1932

Abstract

We describe and compare two formulations of inverse problems for a physics-based process model in the context of uncertainty and random variability: the Bayesian inverse problem and the stochastic inverse problem. We describe the foundations of the two problems in order to create a context for interpreting the applicability and solutions of inverse problems important for scientific and engineering inference. We conclude by comparing them to statistical approaches to related problems, including Bayesian calibration of computer models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-031017-100108
2024-04-22
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/statistics/11/1/annurev-statistics-031017-100108.html?itemId=/content/journals/10.1146/annurev-statistics-031017-100108&mimeType=html&fmt=ahah

Literature Cited

  1. Alexanderian A, Petra N, Stadler G, Ghattas O. 2014.. A-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems with regularized 0-sparsification. . SIAM J. Sci. Comput. 36:(5):A212248
    [Crossref] [Google Scholar]
  2. Becker R, Rannacher R. 2001.. An optimal control approach to a posteriori error estimation in finite element methods. . Acta Numer. 10::1102
    [Crossref] [Google Scholar]
  3. Bernardo JM, Smith AFM. 1994.. Bayesian Theory. New York:: Wiley
    [Google Scholar]
  4. Breidt J, Butler T, Estep D. 2011.. A measure-theoretic computational method for inverse sensitivity problems I: method and analysis. . SIAM J. Numer. Anal. 49:(5):183659
    [Crossref] [Google Scholar]
  5. Brynjarsdóttir J, O'Hagan A. 2014.. Learning about physical parameters: the importance of model discrepancy. . Inverse Probl. 30:(11):114007
    [Crossref] [Google Scholar]
  6. Bui-Thanh T, Ghattas O. 2014.. An analysis of infinite dimensional Bayesian inverse shape acoustic scattering and its numerical approximation. . SIAM J. Uncertain. Quantif. 2:(1):20322
    [Crossref] [Google Scholar]
  7. Bunya S, Dietrich J, Westerink J, Ebersole B, Smith J, et al. 2010.. A high resolution coupled riverine flow, tide, wind, wind wave and storm surge model for southern Louisiana and Mississippi. Part I: model development and validation. . Mon. Weather Rev. 138::34577
    [Crossref] [Google Scholar]
  8. Burger M, Lucka F. 2014.. Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper Bayes estimators. . Inverse Probl. 30:(11):114004
    [Crossref] [Google Scholar]
  9. Butler T, Estep D, Nishant P. 2023.. A Ramble Through Probability: How I Learned to Stop Worrying and Love Measure Theory. Philadelphia:: SIAM. In press
    [Google Scholar]
  10. Butler T, Estep D, Sandelin J. 2012.. A computational measure theoretic approach to inverse sensitivity problems II: a posteriori error analysis. . SIAM J. Numer. Anal. 50:(1):2245
    [Crossref] [Google Scholar]
  11. Butler T, Estep D, Tavener S, Dawson C, Westerink J. 2014a.. A measure-theoretic computational method for inverse sensitivity problems III: multiple quantities of interest. . SIAM/ASA J. Uncertain. Quantif. 2:(1):174202. https://doi.org/10.1137/130930406
    [Crossref] [Google Scholar]
  12. Butler T, Estep D, Tavener S, Wildey T, Dawson C, Graham L. 2014b.. Solving stochastic inverse problems using sigma-algebras on contour maps. . arXiv:1407.3851 [math.NA]
  13. Butler T, Graham L, Estep D, Dawson C, Westerink J. 2015.. Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models. . Adv. Water Resour. 78::6079
    [Crossref] [Google Scholar]
  14. Butler T, Jakeman J, Wildey T. 2018.. Combining push-forward measures and Bayes' rule to construct consistent solutions to stochastic inverse problems. . SIAM J. Sci. Comput. 40:(2):A9841011
    [Crossref] [Google Scholar]
  15. Butler T, Wildey T, Yen TY. 2020.. Data-consistent inversion for stochastic input-to-output maps. . Inverse Probl. 36:(8):085015
    [Crossref] [Google Scholar]
  16. Calder M, Craig C, Culley D, de Cani R, Donnelly CA, et al. 2018.. Computational modelling for decision-making: where, why, what, who and how. . R. Soc. Open Sci. 5:(6):172096
    [Crossref] [Google Scholar]
  17. Calvetti D, Kaipio J, Somersalo E. 2014.. Inverse problems in the Bayesian framework. . Inverse Probl. 30:(11):110301
    [Crossref] [Google Scholar]
  18. Carey V, Estep D, Tavener S. 2009.. A posteriori analysis and adaptive error control for multiscale operator decomposition solution of elliptic systems I: triangular systems. . SIAM J. Numer. Anal. 47:(1):74061
    [Crossref] [Google Scholar]
  19. Chang J, Pollard D. 1997.. Conditioning as disintegration. . Stat. Neerl. 51::287317
    [Crossref] [Google Scholar]
  20. Chaudhry JH, Burch N, Estep D. 2018.. Efficient distribution estimation and uncertainty quantification for elliptic problems on domains with stochastic boundaries. . SIAM/ASA J. Uncertain. Quantif. 6:(3):112750
    [Crossref] [Google Scholar]
  21. Chaudhry JH, Estep D, Gunzburger M. 2017.. Exploration of efficient reduced-order modeling and a posteriori error estimation. . Int. J. Numer. Methods Eng. 111:(2):10322
    [Crossref] [Google Scholar]
  22. Chi J. 2021.. Sliced inverse approach and domain recovery for stochastic inverse problems. PhD Thesis, Dep. Stat., Colo. State Univ., Fort Collins, CO:
    [Google Scholar]
  23. Cockayne J, Oates C, Sullivan T, Girolami M. 2017.. Probabilistic numerical methods for PDE-constrained Bayesian inverse problems. . AIP Conf. Proc. 1853:(1):060001
    [Crossref] [Google Scholar]
  24. Cotter S, Dashti M, Stuart A. 2010.. Approximation of Bayesian inverse problems. . SIAM J. Numer. Anal. 48::32245
    [Crossref] [Google Scholar]
  25. Cui T, Marzouk YM, Willcox KE. 2016.. Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction. . J. Comput. Phys. 315::36387
    [Crossref] [Google Scholar]
  26. Dietrich JC, Bunya S, Westerink JJ, Ebersole BA, Smith JM, et al. 2010.. A high resolution coupled riverine flow, tide, wind, wind wave and storm surge model for Southern Louisiana and Mississippi. Part II: synoptic description and analyses of Hurricanes Katrina and Rita. . Mon. Weather Rev. 138::378404
    [Crossref] [Google Scholar]
  27. Dietrich JC, Westerink JJ, Kennedy AB, Smith JM, Jensen RE, et al. 2011.. Hurricane Gustav (2008) waves and storm surge: hindcast, synoptic analysis and validation in Southern Louisiana. . Mon. Weather Rev. 139::2488522
    [Crossref] [Google Scholar]
  28. Elfverson D, Estep D, Hellman F, Malqvist A. 2014.. Uncertainty quantification for approximate p-quantiles for physical models with stochastic inputs. . SIAM/ASA J. Uncertain. Quantif. 2::82650
    [Crossref] [Google Scholar]
  29. Ernst O, Sprungk B, Starkloff H. 2014.. Bayesian inverse problems and Kalman filters. . In Extraction of Quantifiable Information from Complex Systems, ed. S Dahlke, W Dahmen, M Griebel, W Hackbusch, K Ritter , et al., pp. 13359 New York:: Springer
    [Google Scholar]
  30. Estep D. 1995.. A posteriori error bounds and global error control for approximation of ordinary differential equations. . SIAM J. Numer. Anal. 32:(1):148
    [Crossref] [Google Scholar]
  31. Estep D, Larson M, Williams R. 2000.. Estimating the error of numerical solutions of systems of reaction-diffusion equations. . Mem. Am. Math. Soc. 146:(696):1109
    [Google Scholar]
  32. Estep D, Malqvist A, Tavener S. 2009a.. Nonparametric density estimation for randomly perturbed elliptic problems I: computational methods, a posteriori analysis, and adaptive error control. . SIAM J. Sci. Comput. 31::293559
    [Crossref] [Google Scholar]
  33. Estep D, Malqvist A, Tavener S. 2009b.. Nonparametric density estimation for randomly perturbed elliptic problems II: applications and adaptive modeling. . Int. J. Numer. Methods Eng. 80::84667
    [Crossref] [Google Scholar]
  34. Fitzpatrick B. 1991.. Bayesian analysis in inverse problems. . Inverse Probl. 7:(5):675
    [Crossref] [Google Scholar]
  35. Fleming J, Fulcher C, Luettich R, Estrade B, Allen G, Winer H. 2008.. A real time storm surge forecasting system using ADCIRC. . In Estuarine and Coastal Modeling X, ed. M Spaulding , pp. 893912 Reston, VA:: ASCE
    [Google Scholar]
  36. Galbally D, Fidkowski K, Willcox K, Ghattas O. 2010.. Nonlinear model reduction for uncertainty quantification in large-scale inverse problems. . Int. J. Numer. Methods Eng. 81::1581608
    [Crossref] [Google Scholar]
  37. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. 2013.. Bayesian Data Analysis. Boca Raton, FL:: Chapman and Hall/CRC, 3rd ed.
    [Google Scholar]
  38. Goh J, Bingham D, Holloway JP, Grosskopf MJ, Kuranz CC, Rutter E. 2013.. Prediction and computer model calibration using outputs from multifidelity simulators. . Technometrics 55:(4):50112
    [Crossref] [Google Scholar]
  39. Graham L, Butler T, Walsh S, Dawson C, Westerink J. 2017.. A measure-theoretic algorithm for estimating bottom friction in a coastal inlet: case study of Bay St. Louis during Hurricane Gustav (2008). . Mon. Weather Rev. 145:(3):92954
    [Crossref] [Google Scholar]
  40. Graham L, Mattis S, Walsh S, Butler T, Pilosov M, McDougall D. 2020.. BET: Butler, Estep, Tavener method v3.0.0.. https://github.com/UT-CHG/BET
  41. Grosskopf M, Bingham D, Adams M, Hawkins W, Perez-Nunez D. 2021.. Generalized computer model calibration for radiation transport simulation. . Technometrics 63::2739
    [Crossref] [Google Scholar]
  42. Heikoop J, Johnson T, Birdsell K, Longmire P, Hickmott D, et al. 2014.. Isotropic evidence for reduction of anthropogenic hexavalent chromium in Los Alamos National Laboratory groundwater. . Chem. Geol. 373::19
    [Crossref] [Google Scholar]
  43. Henderson D, Boys R, Wilkinson D. 2010.. Bayesian calibration of a stochastic kinetic computer model using multiple data sources. . Biometrics 66::24956
    [Crossref] [Google Scholar]
  44. Higdon D, Gattiker J, Williams B, Rightley M. 2008.. Computer model calibration using high-dimensional output. . J. Am. Stat. Assoc. 103:(482):57083
    [Crossref] [Google Scholar]
  45. Higdon D, Kennedy M, Cavendish J, Cafeo J, Ryne R. 2004.. Combining field data and computer simulations for calibration and prediction. . SIAM J. Sci. Comput. 26::44866
    [Crossref] [Google Scholar]
  46. Hope M, Westerink J, Kennedy A, Kerr P, Dietrich J, et al. 2013.. Hindcast and validation of Hurricane Ike (2008) waves, forerunner, and storm surge. . J. Geophys. Res. Oceans 118::442460
    [Crossref] [Google Scholar]
  47. Kennedy M, O'Hagan A. 2001.. Bayesian calibration of computer models. . J. R. Stat. Soc. Ser. B 63:(3):42564
    [Crossref] [Google Scholar]
  48. Loeppky J, Bingham D, Welch W. 2006.. Computer model calibration or tuning in practice. Rep. 221 , Univ. British Columbia, Vancouver, BC, Can.:
    [Google Scholar]
  49. Logg A, Mardal KA, Wells G 2012.. Automated Solution of Differential Equations by the Finite Element Method. New York:: Springer
    [Google Scholar]
  50. Marzouk YM, Najm HN, Rahn LA. 2007.. Stochastic spectral methods for efficient Bayesian solution of inverse problems. . J. Comput. Phys. 224:(2):56086
    [Crossref] [Google Scholar]
  51. Mattis S, Butler T, Dawson C, Estep D, Vessilinov V. 2015.. Parameter estimation and prediction for groundwater contamination based on measure theory. . Water Resourc. Res. 51::760829
    [Crossref] [Google Scholar]
  52. Mattis S, Steffen K, Butler T, Dawson C, Estep D. 2022.. Learning quantities of interest from dynamical systems for observation-consistent inversion. . Comput. Methods Appl. Mech. Eng. 388::114230
    [Crossref] [Google Scholar]
  53. Mosegaard K, Tarantola A. 1995.. Monte Carlo sampling of solutions to inverse problems. . J. Geophys. Res. 100:(B7):1243147
    [Crossref] [Google Scholar]
  54. Panchal J, Kalidindi S, McDowell D. 2013.. Key computational modeling issues in integrated computational materials engineering. . Comput. Aided Des. 45:(1):425
    [Crossref] [Google Scholar]
  55. Plumlee M. 2017.. Bayesian calibration of inexact computer models. . J. Am. Stat. Assoc. 112:(519):127485
    [Crossref] [Google Scholar]
  56. Robert CP. 2001.. The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation. New York:: Springer, 2nd ed.
    [Google Scholar]
  57. Sacks J, Welch W, Mitchell T, Wynn H. 1989.. Design and analysis of computer experiments. . Stat. Sci. 4:(4):40935
    [Google Scholar]
  58. Stark PB, Tenorio L. 2010.. A primer of frequentist and Bayesian inference in inverse problems. . In Large-Scale Inverse Problems and Quantification of Uncertainty, ed. L Biegler, G Biros, O Ghattas, M Heinkenschloss, D Keyes , et al., pp. 932 New York:: Wiley
    [Google Scholar]
  59. Stuart AM. 2010.. Inverse problems: a Bayesian perspective. . Acta Numer. 19::451559
    [Crossref] [Google Scholar]
  60. Tarantola A. 2005.. Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia: SIAM:
    [Google Scholar]
  61. Tuo R, Wu J. 2015.. Efficient calibration for imperfect computer models. . Ann. Stat. 43:(6):233152
    [Crossref] [Google Scholar]
  62. Tuo R, Wu J. 2016.. A theoretical framework for calibration in computer models: parametrization, estimation and convergence properties. . SIAM/ASA J. Uncertain. Quantif. 4:(1):76795
    [Crossref] [Google Scholar]
  63. van der Vaart A. 1998.. Asymptotic Statistics. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  64. Westerink JJ, Luettich RA, Feyen JC, Atkinson JH, Dawson CN, et al. 2008.. A basin to channel scale unstructured grid hurricane storm surge model applied to southern Louisiana. . Mon. Weather Rev. 136::83364
    [Crossref] [Google Scholar]
  65. Yang L. 2018.. Infinite dimensional stochastic inverse problems. PhD Thesis, Dep. Stat., Colo. State Univ., Fort Collins, CO:
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-031017-100108
Loading
/content/journals/10.1146/annurev-statistics-031017-100108
Loading

Data & Media loading...

Supplemental Material

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error