1932

Abstract

The Cox model is now 50 years old. The seminal paper of Sir David Cox has had an immeasurable impact on the analysis of censored survival data, with applications in many different disciplines. This work has also stimulated much additional research in diverse areas and led to important theoretical and practical advances. These include semiparametric models, nonparametric efficiency, and partial likelihood. In addition to quickly becoming the go-to method for estimating covariate effects, Cox regression has been extended to a vast number of complex data structures, to all of which the central idea of sampling from the set of individuals at risk at time can be applied. In this article, we review the Cox paper and the evolution of the ideas surrounding it. We then highlight its extensions to competing risks, with attention to models based on cause-specific hazards, and to hazards associated with the subdistribution or cumulative incidence function. We discuss their relative merits and domains of application. The analysis of recurrent events is another major topic of discussion, including an introduction to martingales and complete intensity models as well as the more practical marginal rate models. We include several worked examples to illustrate the main ideas.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-033021-014043
2023-03-09
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/statistics/10/1/annurev-statistics-033021-014043.html?itemId=/content/journals/10.1146/annurev-statistics-033021-014043&mimeType=html&fmt=ahah

Literature Cited

  1. Aalen O. 1978. Nonparametric estimation of partial transition probabilities in multiple decrement models. Ann. Stat. 6:534–45
    [Google Scholar]
  2. Andersen PK, Borgan Ø, Gill R, Keiding N. 1993. Statistical Models Based on Counting Processes New York: Springer-Verlag
    [Google Scholar]
  3. Andersen PK, Gill R. 1982. Cox's regression model for counting processes: a large sample study. Ann. Stat. 10:1100–20
    [Google Scholar]
  4. Bailey K. 1984. Asymptotic equivalence between the Cox estimator and the general M-estimators of regression and survival parameters in the Cox model. Ann. Stat. 12:730–36
    [Google Scholar]
  5. Begun J, Hall W, Huang W-M, Wellner J. 1983. Information and asymptotic efficiency in parametric-nonparametric models. Ann. Stat. 11:432–52
    [Google Scholar]
  6. Breslow N. 1974. Covariance analysis of censored survival data. Biometrics 30:89–99
    [Google Scholar]
  7. Chen K. 2001. Generalized case-cohort sampling. J. R. Stat. Soc. Ser. B 63:791–809
    [Google Scholar]
  8. Chen K, Lo S-H. 1999. Case-cohort and case-control analysis with Cox's model. Biometrika 86:755–64
    [Google Scholar]
  9. Cook RJ, Lawless JF. 1997. Marginal analysis of recurrent events and a terminating event. Stat. Med. 16:911–24
    [Google Scholar]
  10. Cook RJ, Lawless JF. 2007. The Statistical Analysis of Recurrent Events New York: Springer-Verlag
    [Google Scholar]
  11. Cox DR. 1972. Regression models and life-tables. J. R. Stat. Soc. Ser. B 34:187–220
    [Google Scholar]
  12. Cox DR. 1973. The statistical analysis of dependencies in point processes. Symposium on Point Processes PAW Lewis 55–66. New York: Wiley
    [Google Scholar]
  13. Cox DR. 1975. Partial likelihood. Biometrika 62:269–76
    [Google Scholar]
  14. Cox DR, Oakes D. 1984. The Analysis of Survival Data London: Chapman and Hall
    [Google Scholar]
  15. Crowder M. 2001. Classical Competing Risks London: Chapman and Hall/CRC
    [Google Scholar]
  16. Efron B. 1977. The efficiency of Cox's likelihood function for censored data. J. Am. Stat. Assoc. 72:557–65
    [Google Scholar]
  17. Feigl P, Zelen M. 1965. The efficiency of Cox's likelihood function for censored data. Biometrics 21:826–38
    [Google Scholar]
  18. Fine JP, Gray RJ. 1999. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 94:496–509
    [Google Scholar]
  19. Fleming T, Harrington D. 1991. Counting Processes and Survival Analysis New York: Wiley
    [Google Scholar]
  20. Ghosh D, Lin DY. 2002. Marginal regression models for recurrent and terminal events. Stat. Sin. 12:663–88
    [Google Scholar]
  21. Glasser M. 1967. Exponential survival with covariance. J. Am. Stat. Assoc. 62:561–68
    [Google Scholar]
  22. Goldstein L, Langholz B. 1992. Asymptotic theory for nested case-control sampling in the Cox regression model. Ann. Stat. 20:1903–28
    [Google Scholar]
  23. Grambsch P, Therneau T. 1994. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–26
    [Google Scholar]
  24. Gray RJ. 1988. A class of k-sample tests for comparing the cumulative incidence of a competing risk. Ann. Stat. 16:1141–54
    [Google Scholar]
  25. Jin Z, Lin DY, Wei LJ, Ying Z 2003. Rank-based inference for the accelerated failure time model. Biometrika 90:341–53
    [Google Scholar]
  26. Jin Z, Lin DY, Ying Z 2006. On least squares regression with censored data. Biometrika 93:141–61
    [Google Scholar]
  27. Kalbfleisch JD, Prentice RL. 1973. Marginal likelihoods based on Cox's regression and life model. Biometrika 60:267–78
    [Google Scholar]
  28. Kalbfleisch JD, Prentice RL. 2002. The Statistical Analysis of Failure Time Data New York: Wiley. , 2nd ed..
    [Google Scholar]
  29. Kaplan E, Meier P. 1958. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53:457–81
    [Google Scholar]
  30. Kosorok M. 2008. Introduction to Empirical Processes and Semiparametric Inference New York: Springer
    [Google Scholar]
  31. Lawless JF, Nadeau C. 1995. Some simple robust methods for the analysis of recurrent events. Technometrics 37:158–68
    [Google Scholar]
  32. Lin DY, Wei LJ, Yang I, Ying Z 2000. Semiparametric regression for the mean and rate functions of recurrent events. J. R. Stat. Soc. Ser. B 62:711–30
    [Google Scholar]
  33. Lin DY, Ying Z 1995. Semiparametric inference for the accelerated life model with time dependent covariates. J. Stat. Plan. Inference 44:47–63
    [Google Scholar]
  34. Louis TA. 1981. Nonparametric analysis of an accelerated failure time model. Biometrika 68:381–90
    [Google Scholar]
  35. Lubin JH, Gail MH. 1984. Biased selection of controls for case-control analyses of cohort studies. Biometrics 40:63–75
    [Google Scholar]
  36. Mantel N. 1963. Chi-square tests with one degree of freedom; extensions of the Mantel–Haenszel procedure. J. Am. Stat. Assoc. 58:690–700
    [Google Scholar]
  37. Mantel N, Haenszel W. 1959. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719–48
    [Google Scholar]
  38. Martinussen T. 2022. Causality and the Cox regression model. Annu. Rev. Stat. Appl. 9:249–59
    [Google Scholar]
  39. Martinussen T, Scheike T. 2006. Dynamic Regression Models for Survival Data New York: Springer
    [Google Scholar]
  40. Oakes D. 1977. The asymptotic information in censored survival data. Biometrika 64:487–93
    [Google Scholar]
  41. Peto R, Peto J. 1972. Asymptotically efficient rank invariant test procedures. J. R. Stat. Soc. Ser. A 135:185–207
    [Google Scholar]
  42. Pintilie M. 2006. Competing Risks: A Practical Perspective New York: Wiley
    [Google Scholar]
  43. Prentice RL. 1978. Linear rank tests with right censored data. Biometrika 65:167–79
    [Google Scholar]
  44. Prentice RL. 1986. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika 73:1–11
    [Google Scholar]
  45. Prentice RL, Kalbfleisch J. 2003. Mixed discrete and continuous Cox regression model. Lifetime Data Anal. 9:195–210
    [Google Scholar]
  46. Prentice RL, Kalbfleisch JD, Peterson AV, Flournoy N, Farewell VT, Breslow NE. 1978. The analysis of failure time in the presence of competing risks. Biometrics 34:541–54
    [Google Scholar]
  47. Rebolledo R. 1980. Central limit theorems for local martingales. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 51:269–86
    [Google Scholar]
  48. Reid NR. 1994. A conversation with Sir David Cox. Stat. Sci. 9:439–55
    [Google Scholar]
  49. Robins J, Finkelstein D. 2000. Correcting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank tests. Biometrics 56:779–88
    [Google Scholar]
  50. Robins J, Rotnitzky A 1992. A recovery of information and adjustment for dependent censoring using surrogate markers. AIDS Epidemiology NP Jewell, K Dietz, VT Farewell 297–331. Boston: Birkhäuser
    [Google Scholar]
  51. Schoenfeld D. 1982. Partial residuals for the proportional hazards regression model. Biometrika 69:239–41
    [Google Scholar]
  52. Self S, Prentice RL. 1988. Asymptotic distribution theory and efficiency results for case-cohort studies. Ann. Stat. 16:64–81
    [Google Scholar]
  53. Tao R, Zeng D, Lin DY. 1984. Optimal designs of two-phase studies. J. Am. Stat. Assoc. 115:1946–59
    [Google Scholar]
  54. Therneau T, Grambsch P, Fleming T. 1990. Martingale-based residuals for survival models. Biometrika 77:147–60
    [Google Scholar]
  55. Tsiatis A. 1990. Estimating regression parameters using linear rank tests for censored data. Ann. Stat. 18:354–72
    [Google Scholar]
  56. Ye Y, Kalbfleisch J, Schaubel D. 2007. Semiparametric analysis of correlated recurrent and terminal events. Biometrics 63:78–87
    [Google Scholar]
  57. Zeng D, Lin DY. 2007. Efficient estimation for the accelerated failure time model. J. Am. Stat. Assoc. 102:1387–96
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-033021-014043
Loading
/content/journals/10.1146/annurev-statistics-033021-014043
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error