1932

Abstract

Changes in the Earth's climate have been increasingly observed. Assessing the likelihood that each of these changes has been caused by human influence is important for decision making on mitigation and adaptation policy. Because of their large societal and economic impacts, extreme events have garnered much media attention—have they become more frequent and more intense, and if so, why? To answer such questions, extreme event attribution (EEA) tries to estimate extreme event likelihoods under different scenarios. Over the past decade, statistical methods and experimental designs based on numerical models have been developed, tested, and applied. In this article, we review the basic probability schemes, inference techniques, and statistical hypotheses used in EEA. To implement EEA analysis, the climate community relies on the use of large ensembles of climate model runs. We discuss, from a statistical perspective, how extreme value theory could help to deal with the different modeling uncertainties. In terms of interpretation, we stress that causal counterfactual theory offers an elegant framework that clarifies the design of event attributions. Finally, we pinpoint some remaining statistical challenges, including the choice of the appropriate spatio-temporal scales to enhance attribution power, the modeling of concomitant extreme events in a multivariate context, and the coupling of multi-ensemble and observational uncertainties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-031219-041314
2020-03-07
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/statistics/7/1/annurev-statistics-031219-041314.html?itemId=/content/journals/10.1146/annurev-statistics-031219-041314&mimeType=html&fmt=ahah

Literature Cited

  1. Angélil O, Stone D, Wehner M. 2017. An independent assessment of anthropogenic attribution statements for recent extreme temperature and rainfall events. J. Clim. 30:5–16
    [Google Scholar]
  2. Bader B, Yan J, Zhang X. 2018. Automated threshold selection for extreme value analysis via ordered goodness-of-fit tests with adjustment for false discovery rate. Ann. Appl. Stat. 12:310–29
    [Google Scholar]
  3. Beirlant J, Goegebeur Y, Segers J, Teugels J 2004. Statistics of Extremes: Theory and Applications New York: Wiley
    [Google Scholar]
  4. Cattiaux J, Ribes A. 2018. Defining single extreme weather events in a climate perspective. Bull. Am. Meteorol. Soc. 99:1557–68
    [Google Scholar]
  5. Chen Y, Moufouma-Okia W, Masson-Delmotte V, Zhai P, Pirani A. 2018. Recent progress and emerging topics on weather and climate extremes since the fifth assessment report of the Intergovernmental Panel on Climate Change. Annu. Rev. Environ. Resour. 43:35–59
    [Google Scholar]
  6. Coles SG 2001. An Introduction to Statistical Modeling of Extreme Values New York: Springer
    [Google Scholar]
  7. Coles SG, Tawn JA. 1996. A Bayesian analysis of extreme rainfall data. Appl. Stat. 45:463–78
    [Google Scholar]
  8. Cooley D, Hunter BD, Smith RL. 2019. Univariate and multivariate extremes for the environmental sciences. Handbook of Environmental and Ecological Statistics AE Gelfand, M Fuentes, JA Hoeting, RL Smith Boca Raton, FL: Chapman & Hall/CRC
    [Google Scholar]
  9. Cooley D, Nychka D, Naveau P. 2007. Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102:824–40
    [Google Scholar]
  10. Davison AC, Huser RG. 2015. Statistics of extremes. Annu. Rev. Stat. Appl. 2:203–35
    [Google Scholar]
  11. Davison AC, Smith RL. 1990. Models for exceedances over high thresholds (with comments). J. R. Stat. Soc. B 52:393–442
    [Google Scholar]
  12. de Fondeville R, Davison AC. 2018. High-dimensional peaks-over-threshold inference. Biometrika 105:575–92
    [Google Scholar]
  13. de Haan L, Ferreira AF 2006. Extreme Value Theory: An Introduction New York: Springer
    [Google Scholar]
  14. de Haan L, Tank A, Neves C. 2015. On tail trend detection: modeling relative risk. Extremes 18:141–78
    [Google Scholar]
  15. Diebolt J, Guillou A, Naveau P, Ribereau P. 2008. Improving probability-weighted moment methods for the generalized extreme value distribution. REVSTAT Stat. J. 6:33–50
    [Google Scholar]
  16. Embrechts P, Klüppelberg C, Mikosch T 1997. Modelling Extremal Events for Insurance and Finance New York: Springer
    [Google Scholar]
  17. Engelke S, de Fondeville R, Oesting M. 2019. Extremal behaviour of aggregated data with an application to downscaling. Biometrika 106:127–44
    [Google Scholar]
  18. Falk M, Guillou A. 2008. Peaks-over-threshold stability of multivariate generalized Pareto distributions. J. Multivar. Anal. 99:715–34
    [Google Scholar]
  19. Ferreira AF, de Haan L. 2014. The generalized Pareto process; with a view towards application and simulation. Bernoulli 20:1717–37
    [Google Scholar]
  20. Field C, Barros V, Stocker T, Qin D, Dokken D et al. 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  21. Gilleland E, Katz RW, Naveau P. 2017. Quantifying the risk of extreme events under climate change. CHANCE 30:30–36
    [Google Scholar]
  22. Hammerling D, Katzfuss M, Smith RL. 2019. Climate change detection and attribution. Handbook of Environmental and Ecological Statistics AE Gelfand, M Fuentes, JA Hoeting, RL Smith Boca Raton, FL: Chapman & Hall/CRC
    [Google Scholar]
  23. Hannart A, Naveau P. 2018. Probabilities of causation of climate changes. J. Clim. 31:5507–24
    [Google Scholar]
  24. Hannart A, Pearl J, Otto FEL, Naveau P, Ghil M. 2016. Counterfactual causality theory for the attribution of weather and climate-related events. Bull. Am. Meteorol. Soc. 97:99–110
    [Google Scholar]
  25. Hannart A, Ribes A, Naveau P. 2014. Optimal fingerprinting under multiple sources of uncertainty. Geophys. Res. Lett. 41:1261–68
    [Google Scholar]
  26. Hosking JRM, Wallis JR. 1987. Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29:339–49
    [Google Scholar]
  27. Huser RG, Davison AC, Genton MG. 2016. Likelihood estimators for multivariate extremes. Extremes 19:79–103
    [Google Scholar]
  28. Huser RG, Wadsworth JL. 2019. Modeling spatial processes with unknown extremal dependence class. J. Am. Stat. Assoc. 114:434–44
    [Google Scholar]
  29. Katz RW, Parlange MB, Naveau P. 2002. Statistics of extremes in hydrology. Adv. Water Resour. 25:1287–304
    [Google Scholar]
  30. Katzfuss M, Hammerling D, Smith RL. 2017. A Bayesian hierarchical model for climate change detection and attribution. Geophys. Res. Lett. 44:5720–28
    [Google Scholar]
  31. Kew SF, Philip SY, van Oldenborgh GJ, van der Schrier G, Otto FEL, Vautard R. 2019. The exceptional summer heat wave in Southern Europe 2017. Bull. Am. Meteorol. Soc. 100:S49–53
    [Google Scholar]
  32. Kharin VV, Zwiers FW. 2000. Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean GCM. J. Clim. 13:3760–88
    [Google Scholar]
  33. Kharin VV, Zwiers FW. 2005. Estimating extremes in transient climate change simulations. J. Clim. 18:1156–73
    [Google Scholar]
  34. Kharin VV, Zwiers FW, Zhang X, Hegerl GC. 2007. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 20:1419–44
    [Google Scholar]
  35. Kim YH, Min SK, Zhang X, Zwiers F, Alexander LV, et al. 2016. Attribution of extreme temperature changes during 1951–2010. Clim. Dyn. 46:1769–82
    [Google Scholar]
  36. King AD. 2017. Attributing changing rates of temperature record breaking to anthropogenic influences. Earth's Future 5:1156–68
    [Google Scholar]
  37. Kirchmeier-Young MC, Gillett NP, Zwiers FW, Cannon A, Anslow F. 2017. Attribution of extreme events in arctic sea ice extent. J. Clim. 30:553–71
    [Google Scholar]
  38. Kirchmeier-Young MC, Zwiers FW, Gillett N. 2019. Attribution of the influence of human-induced climate change on an extreme fire season. Earth's Future 7:2–10
    [Google Scholar]
  39. Kiriliouk A, Naveau P. 2019. Climate extreme event attribution using multivariate peaks-over-thresholds modeling and counterfactual theory. arXiv:1908.03107 [stat.AP]
    [Google Scholar]
  40. Kiriliouk A, Rootzén H, Segers J, Wadsworth JL. 2019. Peaks over thresholds modelling with multivariate generalized Pareto distributions. Technometrics 61:123–35
    [Google Scholar]
  41. Ledford A, Tawn JA. 1996. Statistics for near independence in multivariate extreme values. Biometrika 83:169–87
    [Google Scholar]
  42. Ledford A, Tawn JA. 1997. Modelling dependence within joint tail regions. J. R. Stat. Soc. B 59:475–99
    [Google Scholar]
  43. Luu LN, Vautard R, Yiou P, van Oldenborgh GJ, Lenderink G. 2018. Attribution of extreme rainfall events in the South of France using EURO-CORDEX simulations. Geophys. Res. Lett. 45:6242–50
    [Google Scholar]
  44. Naveau P, Huser RG, Ribereau P, Hannart A. 2016. Modelling jointly low, moderate and heavy rainfall intensities without a threshold selection. Water Resour. Res. 52:2753–69
    [Google Scholar]
  45. Naveau P, Ribes A, Zwiers FW, Hannart A, Tuel A, Yiou P. 2018. Revising return periods for record events in a climate event attribution context. J. Clim. 31:3411–22
    [Google Scholar]
  46. Natl. Acad. Sci. Eng. Med 2016. Attribution of Extreme Weather Events in the Context of Climate Change Washington, DC: Natl. Acad.
    [Google Scholar]
  47. Otto F, Philip S, Kew S, Li S, King A, Cullen H. 2018. Attributing high-impact extreme events across timescales—a case study of four different types of events. Clim. Change 149:399–412
    [Google Scholar]
  48. Paciorek CJ, Stone DA, Wehner MF. 2018. Quantifying statistical uncertainty in the attribution of human influence on severe weather. Weather Clim. Extrem. 20:69–80
    [Google Scholar]
  49. Pearl J 2009. Causality: Models, Reasoning, and Inference Cambridge, UK: Cambridge Univ. Press. 2nd ed.
    [Google Scholar]
  50. Ragone F, Wouters J, Bouchet F. 2018. Computation of extreme heat waves in climate models using a large deviation algorithm. PNAS 115:24–29
    [Google Scholar]
  51. Reich BJ, Shaby BA, Cooley D. 2013. A hierarchical model for serially dependent extremes: a study of heat waves in the western US. J. Agric. Biol. Environ. Stat. 19:119–35
    [Google Scholar]
  52. Resnick SI 1987. Extreme Values, Regular Variation, and Point Processes New York: Springer
    [Google Scholar]
  53. Ribes A, Thao S, Cattiaux J. 2019. Describing the relationship between a weather event and climate change: a new statistical approach. Work. Pap. hal-02122780. https://hal.archives-ouvertes.fr/hal-02122780/document
    [Google Scholar]
  54. Ribes A, Zwiers FW, Azaïs JM, Naveau P. 2016. A new statistical approach to climate change detection and attribution. Clim. Dyn. 48:29–56
    [Google Scholar]
  55. Risser MD, Paciorek CJ, Stone DA. 2019. Spatially dependent multiple testing under model misspecification, with application to detection of anthropogenic influence on extreme climate events. J. Am. Stat. Assoc. 114:61–78
    [Google Scholar]
  56. Rootzén H, Katz RW. 2013. Design life level: quantifying risk in a changing climate. Water Resour. Res. 49:5964–72
    [Google Scholar]
  57. Rootzén H, Segers J, Wadsworth JL. 2018a. Multivariate generalized Pareto distributions: parametrizations, representations and properties. J. Multivar. Anal. 165:117–31
    [Google Scholar]
  58. Rootzén H, Segers J, Wadsworth JL. 2018b. Multivariate peaks over thresholds models. Extremes 21:115–45
    [Google Scholar]
  59. Rootzén H, Tajvidi N. 2006. Multivariate generalized Pareto distributions. Bernoulli 12:917–30
    [Google Scholar]
  60. Sabourin A, Naveau P, Fougères AL. 2013. Bayesian model averaging for multivariate extremes. Extremes 16:325–50
    [Google Scholar]
  61. Sang H, Gelfand A. 2009. Hierarchical modeling for extreme values observed over space and time. Environ. Ecol. Stat. 16:407–26
    [Google Scholar]
  62. Serinaldi F. 2016. Can we tell more than we can know? The limits of bivariate drought analyses in the United States. Stoch. Environ. Res. Risk Assess. 30:1691–704
    [Google Scholar]
  63. Shaby BA, Reich BJ. 2012. Bayesian spatial extreme value analysis to assess the changing risk of concurrent high temperatures across large portions of European cropland. Environmetrics 23:638–48
    [Google Scholar]
  64. Shepherd TG. 2016. A common framework for approaches to extreme event attribution. Curr. Clim. Change Rep. 2:28–38
    [Google Scholar]
  65. Shooter R, Ross E, Tawn JA, Jonathan P. 2019. On spatial conditional extremes for ocean storm severity. Environmetrics 30:e2562
    [Google Scholar]
  66. Stocker T, Qin D, Plattner G, Tignor M, Allen S et al. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  67. Stott PA, Christidis N, Otto FEL, Sun Y, Vanderlinden JP, et al. 2016. Attribution of extreme weather and climate-related events. WIREs Clim. Change 7:23–41
    [Google Scholar]
  68. Stott PA, Stone DA, Allen MR. 2004. Human contribution to the European heatwave of 2003. Nature 432:610–13
    [Google Scholar]
  69. Tajvidi N. 1996. Characterisation and some statistical aspects of univariate and multivariate generalized Pareto distributions PhD Thesis, Dep. Math., Chalmers Univ., Göteborg
    [Google Scholar]
  70. Tawn JA, Shooter R, Towe R, Lamb R. 2018. Modelling spatial extreme events with environmental applications. Spat. Stat. 28:39–58
    [Google Scholar]
  71. Tencaliec P, Favre A, Naveau P, Prieur C, Nicolet G. 2019. Flexible semiparametric generalized Pareto modeling of the entire range of rainfall amount. Environmetrics https://doi.org/10.1002/env.2582
    [Crossref] [Google Scholar]
  72. Trenberth KE, Fasullo JT, Shepherd TG. 2015. Attribution of climate extreme events. Nat. Clim. Change 5:725–30
    [Google Scholar]
  73. van der Wiel K, Kapnick SB, van Oldenborgh GJ, Whan K, Philip S, et al. 2017. Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change. Hydrol. Earth Syst. Sci. 21:897–921
    [Google Scholar]
  74. van Oldenborgh GJ, van der Wiel K, Sebastian A, Singh R, Arrighi J, et al. 2017. Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett. 12:124009
    [Google Scholar]
  75. Vautard R, van Oldenborgh GJ, Otto FEL, Yiou P, de Vries H, et al. 2019. Human influence on European winter wind storms such as those of January 2018. Earth Syst. Dyn. 10:271–86
    [Google Scholar]
  76. Yiou P, Cattiaux J, Faranda D, Kadygrov N, Jézéquel A 2019. Analyses of the Northern European summer heatwave of 2018. Bull. Am. Meteorol. Soc.
    [Google Scholar]
  77. Yiou P, Jézéquel A, Naveau P, Otto FEL, Vautard R, Vrac M. 2017. A statistical framework for conditional extreme event attribution. Adv. Stat. Climatol. Meteorol. Oceanogr. 3:17–31
    [Google Scholar]
  78. Zscheischler J, Westra S, van den Hurk BJJM, Seneviratne SI, Ward PJ, et al. 2018. Future climate risk from compound events. Nat. Clim. Change 8:469–77
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-031219-041314
Loading
/content/journals/10.1146/annurev-statistics-031219-041314
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error