origin labeling and traceability. Food Policy 32:4496–514
    [Google Scholar]
  97. Louviere JJ. 2004. Random utility theory-based stated preference elicitation methods: applications in health economics with special reference to combining sources of preference data Work. Pap., Cent. Study Choice 04-001, Univ. Technol. Sydney, Aust:.
    [Google Scholar]
  98. Louviere JJ, Hensher DA, Swait J. 2000. Stated Choice Methods: Analysis and Application Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  99. Luchini S, Watson V. 2014. Are choice experiments reliable? Evidence from the lab. Econ Lett 124:19–13
    [Google Scholar]
  100. Lusk JL. 2003. Using experimental auctions for marketing applications: a discussion. J. Agric. Appl. Econ. 35:2349–60
    [Google Scholar]
  101. Lusk JL. 2017. Consumer research with big data: applications from the food demand survey (FooDS). Am. J. Agric. Econ. 99:2303–20
    [Google Scholar]
  102. Lusk JL, Norwood FB. 2005. Effect of experimental design on choice-based conjoint valuation estimates. Am. J. Agric. Econ. 87:3771–85
    [Google Scholar]
  103. Lusk JL, Norwood FB. 2009. An inferred valuation method. Land Econ 85:3500–14
    [Google Scholar]
  104. Lusk JL, Schroeder TC. 2004. Are choice experiments incentive compatible? A test with quality differentiated beef steaks. Am. J. Agric. Econ. 86:2467–82
    [Google Scholar]
  105. Lusk JL, Schroeder TC, Tonsor GT. 2014. Distinguishing beliefs from preferences in food choice. Eur. Rev. Agric. Econ. 41:427–655
    [Google Scholar]
  106. Lusk JL, Shogren J. 2007. Experimental Auctions: Methods and Applications in Economic and Marketing Research Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  107. Lusk JL, Tonsor GT. 2016. How meat demand elasticities vary with price, income, and product category. Appl. Econ. Perspect. Policy 38:4673–711
    [Google Scholar]
  108. Malone T, Lusk JL. 2018a. A simple diagnostic measure of inattention bias in discrete choice models. Eur. Rev. Agric. Econ. 45:3455–62
    [Google Scholar]
  109. Malone T, Lusk JL. 2018b. An instrumental variable approach to distinguishing perceptions from preferences for beer brands. Manag. Decis. Econ. 39:4403–17
    [Google Scholar]
  110. Manski CF. 1999. Analysis of choice expectations in incomplete scenarios. J. Risk Uncertain. 19:49–66
    [Google Scholar]
  111. Manski CF. 2004. Measuring expectations. Econometrica 72:51329–76
    [Google Scholar]
  112. Mariel P, Hoyos D, Meyerhoff J, Czajkowski M, Dekker T et al. 2021. Environmental Valuation with Discrete Choice Experiments: Guidance on Design, Implementation and Data Analysis Cham, Switz: Springer Nature
    [Google Scholar]
  113. Matthews Y, Scarpa R, Marsh D. 2017. Using virtual environments to improve the realism of choice experiments: a case study about coastal erosion management. J. Environ. Econ. Manag. 81:93–208
    [Google Scholar]
  114. Menapace L, Colson G, Grebitus C, Facendola M. 2011. Consumers’ preferences for geographical origin labels: evidence from the Canadian olive oil market. Eur. Rev. Agric. Econ. 38:2193–212
    [Google Scholar]
  115. Meyerhoff J, Oehlmann M, Weller P. 2015. The influence of design dimensions on stated choices in an environmental context. Environ. Resour. Econ. 61:3385–407
    [Google Scholar]
  116. Mørkbak MR, Christensen T, Gyrd-Hansen D. 2010. Choke price bias in choice experiments. Environ. Resour. Econ. 45:4437–551
    [Google Scholar]
  117. Morey ER, Sharma VR, Karlstrom A. 2003. A simple method of incorporating income effects into logit and nested-logit models: theory and application. Am. J. Agric. Econ. 85:248–53
    [Google Scholar]
  118. Moser R, Raffaelli R, Notaro S. 2014. Testing hypothetical bias with a real choice experiment using respondents’ own money. Eur. Rev. Agric. Econ. 41:125–46
    [Google Scholar]
  119. Murphy JJ, Allen PG, Stevens TH, Weatherhead D. 2005. A meta-analysis of hypothetical bias in stated preference valuation. Environ. Resour. Econ. 30:3313–25
    [Google Scholar]
  120. Oehlmann M, Meyerhoff J, Mariel P, Weller P. 2017. Uncovering context-induced status quo effects in choice experiments. J. Environ. Econ. Manag. 81:59–73
    [Google Scholar]
  121. Onozaka Y, McFadden DT. 2011. Does local labeling complement or compete with other sustainable labels? A conjoint analysis of direct and joint values for fresh produce claim. Am. J. Agric. Econ. 93:3689–702
    [Google Scholar]
  122. Palm-Forster L, Messer K. 2021. Experimental and behavioral economics to inform agri-environmental program and policies. Handbook of Agricultural Economics, Vol. 5 CB Barrett, DR Just 4331–4406 New York: Elsevier
    [Google Scholar]
  123. Palma MA. 2022. Psychosociological measures and consumer food choice. Handbook of Agricultural Economics, Vol. 6 CB Barrett, DR Just New York: Elsevier
    [Google Scholar]
  124. Palma MA, Vedenov DV, Bessler D. 2020. The order of variables, simulation noise, and accuracy of mixed logit estimates. Empiric. Econ. 58:2049–83
    [Google Scholar]
  125. Papoutsi GS, Nayga RM, Lazaridis P, Drichoutis AC. 2015. Fat tax, subsidy or both? The role of information and children's pester power in food choice. J. Econ. Behav. 117:196–208
    [Google Scholar]
  126. Payne JW, Bettman JR, Johnson EJ. 1992. Behavioral decision research: a constructive processing perspective. Annu. Rev. Psychol. 43:87–131
    [Google Scholar]
  127. Penn JM, Hu W. 2018. Understanding hypothetical bias: an enhanced meta-analysis. Am. J. Agric. Econ. 100:41186–1206
    [Google Scholar]
  128. Petrin A, Train K. 2010. A control function approach to endogeneity in consumer choice models. J. Mark. Res. 47:3–13
    [Google Scholar]
  129. Ready RC, Champ PA, Lawton JL. 2010. Using respondent uncertainty to mitigate hypothetical bias in a stated choice experiment. Land Econ 86:363–68
    [Google Scholar]
  130. Revelt D, Train K. 1998. Mixed logit with repeated choices: households’ choices of appliance efficiency level. Rev. Econ. Stat. 80:4647–57
    [Google Scholar]
  131. Roe BE, Just DR. 2009. Internal and external validity in economics research: tradeoffs between experiments, field experiments, natural experiments, and field data. Am. J. Agric. Econ. 91:51266–71
    [Google Scholar]
  132. Rose JM, Hensher DA, Caussade S, de Dios Ortúzar J, Jou RC 2009. Identifying differences in willingness to pay due to dimensionality in stated choice experiments: a cross country analysis. J. Transp. Geogr. 17:121–29
    [Google Scholar]
  133. Rose JM, Masiero L. 2010. A comparison of the impacts of aspects of prospect theory on WTP/WTAEstimated in preference and WTP/WTA space. Eur. J. Transp. Infrastruct. Res. 10:4 https://journals.open.tudelft.nl/ejtir/article/view/2898
    [Google Scholar]
  134. Sándor Z, Wedel M. 2001. Designing conjoint choice experiments using managers’ prior beliefs. J. Mark. Res. 38:4430–44
    [Google Scholar]
  135. Sarrias M, Daziano RA. 2018. Individual-specific point and interval conditional estimates of latent class logit parameters. J. Choice Model. 27:50–61
    [Google Scholar]
  136. Scarpa R, Bazzani C, Begalli D, Capitello R. 2021a. Resolvable and near-epistemic uncertainty in stated preference for olive oil: an empirical exploration. J. Agric. Econ. 72:2335–69
    [Google Scholar]
  137. Scarpa R, Campbell D, Hutchinson WG. 2007. Benefit estimates for landscape improvements: sequential Bayesian design and respondents’ rationality in a choice experiment. Land Econ 83:4617–34
    [Google Scholar]
  138. Scarpa R, Del Giudice T. 2004. Market segmentation via mixed logit: extra-virgin olive oil in urban Italy. J. Agric. Food Ind. Organ. 2:11–20
    [Google Scholar]
  139. Scarpa R, Ferrini S, Willis K 2005. Performance of error component models for status-quo effects in choice experiments. Applications of Simulation Methods in Environmental and Resource Economics R Scarpa, A Alberini 247–73 Dordrecht, Neth: Springer
    [Google Scholar]
  140. Scarpa R, Franceschinis C, Thiene M. 2021b. Logit mixed logit under asymmetry and multimodality of WTP: a Monte Carlo evaluation. Am. J. Agric. Econ. 103:2643–62
    [Google Scholar]
  141. Scarpa R, Gilbride TJ, Campbell D, Hensher DA. 2009. Modelling attribute non-attendance in choice experiments for rural landscape valuation. Eur. Rev. Agric. Econ. 36:2151–74
    [Google Scholar]
  142. Scarpa R, Notaro S, Louviere J, Raffaelli R. 2011. Exploring scale effects of best/worst rank ordered choice data to estimate benefits of tourism in alpine grazing commons. Am. J. Agric. Econ. 93:3813–28
    [Google Scholar]
  143. Scarpa R, Rose JM. 2008. Design efficiency for non-market valuation with choice modelling: how to measure it, what to report and why. Aust. J. Agric. Econ. 52:3253–82
    [Google Scholar]
  144. Scarpa R, Thiene M, Hensher DA. 2010. Monitoring choice task attribute attendance in nonmarket valuation of multiple park management services: Does it matter?. Land Econ 86:4817–39
    [Google Scholar]
  145. Scarpa R, Thiene M, Marangon F. 2008. Using flexible taste distributions to value collective reputation for environmentally friendly production methods. Can. J. Agric. Econ. 56:2145–62
    [Google Scholar]
  146. Scarpa R, Zanoli R, Bruschi V, Naspetti S. 2013. Inferred and stated attribute non-attendance in food choice experiments. Am. J. Agric. Econ. 95:1165–80
    [Google Scholar]
  147. Simon HA. 1955. A behavioral model of rational choice. Q. J. Econ. 69:198–118
    [Google Scholar]
  148. Street DJ, Burgess L, Louviere JJ. 2005. Quick and easy choice sets: constructing optimal and nearly optimal stated choice experiments. Int. J. Res. Mark. 22:4459–70
    [Google Scholar]
  149. Swait J, Adamowicz W. 2001. Choice environment, market complexity, and consumer behavior: a theoretical and empirical approach for incorporating decision complexity into models of consumer choice. Organ. Behav. Hum. Decis. Process. 86:2141–67
    [Google Scholar]
  150. Tait P, Saunders C, Dalziel P, Rutherford P, Driver T, Guenther M. 2019. Estimating wine consumer preferences for sustainability attributes: a discrete choice experiment of Californian sauvignon blanc purchasers. J. Clean. Prod. 233:412–20
    [Google Scholar]
  151. Thiene M, Scarpa R. 2009. Deriving and testing efficient estimates of WTP distributions in destination choice models. Environ. Resour. Econ. 44:3379–91
    [Google Scholar]
  152. Thiene M, Scarpa R, Longo A, Hutchinson WG. 2018. Types of front of pack food labels: Do obese consumers care? Evidence from Northern Ireland.. Food Policy 80:84–102
    [Google Scholar]
  153. Train KE. 1998. Recreation demand models with taste differences over people. Land Econ 74:2230–39
    [Google Scholar]
  154. Train KE. 2009. Discrete Choice Methods with Simulation Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  155. Train KE 2016. Mixed logit with a flexible mixing distribution. J. Choice Model. 19:40–53
    [Google Scholar]
  156. Train KE, Weeks M. 2005. Discrete choice models in preference space and willingness-to-pay space. Applications of Simulation Methods in Environmental and Resource Economics. The Economics of Non-Market Goods and Resources, Vol. 6 R Scarpa, A Alberini 1–16 Dordrecht, Neth: Springer
    [Google Scholar]
  157. Van Loo EJ, Caputo V, Lusk JL. 2020. Consumer preferences for farm-raised meat, lab-grown meat, and plant-based meat alternatives: Does information or brand matter?. Food Policy 95:101931
    [Google Scholar]
  158. Van Loo EJ, Grebitus C, Nayga RM, Verbeke W, Roosen J. 2018a. On the measurement of consumer preferences and food choice behavior: the relation between visual attention and choices. Appl. Econ. Perspect. Policy 40:4539–62
    [Google Scholar]
  159. Van Loo EJ, Grebitus C, Roosen J. 2019. Explaining attention and choice for origin labeled cheese by means of consumer ethnocentrism. Food Qual. Prefer. 78:103716
    [Google Scholar]
  160. Van Loo EJ, Nayga RM, Campbell D, Seo HS, Verbeke W. 2018b. Using eye tracking to account for attribute non-attendance in choice experiments. Eur. Rev. Agric. Econ. 45:3333–65
    [Google Scholar]
  161. Van Wezemael L, Caputo V, Nayga RM, Chryssochoidis G, Verbeke W. 2014. European consumer preferences for beef with nutrition and health claims: a multi-country investigation using discrete choice experiments. Food Policy 44:167–76
    [Google Scholar]
  162. Vermeulen B, Goos P, Scarpa R, Vandebroek M. 2011. Bayesian conjoint choice designs for measuring willingness to pay. Environ. Resour. Econ. 48:1129–49
    [Google Scholar]
  163. Vossler CA, Kerkvliet J, Polasky S, Gainutdinova O. 2003. Externally validating contingent valuation: an open-space survey and referendum in Corvallis, Oregon. J. Econ. Behav. Organ. 51:2261–77
    [Google Scholar]
  164. Walker JL, Wang Y, Thorhauge M, Ben-Akiva M. 2018. D-efficient or deficient? A robustness analysis of stated choice experimental designs. Theory Decis 84:2215–38
    [Google Scholar]
  165. Yangui A, Costa-Font M, Gil JM. 2016. The effect of personality traits on consumers’ preferences for extra virgin olive oil. Food Qual. Prefer. 51:27–38
    [Google Scholar]
  166. Zhao J, Kling CL. 2004. Willingness to pay, compensating variation, and the cost of commitment. Econ. Inq. 42:3503–17
    [Google Scholar]
/content/journals/10.1146/annurev-resource-111820-023242
Loading
/content/journals/10.1146/annurev-resource-111820-023242
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error