
Full text loading...
We use cookies to track usage and preferences.I Understand
Agent-based models (ABMs) are computational models used to simulate the actions and interactions of agents within a system. Usually, each agent has a relatively simple set of rules for how he or she responds to his or her environment and to other agents. These models are used to gain insight into the emergent behavior of complex systems with many agents, in which the emergent behavior depends upon the micro-level behavior of the individuals. ABMs are widely used in many fields, and this article reviews some of those applications. However, as relatively little work has been done on statistical inference for such models, this article also points out some of those gaps and recent strategies to address them.
Article metrics loading...
Full text loading...
Data & Media loading...