In Professor George Judge's pursuit of information recovery and isolating causality in noisy effects observational data, there is a critical distinction between deductive and inductive empirical analysis. For the former, we bring together a synthesis of the literature that has emerged since Koopmans' measurement with theory philosophy. For the latter, we present a host of methodologies that attempt to isolate the causal mechanisms existing in patterns revealed in noisy measurement data. The deductive focus is limited by available theoretical constructs, whereas the inductive focus is fraught with data mining complications, ultimately finding its potential validation in forecasting.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allen PG. 1994. Economic forecasting in agriculture. Int. J. Forecast. 10:181–135 [Google Scholar]
  2. Anderson TW. 1951. Estimating linear restrictions on regression coefficients for multivariate normal distributions. Ann. Math. Stat. 22:327–51 [Google Scholar]
  3. Bear DVT, Orr D. 1967. Logic and expediency in economic theorizing. J. Polit. Econ. 75:2188–96 [Google Scholar]
  4. Bernanke BS, Boivin J, Eliasz P. 2005. Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach. Q. J. Econ. 120:387–422 [Google Scholar]
  5. Bessler DA, Akleman DG. 1998. Farm prices, retail prices, and directed graphs: results for pork and beef. Am. J. Agric. Econ. 80:51145–50 [Google Scholar]
  6. Bessler DA, Wang Z. 2012. D-separation, forecasting, and economic science: a conjecture. Theory Decis. 73:295–314 [Google Scholar]
  7. Box GEP, Jenkins G. 1970. Time Series Analysis: Forecasting and Control. San Francisco: Holden Day [Google Scholar]
  8. Braithwaite RB. 1953. Scientific Explanation Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  9. Burns AF, Mitchell WC. 1946. Plan of treating secular, seasonal and random movements. Measuring Business Cycles AF Burns, WC Mitchell 23–36 New York: Natl. Bur. Econ. Res. [Google Scholar]
  10. Casillas-Olvera G, Bessler DA. 2006. Probability forecasting and central bank accountability. J. Policy Model. 28:223–34 [Google Scholar]
  11. Caticha A. 2015. Entropic dynamics. Entropy 17:96110–28 [Google Scholar]
  12. Christ CF, Rausser GC. 1973. The validity and verification of complex system models: discussion on Shapiro and Fromm. Am. J. Agric. Econ. 55:2271–79 [Google Scholar]
  13. Coleman M, Langenfeld J. 2008. Natural experiments, issues in competition law and policy. ABA Sect. Antitrust Law 1:743–72 [Google Scholar]
  14. Cooper JP, Nelson CR. 1975. The ex ante prediction performance of the St. Louis and FRB-MIT-PENN econometric models and some results on composite predictors. J. Money Credit Bank. 7:11–32 [Google Scholar]
  15. Cyert RM, March JG. 1963. A Behavioral Theory of the Firm Englewood Cliffs, NJ: Prentice-Hall [Google Scholar]
  16. Dawid P. 1984. Present position and potential developments: some personal views: statistical theory: the prequential approach. J. R. Stat. Soc. 147:278–92 [Google Scholar]
  17. Diebold FX, Mariano RS. 1995. Comparing predictive accuracy. J. Bus. Econ. Stat. 13:253–63 [Google Scholar]
  18. Doan T, Litterman RB, Sims CA. 1984. Forecasting and conditional projection using realistic prior distributions. Econ. Rev. 3:11–100 [Google Scholar]
  19. Feyerabend P. 1975. Against Method: Outline of an Anarchist Theory of Knowledge New York: New Left Books [Google Scholar]
  20. Friedman M. 1953. Essays in Positive Economics Chicago: Univ. Chicago Press [Google Scholar]
  21. Frisch R. 1932. New orientation of economic theory: economics as an experimental science. Nord. Stat. J. 4:97–111 [Google Scholar]
  22. Ginsburg D, Moore D. 2010. The future of behavioral economics in antitrust jurisprudence. Compet. Policy Int. 6:189–102 [Google Scholar]
  23. Girshick MA, Haavelmo T. 1947. Statistical analysis of the demand for food: examples of simultaneous equations estimation. Econometrica 15:79–110 [Google Scholar]
  24. Good IJ. 1952. Rational decisions. J. R. Stat. Soc. Ser. B 41:107–14 [Google Scholar]
  25. Good IJ. 1960. Review of KR Popper: the logic of scientific discovery. Math. Rev. 21:1171–73 [Google Scholar]
  26. Good IJ. 1965. The Estimation of Probabilities Cambridge, MA: MIT Press [Google Scholar]
  27. Good IJ. 1968. Corroboration, explanation, evolving probability, simplicity and a sharpened razor. Br. J. Philos. Sci. 19:2123–43 [Google Scholar]
  28. Good IJ. 1983. Good Thinking Minneapolis: Univ. Minn. Press [Google Scholar]
  29. Greene W. 2012. Econometric Analysis Saddle River, NJ: Prentice Hall, 7th ed.. [Google Scholar]
  30. Haavelmo T. 1944. The probability approach in econometrics. Econometrica 12:1–118 [Google Scholar]
  31. Harvey D, Leybourne SJ, Newbold P. 1998. Tests for forecast encompassing. J. Bus. Econ. Stat. 16:254–59 [Google Scholar]
  32. Hayashi F. 2000. Econometrics Princeton, NJ: Princeton Univ. Press [Google Scholar]
  33. Hoover KD. 2005. Automatic inference of the contemporaneous causal order of a system of equations. Econom. Theory 21:69–77 [Google Scholar]
  34. Hume D. 1949 (1777). An Enquiry Concerning Human Understanding La Salle, IL: Open Court [Google Scholar]
  35. Jeffreys H. 1971. The Theory of Probability Oxford: Clarendon, 3rd ed.. [Google Scholar]
  36. Jeffreys H. 1973. Scientific Inference Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  37. Johansen S. 1988. Statistical analysis of cointegrating vectors. J. Econ. Dyn. Control 12:231–54 [Google Scholar]
  38. Judge GG. 2016. Some comments on the current state of econometrics. Annu. Rev. Resour. Econ. 81–6 [Google Scholar]
  39. Judge GG, Griffiths WE, Hill RC, Lutkepohl H, Lee T-C. 1985. The Theory and Practice of Econometrics New York: Wiley, 2nd ed.. [Google Scholar]
  40. Judge GG, Mittelhammer RC. 2012. An Information Theoretic Approach to Econometrics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  41. Judge GG, Takayama T. 1973. Studies in Economic Planning Over Space and Time Amsterdam: North-Holland [Google Scholar]
  42. Just RE, Rausser GC. 1981. Commodity price forecasting with large-scale econometric models and the futures market. Am. J. Agric. Econ. 63:2197–215 [Google Scholar]
  43. Kling JL, Bessler DA. 1985. A comparison of multivariate forecasting procedures for economic time series. Int. J. Forecast. 1:11–80 [Google Scholar]
  44. Koopmans TJ. 1947. Measurement without theory. Rev. Econ. Stat. 29:3161–72 [Google Scholar]
  45. Kuhn TS. 1970. The Structure of Scientific Revolutions. Chicago: Univ. Chicago Press., 2nd ed.. [Google Scholar]
  46. Leamer EE. 1974. False models and post-data model construction. J. Am. Stat. Assoc. 69:345122–31 [Google Scholar]
  47. Lichtenstein S, Fischhoff B, Phillips LD. 1982. Calibration of probabilities: the state of the art to 1980. Judgment Under Uncertainty: Heuristics and Biases D Kahneman, P Slovic, A Tversiy 275–324 New York: Cambridge Univ. Press [Google Scholar]
  48. Liu TC. 1960. Underidentification, structural estimation and forecasting. Econometrica 28:855–65 [Google Scholar]
  49. MacCarthy J. 1980. Circumscription—a form of non-monotonic reasoning Memo AIM-334, Stanford Artif. Intel Lab., Stanford Univ. Stanford, CA: [Google Scholar]
  50. Maimon O, Rokach L. 2005. The Data Mining and Knowledge Discovery Handbook New York: Springer [Google Scholar]
  51. Malinvaud E. 1980. Statistical Methods of Econometrics Amsterdam: North Holland [Google Scholar]
  52. McCloskey DN, Ziliack ST. 2008. Signifying nothing: reply to Hoover and Siegler. J. Econ. Methodol. 15:39–55 [Google Scholar]
  53. Nelson CR. 1972. The prediction performance of the FRB-MIT-PENN model of the US economy. Am. Econ. Rev. 62:902–17 [Google Scholar]
  54. Nerlove M. 1972. Lags in economic behavior. Econometrica 40:2221–51 [Google Scholar]
  55. Pearl J. 2009. Causality: Models, Reasoning and Inference. New York: Cambridge Univ. Press., 2nd ed.. [Google Scholar]
  56. Peltzman S. 1975. The effect of automobile safety regulation. J. Polit. Econ. 83:677–725 [Google Scholar]
  57. Popper K. 1959. The Logic of Scientific Discovery New York: Basic Books [Google Scholar]
  58. Popper K. 2005. The Logic of Scientific Discovery London/New York: Routledge [Google Scholar]
  59. Rausser GC. 1982. New Directions in Econometric Modeling and Forecasting in U.S. Agriculture. New York: North Holland [Google Scholar]
  60. Rausser GC, Just RE. 1979. Agricultural commodity price forecasting accuracy: futures markets versus commercial econometric models. Futures Trading Seminar A Peck 6117–53 Chicago: Board of Trade City Chicago [Google Scholar]
  61. Rescher N. 1968. Topics in Philosophical Logic. Dordrecht, Neth: Springer [Google Scholar]
  62. Roh JW, Bessler DA, Gilbert RF. 1999. Traffic fatalities, Peltzman's model and directed graphs. Accid. Anal. Prev. 31:55–61 [Google Scholar]
  63. Rubinfeld D. 2011. Reference guide on multiple regression. Reference Manual on Scientific Evidence Fed. Judic. Cent., Natl. Res. Coun. 303–57 Washington, DC: Natl. Acad. Press., 3rd ed.. [Google Scholar]
  64. Savage L. 1971. Elicitation of personal probabilities and expectations. J. Am. Stat. Assoc. 66:783–801 [Google Scholar]
  65. Shapiro H. 1973. Is verification possible? The evaluation of large econometric models. Am. J. Agric. Econ. 55:2250–58 [Google Scholar]
  66. Sims C. 1980. Macroeconomics and reality. Econometrica 48:1–48 [Google Scholar]
  67. Smith VL. 1962. An experimental study of competitive market behavior. J. Polit. Econ. 70:111–37 [Google Scholar]
  68. Spirtes P, Glymour C, Scheines R. 2000. Causation Prediction and Search Cambridge, MA: MIT Press [Google Scholar]
  69. Stock JH, Watson MW. 2002. Forecasting using principal components from a large number of predictors. J. Am. Stat. Assoc. 97:1167–79 [Google Scholar]
  70. Swanson NR, Granger CWJ. 1997. Impulse response functions based on a causal approach to residual orthogonalization in vector autoregressions. J. Am. Stat. Assoc. 92:357–67 [Google Scholar]
  71. Takayama T, Judge GG. 1964. Equilibrium among spatially separated markets: a reformulation. Econometrica 32:4510–24 [Google Scholar]
  72. Takayama T, Judge GG. 1971. Spatial and Temporal Price and Allocation Models Amsterdam: North Holland [Google Scholar]
  73. Tuffery S. 2011. Data Mining and Statistics for Decision Making. Chichester, UK: John Wiley [Google Scholar]
  74. Winkler RL, Murphy AH. 1968. “Good” probability assessors. J. Appl. Meteorol. 7:751–58 [Google Scholar]
  75. Wooldridge JM. 2002. Econometric Analysis of Cross Section and Panel Data Cambridge, MA: MIT Press [Google Scholar]
  76. Worland ST. 1972. Radical political economy as a ‘scientific revolution.’. South. Econ. J. 39:2274–84 [Google Scholar]
  77. Zellner A. 1986. A tale of forecasting 1001 series: the Bayesian knight strikes again. Int. J. Forecast. 92:491–94 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error