1932

Abstract

Our world is undergoing rapid planetary changes driven by human activities, often mediated by economic incentives and resource management, affecting all life on Earth. Concurrently, many infectious diseases have recently emerged or spread into new populations. Mounting evidence suggests that global change—including climate change, land-use change, urbanization, and global movement of individuals, species, and goods—may be accelerating disease emergence by reshaping ecological systems in concert with socioeconomic factors. Here, we review insights, approaches, and mechanisms by which global change drives disease emergence from a disease ecology perspective. We aim to spur more interdisciplinary collaboration with economists and identification of more effective and sustainable interventions to prevent disease emergence. While almost all infectious diseases change in response to global change, the mechanisms and directions of these effects are system specific, requiring new, integrated approaches to disease control that recognize linkages between environmental and economic sustainability and human and planetary health.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-111820-024214
2022-10-05
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/resource/14/1/annurev-resource-111820-024214.html?itemId=/content/journals/10.1146/annurev-resource-111820-024214&mimeType=html&fmt=ahah

Literature Cited

  1. Adalja AA, Sell TK, Bouri N, Franco C. 2012. Lessons learned during dengue outbreaks in the United States, 2001–2011. Emerg. Infect. Dis. 18:4608–14
    [Google Scholar]
  2. Afrane YA, Githeko AK, Yan G 2012. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of environmental changes in East Africa highlands. Ann. N.Y. Acad. Sci. 1249:204–10
    [Google Scholar]
  3. Ali S, Gugliemini O, Harber S, Harrison A, Houle L et al. 2017. Environmental and social change drive the explosive emergence of Zika virus in the Americas. PLOS Negl. Trop. Dis. 11:2e0005135
    [Google Scholar]
  4. Allan BF, Keesing F, Ostfeld RS. 2003. Effect of forest fragmentation on Lyme disease risk. Conserv. Biol. 17:1267–72
    [Google Scholar]
  5. Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD. 2013. Climate change and infectious diseases: from evidence to a predictive framework. Science 341:6145514–19
    [Google Scholar]
  6. Amraoui F, Failloux A-B. 2016. Chikungunya: an unexpected emergence in Europe. Curr. Opin. Virol. 21:146–50
    [Google Scholar]
  7. Anderson RM, May RM. 1979. Population biology of infectious diseases: part I. Nature 280:5721361–67
    [Google Scholar]
  8. Armién AG, Armién B, Koster F, Pascale JM, Avila M et al. 2009. Hantavirus infection and habitat associations among rodent populations in agroecosystems of Panama: implications for human disease risk. Am. J. Trop. Med. Hyg. 81:159–66
    [Google Scholar]
  9. Armien B, Pascale JM, Bayard V, Munoz C, Mosca I et al. 2004. High seroprevalence of hantavirus infection on the Azuero peninsula of Panama. Am. J. Trop. Med. Hyg. 70:6682–87
    [Google Scholar]
  10. Baker SE, Cain R, van Kesteren F, Zommers ZA, D'Cruze N, Macdonald DW 2013. Rough trade: animal welfare in the global wildlife trade. Bioscience 63:12928–38
    [Google Scholar]
  11. Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH et al. 2012. Approaching a state shift in Earth's biosphere. Nature 486:740152–58
    [Google Scholar]
  12. Becker AD, Grenfell BT. 2017. TSIR: An R package for time-series susceptible-infected-recovered models of epidemics. PLOS ONE 12:9e0185528
    [Google Scholar]
  13. Bell D, Roberton S, Hunter PR. 2004. Animal origins of SARS coronavirus: possible links with the international trade in small carnivores. Philos. Trans. R. Soc. B 359:14471107–14
    [Google Scholar]
  14. Bharti N, Lu X, Bengtsson L, Wetter E, Tatem AJ. 2015. Remotely measuring populations during a crisis by overlaying two data sources. Int. Health 7:290–98
    [Google Scholar]
  15. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B et al. 2015. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526:207–11
    [Google Scholar]
  16. Bonds MH, Keenan DC, Rohani P, Sachs JD. 2010. Poverty trap formed by the ecology of infectious diseases. Proc. R. Soc. B 277:16851185–92
    [Google Scholar]
  17. Bregnard C, Rais O, Voordouw MJ. 2020. Climate and tree seed production predict the abundance of the European Lyme disease vector over a 15-year period. Parasites Vectors 13:1408
    [Google Scholar]
  18. Caldwell JM, LaBeaud AD, Lambin EF, Stewart-Ibarra AM, Ndenga BA et al. 2021. Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents. Nat. Commun. 12:1233
    [Google Scholar]
  19. Caminade C, McIntyre KM, Jones AE. 2019. Impact of recent and future climate change on vector-borne diseases. Ann. N.Y. Acad. Sci. 1436:1157–73
    [Google Scholar]
  20. Cator LJ, Thomas S, Paaijmans KP, Ravishankaran S, Justin JA et al. 2013. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India. Malar. J. 12:84
    [Google Scholar]
  21. Chew CH, Woon YL, Amin F, Adnan TH, Abdul Wahab AH et al. 2016. Rural-urban comparisons of dengue seroprevalence in Malaysia. BMC Public Health 16:824
    [Google Scholar]
  22. Clow KM, Leighton PA, Ogden NH, Lindsay LR, Michel P et al. 2017. Northward range expansion of Ixodes scapularis evident over a short timescale in Ontario, Canada. PLOS ONE 12:12e0189393
    [Google Scholar]
  23. Cosner C, Beier JC, Cantrell RS, Impoinvil D, Kapitanski L et al. 2009. The effects of human movement on the persistence of vector-borne diseases. J. Theor. Biol. 258:4550–60
    [Google Scholar]
  24. Couper LI, MacDonald AJ, Mordecai EA. 2021. Impact of prior and projected climate change on US Lyme disease incidence. Glob. Change Biol. 27:4738–54
    [Google Scholar]
  25. Cuong HQ, Vu NT, Cazelles B, Boni MF, Thai KTD et al. 2013. Spatiotemporal dynamics of dengue epidemics, Southern Vietnam. Emerg. Infect. Dis. 19:6945–53
    [Google Scholar]
  26. Daily GC, Ehrlich PR. 1996. Global change and human susceptibility to disease. Annu. Rev. Energy Environ. 21:125–44
    [Google Scholar]
  27. Daszak P, Plowright R, Epstein JH, Pulliam J, Abdul Rahman S et al. 2006. The emergence of Nipah and Hendra virus: pathogen dynamics across a wildlife-livestock-human continuum. Disease Ecology: Community Structure and Pathogen Dynamics SK Collinge, C Ray 186–201 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  28. Dearing MD, Dizney L. 2010. Ecology of hantavirus in a changing world. Ann. N.Y. Acad. Sci. 1195:99–112
    [Google Scholar]
  29. Dhimal M, Gautam I, Joshi HD, O'Hara RB, Ahrens B, Kuch U 2015. Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal. PLOS Negl. Trop. Dis 9:3e0003545
    [Google Scholar]
  30. Dhimal M, Kramer IM, Phuyal P, Budhathoki SS, Hartke J et al. 2021. Climate change and its association with the expansion of vectors and vector-borne diseases in the Hindu Kush Himalayan region: a systematic synthesis of the literature. Adv. Clim. Change Res. 12:3421–29
    [Google Scholar]
  31. Doocy S, Page KR, de la Hoz F, Spiegel P, Beyrer C. 2019. Venezuelan migration and the border health crisis in Colombia and Brazil. J. Migr. Hum. Secur. 7:379–91
    [Google Scholar]
  32. Douine M, Lambert Y, Musset L, Hiwat H, Blume LR et al. 2020. Malaria in gold miners in the Guianas and the Amazon: current knowledge and challenges. Curr. Trop. Med. Rep. 7:237–47
    [Google Scholar]
  33. Enserink M. 2020. Coronavirus rips through Dutch mink farms, triggering culls. Science 368:64961169
    [Google Scholar]
  34. FAO (Food Agric. Organ.), APHCA (Anim. Prod. Health Comm. Asia Pac.) 2002. Manual on the Diagnosis of Nipah Virus Infection in Animals Rome: FAO
  35. Faria NR, Kraemer MUG, Hill SC, Goes de Jesus J, Aguiar RS et al. 2018. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science 361:6405894–99
    [Google Scholar]
  36. Faust CL, McCallum HI, Bloomfield LSP, Gottdenker NL, Gillespie TR et al. 2018. Pathogen spillover during land conversion. Ecol. Lett. 21:4471–83
    [Google Scholar]
  37. Findlater A, Bogoch II. 2018. Human mobility and the global spread of infectious diseases: a focus on air travel. Trends Parasitol 34:9772–83
    [Google Scholar]
  38. Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J et al. 2020. Global carbon budget 2020. Earth Syst. Sci. Data 12:43269–40
    [Google Scholar]
  39. Gérardin P, Guernier V, Perrau J, Fianu A, Le Roux K et al. 2008. Estimating chikungunya prevalence in La Réunion Island outbreak by serosurveys: two methods for two critical times of the epidemic. BMC Infect. Dis. 8:99
    [Google Scholar]
  40. Gething PW, Smith DL, Patil AP, Tatem AJ, Snow RW, Hay SI. 2010. Climate change and the global malaria recession. Nature 465:7296342–45
    [Google Scholar]
  41. Gilbert L. 2021. The impacts of climate change on ticks and tick-borne disease risk. Annu. Rev. Entomol. 66:373–88
    [Google Scholar]
  42. Gilbert M, Xiao X, Chaitaweesub P, Kalpravidh W, Premashthira S et al. 2007. Avian influenza, domestic ducks and rice agriculture in Thailand. Agric. Ecosyst. Environ. 119:409–15
    [Google Scholar]
  43. Giordano BV, Gasparotto A, Liang P, Nelder MP, Russell C, Hunter FF 2020. Discovery of an Aedes (Stegomyia) albopictus population and first records of Aedes (Stegomyia) aegypti in Canada. Med. Vet. Entomol. 34:110–16
    [Google Scholar]
  44. Glidden CK, Nova N, Kain MP, Lagerstrom KM, Skinner EB et al. 2021. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr. Biol. 31:19R1342–61
    [Google Scholar]
  45. Gov. Sierra Leone 2014. The economic and social impact of Ebola virus disease in Sierra Leone Joint Prelim. Assess. Rep., Gov. Sierra Leone, Freetown. https://reliefweb.int/sites/reliefweb.int/files/resources/Joint%20preliminary%20assessment%20socio%20economic%20impact%20of%20EVD%20in%20Sierra%20Leone.pdf
  46. Griffin RD. 2009. Indigenous knowledge for sustainable development: case studies of three indigenous tribes of Wisconsin MS Thesis, Coll. Nat. Resour., Univ. Wisc., Stevens Point https://epapers.uwsp.edu/thesis/2009/griffin.pdf
  47. Grillet ME, Hernández-Villena JV, Llewellyn MS, Paniz-Mondolfi AE, Tami A et al. 2019. Venezuela's humanitarian crisis, resurgence of vector-borne diseases, and implications for spillover in the region. Lancet Infect. Dis. 19:5e149–61
    [Google Scholar]
  48. Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS et al. 2008. The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front. Ecol. Environ. 6:5264–72
    [Google Scholar]
  49. Gubler DJ. 2010. The global threat of emergent/re-emergent vector-borne diseases. Vector Biology, Ecology and Control PW Atkinson 39–62 Dordrecht, Neth: Springer
    [Google Scholar]
  50. Gubler DJ, Vasilakis N, Musso D. 2017. History and emergence of Zika virus. J. Infect. Dis. 216:Suppl. 10S860–67
    [Google Scholar]
  51. Hahn MB, Gurley ES, Epstein JH, Islam MS, Patz JA et al. 2014. The role of landscape composition and configuration on Pteropus giganteus roosting ecology and Nipah virus spillover risk in Bangladesh. Am. J. Trop. Med. Hyg. 90:2247–55
    [Google Scholar]
  52. Hahn MB, Jarnevich CS, Monaghan AJ, Eisen RJ. 2016. Modeling the geographic distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the contiguous United States. J. Med. Entomol. 53:51176–91
    [Google Scholar]
  53. Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW. 2005. Urbanization, malaria transmission and disease burden in Africa. Nat. Rev. Microbiol. 3:81–90
    [Google Scholar]
  54. Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D et al. 2015. Modeling infectious disease dynamics in the complex landscape of global health. Science 347:6227aaa4339
    [Google Scholar]
  55. Hjelle B, Torres-Pérez F. 2010. Hantaviruses in the Americas and their role as emerging pathogens. Viruses 2:122559–86
    [Google Scholar]
  56. Hosono H, Kono H, Ito S, Shirai J. 2006. Economic impact of Nipah virus infection outbreak in Malaysia Proceedings of the 11th International Symposium on Veterinary Epidemiology and Economics Cairns, Aust:.
  57. Huber I, Potapova K, Ammosova E, Beyer W, Blagodatskiy S et al. 2020. Symposium report: emerging threats for human health—impact of socioeconomic and climate change on zoonotic diseases in the Republic of Sakha (Yakutia), Russia. Int. J. Circumpolar Health 79:11715698
    [Google Scholar]
  58. IPCC (Intergov. Panel Clim. Change) 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. A Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change H-O Pörtner, DC Roberts, M Tignor, ES Poloczanska, K Mintenbeck et al. Cambridge, UK: Cambridge Univ. Press. https://www.ipcc.ch/report/ar6/wg2/
  59. Jaramillo-Ochoa R, Sippy R, Farrell DF, Cueva-Aponte C, Beltrán-Ayala E et al. 2019. Effects of political instability in Venezuela on malaria resurgence at Ecuador-Peru border, 2018. Emerg. Infect. Dis. 25:4834–36
    [Google Scholar]
  60. Jayachandran S. 2021. How economic development influences the environment NBER Work. Pap. w29191
  61. Jones BA, Grace D, Kock R, Alonso S, Rushton J et al. 2013. Zoonosis emergence linked to agricultural intensification and environmental change. PNAS 110:218399–8404
    [Google Scholar]
  62. Jones IJ, MacDonald AJ, Hopkins SR, Lund AJ, Liu ZYC et al. 2020. Improving rural health care reduces illegal logging and conserves carbon in a tropical forest. PNAS 117:4528515–24
    [Google Scholar]
  63. Joo H, Maskery BA, Berro AD, Rotz LD, Lee YK, Brown CM. 2019. Economic impact of the 2015 MERS outbreak on the Republic of Korea's tourism-related industries. Health Secur. 17:2100–8
    [Google Scholar]
  64. Keeling MJ, Rohani P. 2008. Modeling Infectious Diseases in Humans and Animals. Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  65. Keiser J, Utzinger J, de Castro MC, Smith TA, Tanner M, Singer BH. 2004. Urbanization in Sub-Saharan Africa and implication for malaria control. Am. J. Trop. Med. Hyg. 71:118–27
    [Google Scholar]
  66. Kilpatrick AM, Fonseca DM, Ebel GD, Reddy MR, Kramer LD. 2010. Spatial and temporal variation in vector competence of Culex pipiens and Cx. restuans mosquitoes for West Nile virus. Am. J. Trop. Med. Hyg. 83:3607–13
    [Google Scholar]
  67. King AA, Nguyen D, Ionides EL. 2016. Statistical inference for partially observed Markov processes via the R package pomp. arXiv 1509.00503 [stat.ME]
  68. Koelle K, Pascual M. 2004. Disentangling extrinsic from intrinsic factors in disease dynamics: a nonlinear time series approach with an application to cholera. Am. Nat. 163:6901–13
    [Google Scholar]
  69. Krystosik A, Njoroge G, Odhiambo L, Forsyth JE, Mutuku F, LaBeaud AD. 2020. Solid wastes provide breeding sites, burrows, and food for biological disease vectors, and urban zoonotic reservoirs: a call to action for solutions-based research. Front. Public Health 7:405
    [Google Scholar]
  70. LaBeaud AD, Banda T, Brichard J, Muchiri EM, Mungai PL et al. 2015. High rates of O'Nyong Nyong and Chikungunya virus transmission in coastal Kenya. PLOS Negl. Trop. Dis. 9:2e0003436
    [Google Scholar]
  71. LaDeau SL, Allan BF, Leisnham PT, Levy MZ. 2015. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct. Ecol. 29:7889–901
    [Google Scholar]
  72. Lafferty KD, Mordecai EA. 2016. The rise and fall of infectious disease in a warmer world. F1000Research 5: 2040.
    [Google Scholar]
  73. Lambin EF, Meyfroidt P. 2011. Global land use change, economic globalization, and the looming land scarcity. PNAS 108:93465–72
    [Google Scholar]
  74. Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V. 2010. Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int. J. Health Geogr. 9:54
    [Google Scholar]
  75. Lau H, Khosrawipour V, Kocbach P, Mikolajczyk A, Ichii H et al. 2020. The association between international and domestic air traffic and the coronavirus (COVID-19) outbreak. J. Microbiol. Immunol. Infect. 53:3467–72
    [Google Scholar]
  76. Leisnham PT, LaDeau SL, Juliano SA. 2014. Spatial and temporal habitat segregation of mosquitoes in urban Florida. PLOS ONE 9:3e91655
    [Google Scholar]
  77. Leroy EM, Epelboin A, Mondonge V, Pourrut X, Gonzalez J-P et al. 2009. Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector-Borne Zoonotic Dis 9:6723–28
    [Google Scholar]
  78. Levine JM. 2008. Biological invasions. Curr. Biol. 18:2R57–60
    [Google Scholar]
  79. Levy MZ, Barbu CM, Castillo-Neyra R, Quispe-Machaca VR, Ancca-Juarez J et al. 2014. Urbanization, land tenure security and vector-borne Chagas disease. Proc. R. Soc. B 281:178920141003
    [Google Scholar]
  80. Lima A, Lovin DD, Hickner PV, Severson DW. 2016. Evidence for an overwintering population of Aedes aegypti in Capitol Hill neighborhood, Washington, DC. Am. J. Trop. Med. Hyg. 94:1231–35
    [Google Scholar]
  81. Linske MA, Williams SC, Stafford KC 3rd, Ortega IM 2018. Ixodes scapularis (Acari: Ixodidae) reservoir host diversity and abundance impacts on dilution of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) in residential and woodland habitats in Connecticut, United States. J. Med. Entomol. 55:3681–90
    [Google Scholar]
  82. Lloyd-Smith JO, George D, Pepin KM, Pitzer VE, Pulliam JRC et al. 2009. Epidemic dynamics at the human-animal interface. Science 326:59581362–67
    [Google Scholar]
  83. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. 2005. Superspreading and the effect of individual variation on disease emergence. Nature 438:7066355–59
    [Google Scholar]
  84. Lounibos LP. 2002. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47:233–66
    [Google Scholar]
  85. Ma W, Kahn RE, Richt JA. 2009. The pig as a mixing vessel for influenza viruses: human and veterinary implications. J. Mol. Genet. Med. 3:1158–66
    [Google Scholar]
  86. MacDonald AJ, Mordecai EA. 2019. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. PNAS 116:4422212–18
    [Google Scholar]
  87. Mater CM. 2008. Wisconsin and Pennsylvania forestland owner offspring study results for 2007–2008 Work. Pap., Pinchot Inst., Corvallis, OR https://www.dropbox.com/s/pwfi5qxtih67wkc/Mater 2021_NASF Offspring DC 2008.WI%26PA.pdf?dl=0
  88. McKee CD, Islam A, Luby SP, Salje H, Hudson PJ et al. 2021. The ecology of Nipah virus in Bangladesh: a nexus of land-use change and opportunistic feeding behavior in bats. Viruses 13:2169
    [Google Scholar]
  89. Mordecai EA, Caldwell JM, Grossman MK, Lippi CA, Johnson LR et al. 2019. Thermal biology of mosquito-borne disease. Ecol. Lett. 22:101690–1708
    [Google Scholar]
  90. Mordecai EA, Ryan SJ, Caldwell JM, Shah MM, LaBeaud AD. 2020. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 4:9e416–23
    [Google Scholar]
  91. Murdock CC, Evans MV, McClanahan TD, Miazgowicz KL, Tesla B. 2017. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLOS Negl. Trop. Dis. 11:5e0005640
    [Google Scholar]
  92. Myers SS. 2017. Planetary health: protecting human health on a rapidly changing planet. Lancet 390:101142860–68
    [Google Scholar]
  93. Nova N. 2021. Cross-species transmission of coronaviruses in humans and domestic mammals, what are the ecological mechanisms driving transmission, spillover, and disease emergence?. Front. Public Health 9:717941
    [Google Scholar]
  94. Nova N, Deyle ER, Shocket MS, MacDonald AJ, Childs ML et al. 2021. Susceptible host availability modulates climate effects on dengue dynamics. Ecol. Lett. 24:3415–25
    [Google Scholar]
  95. Nunes MRT, Palacios G, Faria NR, Sousa EC, Pantoja JA et al. 2014. Air travel is associated with intracontinental spread of dengue virus serotypes 1–3 in Brazil. PLOS Negl. Trop. Dis. 8:4e2769
    [Google Scholar]
  96. Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME, Fouchier RAM. 2006. Global patterns of influenza a virus in wild birds. Science 312:5772384–88
    [Google Scholar]
  97. Ostfeld RS, Brunner JL. 2015. Climate change and Ixodes tick-borne diseases of humans. Philos. Trans. R. Soc. B 370:166520140051
    [Google Scholar]
  98. Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ, Keesing F. 2006. Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLOS Biol 4:6e145
    [Google Scholar]
  99. Paaijmans KP, Imbahale SS, Thomas MB, Takken W. 2010. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malar. J. 9:196
    [Google Scholar]
  100. Parmesan C, Burrows MT, Duarte CM, Poloczanska ES, Richardson AJ et al. 2013. Beyond climate change attribution in conservation and ecological research. Ecol. Lett. 16:s158–71
    [Google Scholar]
  101. Pauchard A, Milbau A, Albihn A, Alexander J, Burgess T et al. 2016. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biol. Invasions 2:18345–53
    [Google Scholar]
  102. Paull SH, Horton DE, Ashfaq M, Rastogi D, Kramer LD et al. 2017. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc. R. Soc. B 284:184820162078
    [Google Scholar]
  103. Pearl J. 2010. An introduction to causal inference. Int. J. Biostat. 6:21–59
    [Google Scholar]
  104. Peyre M, Chevalier V, Abdo-Salem S, Velthuis A, Antoine-Moussiaux N et al. 2015. A systematic scoping study of the socio-economic impact of Rift Valley fever: research gaps and needs. Zoonoses Public Health 62:5309–25
    [Google Scholar]
  105. Plowright RK, Eby P, Hudson PJ, Smith IL, Westcott D et al. 2015. Ecological dynamics of emerging bat virus spillover. Proc. R. Soc. B 282:179820142124
    [Google Scholar]
  106. Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI et al. 2017. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15:8502–10
    [Google Scholar]
  107. Plowright RK, Reaser JK, Locke H, Woodley SJ, Patz JA et al. 2021. Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planet. Health 5:4e237–45
    [Google Scholar]
  108. Pulliam JRCC, Epstein JH, Dushoff J, Rahman SA, Bunning M et al. 2012. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J. R. Soc. Interface 9:6689–101
    [Google Scholar]
  109. Rassy D, Smith RD. 2013. The economic impact of H1N1 on Mexico's tourist and pork sectors. Health Econ 22:7824–34
    [Google Scholar]
  110. Rodríguez-Morales AJ, Suárez JA, Risquez A, Villamil-Gómez WE, Paniz-Mondolfi A. 2019. Consequences of Venezuela's massive migration crisis on imported malaria in Colombia, 2016–2018. Travel Med. Infect. Dis. 28:98–99
    [Google Scholar]
  111. Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. 2019. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLOS Negl. Trop. Dis. 13:3e0007213
    [Google Scholar]
  112. Ryan SJ, Carlson CJ, Tesla B, Bonds MH, Ngonghala CN et al. 2021. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob. Change Biol. 27:184–93
    [Google Scholar]
  113. Sachal S, Deilgat M, Speechley M 2019. Case 11: crypto climate creep: the movement of tropical infectious disease to the Arctic. Western Public Health Casebook 2019 SL Sibbald, G McKinley 135–49 London, ON: Public Health Casebook Publ.
    [Google Scholar]
  114. Samson DM, Archer RS, Alimi TO, Arheart KL, Impoinvil DE et al. 2015. New baseline environmental assessment of mosquito ecology in northern Haiti during increased urbanization. J. Vector Ecol. 40:146–58
    [Google Scholar]
  115. Shocket MS, Anderson CB, Caldwell JM, Childs ML, Couper LI et al. 2021. Environmental drivers of vector-borne diseases. Population Biology of Vector-Borne Diseases JM Drake, M Bonsall, M Strand 85–118 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  116. Shocket MS, Verwillow AB, Numazu MG, Slamani H, Cohen JM et al. 2020. Transmission of West Nile virus and other temperate mosquito-borne viruses occurs at lower environmental temperatures than tropical mosquito-borne diseases. eLife 9:e58511
    [Google Scholar]
  117. Sims LD, Domenech J, Benigno C, Kahn S, Kamata A et al. 2005. Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. Vet. Rec. 157:6159–64
    [Google Scholar]
  118. Siraj AS, Santos-Vega M, Bouma MJ, Yadeta D, Ruiz Carrascal D, Pascual M 2014. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343:61751154–58
    [Google Scholar]
  119. Smith DL, Cohen JM, Chiyaka C, Johnston G, Gething PW et al. 2013. A sticky situation: the unexpected stability of malaria elimination. Philos. Trans. R. Soc. B 368:162320120145
    [Google Scholar]
  120. Smith KM, Machalaba CC, Seifman R, Feferholtz Y, Karesh WB. 2019. Infectious disease and economics: the case for considering multi-sectoral impacts. One Health 7:100080
    [Google Scholar]
  121. Sokolow SH, Nova N, Pepin KM, Peel AJ, Manlove K et al. 2019. Ecological interventions to prevent and manage zoonotic pathogen spillover. Philos. Trans. R. Soc. B 374:178220180342
    [Google Scholar]
  122. Sorensen CJ, Borbor-Cordova MJ, Calvello-Hynes E, Diaz A, Lemery J, Stewart-Ibarra AM. 2017. Climate variability, vulnerability, and natural disasters: a case study of Zika virus in Manabi, Ecuador following the 2016 earthquake. GeoHealth 1:8298–304
    [Google Scholar]
  123. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE et al. 2016. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect. Dis. 16:6712–23
    [Google Scholar]
  124. Stewart-Ibarra AM, Lowe R. 2013. Climate and non-climate drivers of dengue epidemics in southern coastal Ecuador. Am. J. Trop. Med. Hyg. 88:5971–81
    [Google Scholar]
  125. Stoddard ST, Forshey BM, Morrison AC, Paz-Soldan VA, Vazquez-Prokopec GM et al. 2013. House-to-house human movement drives dengue virus transmission. PNAS 110:3994–99
    [Google Scholar]
  126. Sugihara G, May R, Ye H, Hsieh C, Deyle E et al. 2012. Detecting causality in complex ecosystems. Science 338:6106496–500
    [Google Scholar]
  127. Suzán G, Marcé E, Giermakowski JT, Armién B, Pascale J et al. 2008. The effect of habitat fragmentation and species diversity loss on hantavirus prevalence in Panama. Ann. N.Y. Acad. Sci. 1149:80–83
    [Google Scholar]
  128. Swetnam D, Widen SG, Wood TG, Reyna M, Wilkerson L et al. 2018. Terrestrial bird migration and West Nile virus circulation, United States. Emerg. Infect. Dis. 24:122184–94
    [Google Scholar]
  129. Tatem AJ, Rogers DJ, Hay SI. 2006. Global transport networks and infectious disease spread. Adv. Parasitol. 62:293–343
    [Google Scholar]
  130. Tian H, Sun Z, Faria NR, Yang J, Cazelles B et al. 2017. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia. PLOS Negl. Trop. Dis. 11:8e0005694
    [Google Scholar]
  131. Tollefson J. 2021. COVID curbed carbon emissions in 2020—but not by much. Nature 589:7842343
    [Google Scholar]
  132. Tomasello D, Schlagenhauf P. 2013. Chikungunya and dengue autochthonous cases in Europe, 2007–2012. Travel Med. Infect. Dis. 11:5274–84
    [Google Scholar]
  133. UNDP (United Nations Dev. Progr.) 2017. A socio-economic impact assessment of the Zika virus in Latin America and the Caribbean: with a focus on Brazil, Colombia and Suriname Rep., UNDP New York: http://www.undp.org/content/undp/en/home/librarypage/hiv-aids/a-socio-economic-impact-assessment-of-the-zika-virus-in-latin-am.html
  134. USDA For. Serv (US Dep. Agric. For. Serv.) 2008. Who owns America's forests? Forest ownership patterns and family forest highlights from the National Woodland Owner Survey Rep. NRS-INF-06-8, North. Res. Stn., USDA For. Serv https://www.fs.usda.gov/treesearch/pubs/15794
  135. Vanzetti D, Peters R. 2021. COVID-19 and tourism: an update. Assessing the economic consequences. Rep., United Nations Conf. Trade Dev. Geneva: https://unctad.org/system/files/official-document/ditcinf2021d3_en_0.pdf
    [Google Scholar]
  136. Volz EM, Pond SLK, Ward MJ, Brown AJL, Frost SDW. 2009. Phylodynamics of infectious disease epidemics. Genetics 183:41421–30
    [Google Scholar]
  137. Weaver SC. 2013. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention. Trends Microbiol 21:8360–63
    [Google Scholar]
  138. Weaver SC. 2014. Arrival of Chikungunya virus in the New World: prospects for spread and impact on public health. PLOS Negl. Trop. Dis 8:6e2921
    [Google Scholar]
  139. Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS et al. 2016. Zika virus: history, emergence, biology, and prospects for control. Antiviral Res 130:69–80
    [Google Scholar]
  140. Webb K, Jennings J, Minovi D 2018. A community-based approach integrating conservation, livelihoods, and health care in Indonesian Borneo. Lancet Planet. Health 2 https://doi.org/10.1016/S2542-5196(18)30111-6
    [Crossref] [Google Scholar]
  141. Weitz JS, Park SW, Eksin C, Dushoff J. 2020. Awareness-driven behavior changes can shift the shape of epidemics away from peaks and toward plateaus, shoulders, and oscillations. PNAS 117:5132764–71
    [Google Scholar]
  142. Wesolowski A, Qureshi T, Boni MF, Sundsøy PR, Johansson MA et al. 2015. Impact of human mobility on the emergence of dengue epidemics in Pakistan. PNAS 112:3811887–92
    [Google Scholar]
  143. WHO (World Health Organ.) 2004. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 Meet. Rep., July 24, WHO Geneva: https://www.who.int/publications/m/item/summary-of-probable-sars-cases-with-onset-of-illness-from-1-november-2002-to-31-july-2003
  144. WHO (World Health Organ.) 2019. WHO MERS global summary and assessment of risk—July 2019 Situat. Rep., WHO Geneva: https://www.who.int/publications-detail-redirect/10665-326126
  145. Wilder-Smith A. 2006. The severe acute respiratory syndrome: impact on travel and tourism. Travel Med. Infect. Dis. 4:253–60
    [Google Scholar]
  146. Wilder-Smith A, Gubler DJ. 2008. Geographic expansion of dengue: the impact of international travel. Med. Clin. N. Am. 92:61377–90
    [Google Scholar]
  147. Winkler K, Fuchs R, Rounsevell M, Herold M 2021. Global land use changes are four times greater than previously estimated. Nat. Commun. 12:2501
    [Google Scholar]
  148. Woolhouse MEJ, Gowtage-Sequeria S. 2005. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11:121842–47
    [Google Scholar]
  149. Yan L, Fang L-Q, Huang H-G, Zhang L-Q, Feng D et al. 2007. Landscape elements and Hantaan virus-related hemorrhagic fever with renal syndrome, People's Republic of China. Emerg. Infect. Dis. 13:91301–6
    [Google Scholar]
  150. Yang J, Li J, Lai S, Ruktanonchai CW, Xing W et al. 2020. Uncovering two phases of early intercontinental COVID-19 transmission dynamics. J. Travel Med. 27:8taaa200
    [Google Scholar]
/content/journals/10.1146/annurev-resource-111820-024214
Loading
/content/journals/10.1146/annurev-resource-111820-024214
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error