1932

Abstract

Advances in information technology have increased the availability of time-stamped relational data, such as those produced by email exchanges or interaction through social media. Whereas the associated information flows could be aggregated into cross-sectional panels, the temporal ordering of the events frequently contains information that requires new models for the analysis of continuous-time interactions, subject to both endogenous and exogenous influences. The introduction of the relational event model (REM) has been a major development that has stimulated new questions and led to further methodological developments. In this review, we track the intellectual history of the REM, define its core properties, and discuss why and how it has been considered useful in empirical research. We describe how the demands of novel applications have stimulated methodological, computational, and inferential advancements.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-040722-060248
2024-04-22
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/statistics/11/1/annurev-statistics-040722-060248.html?itemId=/content/journals/10.1146/annurev-statistics-040722-060248&mimeType=html&fmt=ahah

Literature Cited

  1. Aalen O. 1978.. Nonparametric inference for a family of counting processes. . Ann. Stat. 6:(4):70126
    [Crossref] [Google Scholar]
  2. Aalen O, Borgan Ø, Gjessing H. 2008.. Survival and Event History Analysis: a Process Point of View. New York:: Springer
    [Google Scholar]
  3. Abbott A. 1992.. From causes to events: notes on narrative positivism. . Sociol. Methods Res. 20:(4):42855
    [Crossref] [Google Scholar]
  4. Amati V, Lomi A, Mascia D. 2019.. Some days are better than others: examining time-specific variation in the structuring of interorganizational relations. . Soc. Netw. 57::1833
    [Crossref] [Google Scholar]
  5. Amati V, Lomi A, Mira A. 2018.. Social network modeling. . Annu. Rev. Stat. Appl. 5::34369
    [Crossref] [Google Scholar]
  6. Andersen PK, Borgan Ø, Gill R, Keiding N. 1993.. Statistical Models Based on Counting Processes. New York:: Springer–Verlag
    [Google Scholar]
  7. Andersen PK, Gill RD. 1982.. Cox's regression model for counting processes: a large sample study. . Ann. Stat. 10:(4):110020
    [Crossref] [Google Scholar]
  8. Arena G, Mulder J, Leenders RTA. 2022.. A Bayesian semi-parametric approach for modeling memory decay in dynamic social networks. . Netw. Sci. https://journals.sagepub.com/doi/full/10.1177/00491241221113875
    [Google Scholar]
  9. Arena G, Mulder J, Leenders RTA. 2023.. How fast do we forget our past social interactions? Understanding memory retention with parametric decays in relational event models. . Netw. Sci. 11:(2):26794
    [Crossref] [Google Scholar]
  10. Artico I, Wit EC. 2023.. Dynamic latent space relational event model. . J. R. Stat. Soc. Ser. A 186:(3):50829
    [Crossref] [Google Scholar]
  11. Barabási A. 2016.. Network Science. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  12. Barnes JA, Harary F. 1983.. Graph theory in network analysis. . Soc. Netw. 5:(2):23544
    [Crossref] [Google Scholar]
  13. Bauer V, Harhoff D, Kauermann G. 2021.. A smooth dynamic network model for patent collaboration data. . AStA Adv. Stat. Anal. 106::97116
    [Crossref] [Google Scholar]
  14. Besag JE. 1974.. Spatial interaction and the statistical analysis of lattice systems. . J. R. Stat. Soc. Ser. B 36:(2):192225
    [Crossref] [Google Scholar]
  15. Besag JE. 1975.. Statistical analysis of non-lattice data. . J. R. Stat. Soc. Ser. D 24:(3):17995
    [Google Scholar]
  16. Bianchi F, Lomi A. 2023.. From ties to events in the analysis of interorganizational exchange relations. . Organ. Res. Methods 26:(3):52465
    [Crossref] [Google Scholar]
  17. Bianchi F, Stivala A, Lomi A. 2022.. Multiple clocks in network evolution. . Methodol. Innov. 15:(1):2941
    [Crossref] [Google Scholar]
  18. Borgan Ø, Goldstein L, Langholz B. 1995.. Methods for the analysis of sampled cohort data in the Cox proportional hazards model. . Ann. Stat. 23:(5):174978
    [Crossref] [Google Scholar]
  19. Borgan Ø, Keogh R. 2015.. Nested case-control studies: Should one break the matching?. Lifetime Data Anal. 21:(4):51741
    [Crossref] [Google Scholar]
  20. Borgatti SP, Mehra A, Brass DJ, Labianca G. 2009.. Network analysis in the social sciences. . Science 323:(5916):89295
    [Crossref] [Google Scholar]
  21. Boschi M, Juozaitienisė R, Wit EJC. 2023.. Smooth alien species invasion model with random and time-varying effects. . arXiv:2304.00654 [stat.AP]
  22. Brandenberger L. 2018a.. rem: Relational event models. . R Package, version 1.3.1
    [Google Scholar]
  23. Brandenberger L. 2018b.. Trading favors—examining the temporal dynamics of reciprocity in congressional collaborations using relational event models. . Soc. Netw. 54::23853
    [Crossref] [Google Scholar]
  24. Brandenberger L. 2019.. Predicting network events to assess goodness of fit of relational event models. . Political Anal. 27:(4):55671
    [Crossref] [Google Scholar]
  25. Brandes U, Lerner J, Snijders TAB. 2009.. Networks evolving step by step: Statistical analysis of dyadic event data. . In 2009 International Conference on Advances in Social Network Analysis and Mining, pp. 2005 New York:: IEEE
    [Google Scholar]
  26. Breslow NE. 1972.. Discussion of Professor Cox's paper. . J. R. Stat. Soc. Ser. B 34:(2):21617
    [Google Scholar]
  27. Butts CT. 2008.. A relational event framework for social action. . Sociol. Methodol. 38:(1):155200
    [Crossref] [Google Scholar]
  28. Butts CT. 2009.. Revisiting the foundations of network analysis. . Science 325:(5939):41416
    [Crossref] [Google Scholar]
  29. Butts CT, Lomi A, Snijders TAB, Stadtfeld C. 2023.. Relational event models in network science. . Netw. Sci. 11:(2):17583
    [Crossref] [Google Scholar]
  30. Butts CT, Marcum CS. 2017.. A relational event approach to modeling behavioral dynamics. . In Group Processes: Data Driven Computational Approaches, ed. A Pilny, MS Poole , pp. 5192 New York:: Springer
    [Google Scholar]
  31. Cox DR. 1972.. Regression models and life-tables. . J. R. Stat. Soc. Ser. B 34:(2):187202
    [Crossref] [Google Scholar]
  32. Cox DR. 1975.. Partial likelihood. . Biometrika 62:(2):26976
    [Crossref] [Google Scholar]
  33. Cox DR, Oakes D. 1984.. Analysis of Survival Data. London:: Taylor & Francis
    [Google Scholar]
  34. Cox DR, Snell EJ. 1989.. Analysis of Binary Data. London:: Taylor & Francis
    [Google Scholar]
  35. Cressie NAC. 2015.. Statistics for Spatial Data. New York:: Wiley
    [Google Scholar]
  36. Daley DJ, Vere-Jones D. 2003.. An Introduction to the Theory of Point Processes I: Elementary Theory and Methods. New York:: Springer
    [Google Scholar]
  37. Dempster AP, Laird NM, Rubin DB. 1977.. Maximum likelihood from incomplete data via the EM algorithm. . J. R. Stat. Soc. Ser. B 39:(1):138
    [Crossref] [Google Scholar]
  38. DuBois C, Butts C, Smyth P. 2013a.. Stochastic blockmodeling of relational event dynamics. . In Proceedings of the 16th International Conference on Artificial Intelligence and Statistics (AISTATS), ed. CM Carvalho, P Ravikumar , pp. 23846 Brookline, MA:: Microtome
    [Google Scholar]
  39. DuBois C, Butts CT, McFarland D, Smyth P. 2013b.. Hierarchical models for relational event sequences. . J. Math. Psychol. 57:(6):297309
    [Crossref] [Google Scholar]
  40. Duxbury SW, Haynie DL. 2021.. Shining a light on the shadows: endogenous trade structure and the growth of an online illegal market. . Am. J. Sociol. 127:(3):787827
    [Crossref] [Google Scholar]
  41. Duxbury SW, Haynie DL. 2023.. Network embeddedness in illegal online markets: endogenous sources of prices and profit in anonymous criminal drug trade. . Socio-Econ. Rev. 21:(1):2550
    [Crossref] [Google Scholar]
  42. Elmer T, Stadtfeld C. 2020.. Depressive symptoms are associated with social isolation in face-to-face interaction networks. . Sci. Rep. 10::1444
    [Crossref] [Google Scholar]
  43. Filippi-Mazzola E, Wit EC. 2023.. A stochastic gradient relational event additive model for modelling US patent citations from 1976 until 2022. . arXiv:2303.07961 [stat.CO]
  44. Foucault Welles B, Vashevko A, Bennett N, Contractor N. 2014.. Dynamic models of communication in an online friendship network. . Commun. Methods Measures 8:(4):22343
    [Crossref] [Google Scholar]
  45. Frank O, Strauss D. 1986.. Markov graphs. . J. Am. Stat. Assoc. 81:(395):83242
    [Crossref] [Google Scholar]
  46. Freeman LC, Romney AK, Freeman SC. 1987.. Cognitive structure and informant accuracy. . Am. Anthropol. 89:(2):31025
    [Crossref] [Google Scholar]
  47. Fritz C, Mehrl M, Thurner PW, Kauermann G. 2023.. All that glitters is not gold: relational events models with spurious events. . Netw. Sci. 11:(2):184204
    [Crossref] [Google Scholar]
  48. Fritz C, Thurner PW, Kauermann G. 2021.. Separable and semiparametric network-based counting processes applied to the international combat aircraft trades. . Netw. Sci. 9:(3):291311
    [Crossref] [Google Scholar]
  49. Gibson DR. 2003.. Participation shifts: order and differentiation in group conversation. . Soc. Forces 81:(4):133580
    [Crossref] [Google Scholar]
  50. Gibson DR. 2005.. Taking turns and talking ties: networks and conversational interaction. . Am. J. Sociol. 110:(6):156197
    [Crossref] [Google Scholar]
  51. Gile KJ, Handcock MS. 2017.. Analysis of networks with missing data with application to the national longitudinal study of adolescent health. . J. R. Stat. Soc. Ser. C 66:(3):50119
    [Crossref] [Google Scholar]
  52. Golder SA, Wilkinson DM, Huberman BA. 2007.. Rhythms of social interaction: messaging within a massive online network. . In Communities and Technologies 2007: Proceedings of the Third Communities and Technologies Conference, Michigan State University, ed. C Steinfield, BT Pentland, M Ackerman, N Contractor , pp. 4166. New York:: Springer
    [Google Scholar]
  53. Gravel J, Valasik M, Mulder J, Leenders RTAJ, Butts C, et al. 2023.. Rivalries, reputation, retaliation, and repetition: testing plausible mechanisms for the contagion of violence between street gangs using relational event models. . Netw. Sci. 11:(2):32450
    [Crossref] [Google Scholar]
  54. Hage P. 1979.. Graph theory as a structural model in cultural anthropology. . Annu. Rev. Anthropol. 8:(1):11536
    [Crossref] [Google Scholar]
  55. Hage P, Harary F. 1984.. Structural Models in Anthropology. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  56. Hanneke S, Fu W, Xing EP. 2010.. Discrete temporal models of social networks. . Electron. J. Stat. 5::585605
    [Google Scholar]
  57. Haunss S, Hollway J. 2022.. Multimodal mechanisms of political discourse dynamics and the case of Germany's nuclear energy phase-out. . Netw. Sci. 11:(2):20523
    [Crossref] [Google Scholar]
  58. Hoffman M, Block P, Elmer T, Stadtfeld C. 2020.. A model for the dynamics of face-to-face interactions in social groups. . Netw. Sci. 8:(S1):S425
    [Crossref] [Google Scholar]
  59. Holland PW, Leinhardt S. 1977.. A dynamic model for social networks. . J. Math. Sociol. 5:(1):520
    [Crossref] [Google Scholar]
  60. Holland PW, Leinhardt S. 1981.. An exponential family of probability distributions for directed graphs. . J. Am. Stat. Assoc. 76:(373):3350
    [Crossref] [Google Scholar]
  61. Hunter DR, Goodreau SM, Handcock MS. 2008.. Goodness of fit of social network models. . J. Am. Stat. Assoc. 103:(481):24858
    [Crossref] [Google Scholar]
  62. Jennings HH. 1948.. Sociometry in Group Relations: A Work Guide for Teachers. Washington, DC:: Am. Counc. Educ.
    [Google Scholar]
  63. Juozaitienė R, Seebens H, Latombe G, Essl F, Wit EC. 2023.. Analysing ecological dynamics with relational event models: the case of biological invasions. . arXiv:2303.06362 [stat.AP]
  64. Juozaitienė R, Wit EC. 2022a.. Nodal heterogeneity may induce ghost triadic effects in relational event models. . arXiv:2203.16386 [stat.AP]
  65. Juozaitienė R, Wit EC. 2022b.. Non-parametric estimation of reciprocity and triadic effects in relational event networks. . Soc. Netw. 68::296305
    [Crossref] [Google Scholar]
  66. Keiding N. 2014.. Event history analysis. . Annu. Rev. Stat. Appl. 1::33360
    [Crossref] [Google Scholar]
  67. Kim B, Schein A, Desmarais BA, Wallach H. 2018.. The hyperedge event model. . arXiv:1807.08225 [stat.ME]
  68. Kitts JA, Lomi A, Mascia D, Pallotti F, Quintane E. 2017.. Investigating the temporal dynamics of interorganizational exchange: patient transfers among Italian hospitals. . Am. J. Sociol. 123:(3):850910
    [Crossref] [Google Scholar]
  69. Koskinen J, Snijders TAB. 2023.. Multilevel longitudinal analysis of social networks. . J. R. Stat. Soc. Ser. A 186:(3):376400
    [Crossref] [Google Scholar]
  70. Krivitsky PN, Handcock MS. 2014.. A separable model for dynamic networks. . J. R. Stat. Soc. Ser. B 76:(1):2946
    [Crossref] [Google Scholar]
  71. Laumann EO, Marsden PV, Prensky D. 1989.. The boundary specification problem in network analysis. . In Applied Network Analysis, ed. R Burt, M Minor , pp. 1834 Thousand Oaks, CA:: SAGE
    [Google Scholar]
  72. Leenders RTAJ, Contractor N, DeChurch LA. 2016.. Once upon a time: understanding team processes as relational event networks. . Organ. Psychol. Rev. 6:(1):92115
    [Google Scholar]
  73. Lerner J, Hâncean MG. 2023.. Micro-level network dynamics of scientific collaboration and impact: relational hyperevent models for the analysis of coauthor networks. . Netw. Sci. 11:(1):535
    [Crossref] [Google Scholar]
  74. Lerner J, Lomi A. 2017.. The third man: hierarchy formation in Wikipedia. . Appl. Netw. Sci. 2:(1):224
    [Crossref] [Google Scholar]
  75. Lerner J, Lomi A. 2019.. Team diversity, polarization, and productivity in online peer production. . Soc. Netw. Anal. Min. 9::29
    [Crossref] [Google Scholar]
  76. Lerner J, Lomi A. 2020a.. The free encyclopedia that anyone can dispute: an analysis of the micro-structural dynamics of positive and negative relations in the production of contentious Wikipedia articles. . Soc. Netw. 60::1125
    [Crossref] [Google Scholar]
  77. Lerner J, Lomi A. 2020b.. Reliability of relational event model estimates under sampling: how to fit a relational event model to 360 million dyadic events. . Netw. Sci. 8:(1):97135
    [Crossref] [Google Scholar]
  78. Lerner J, Lomi A. 2023.. Relational hyperevent models for polyadic interaction networks. . J. R. Stat. Soc. Ser. A 186:(3):577600
    [Crossref] [Google Scholar]
  79. Lerner J, Lomi A, Mowbray J, Rollings N, Tranmer M. 2021.. Dynamic network analysis of contact diaries. . Soc. Netw. 66::22436
    [Crossref] [Google Scholar]
  80. Lévi-Strauss C. 1971.. The Elementary Structures of Kinship. Boston:: Beacon
    [Google Scholar]
  81. Lomi A, Bianchi F. 2021.. A time to give and a time to receive: role switching and generalized exchange in a financial market. . Soc. Netw. In press. https://doi.org/10.1016/j.socnet.2021.11.005
    [Google Scholar]
  82. Lomi A, Mascia D, Vu DQ, Pallotti F, Conaldi G, Iwashyna TJ. 2014.. Quality of care and interhospital collaboration: a study of patient transfers in Italy. . Med. Care 52:(5):40714
    [Crossref] [Google Scholar]
  83. Lospinoso J, Snijders TAB. 2019.. Goodness of fit for stochastic actor-oriented models. . Methodol. Innov. 12:(3). https://doi.org/10.1177/2059799119884282
    [Google Scholar]
  84. Marcum CS, Butts CT. 2015.. Constructing and modifying sequence statistics for relevent using informR in R. . J. Stat. Softw. 64:(5):136
    [Crossref] [Google Scholar]
  85. Marsden PV. 1990.. Network data and measurement. . Annu. Rev. Sociol. 16::43563
    [Crossref] [Google Scholar]
  86. Matias C, Rebafka T, Villers F. 2018.. A semiparametric extension of the stochastic block model for longitudinal networks. . Biometrika 105:(3):66580
    [Crossref] [Google Scholar]
  87. McFadden D. 1973.. Conditional logit analysis of qualitative choice behaviour. . In Frontiers in Econometrics, ed. P Zarembka , pp. 10542 New York:: Academic
    [Google Scholar]
  88. Meijerink-Bosman M, Back M, Geukes K, Leenders RTAJ, Mulder J. 2022a.. Discovering trends of social interaction behavior over time: an introduction to relational event modeling. . Behav. Res. Methods 55:(3):9971023
    [Crossref] [Google Scholar]
  89. Meijerink-Bosman M, Leenders RTAJ, Mulder J. 2022b.. Dynamic relational event modeling: testing, exploring, and applying. . PLOS ONE 17:(8):e0272309
    [Crossref] [Google Scholar]
  90. Meyer PA. 1962.. A decomposition theorem for supermartingales. . Ill. J. Math. 6:(2):193205
    [Google Scholar]
  91. Moreno JL. 1934.. Who Shall Survive?: A New Approach to the Problem of Human Interrelations. Washington, DC:: Nerv. Ment. Dis. Publ. Co.
    [Google Scholar]
  92. Mulder J, Hoff PD. 2021.. A latent variable model for relational events with multiple receivers. . arXiv:2101.05135 [stat.ME]
  93. Mulder J, Leenders RTAJ. 2019.. Modeling the evolution of interaction behavior in social networks: a dynamic relational event approach for real-time analysis. . Chaos Solitons Fractals 119::7385
    [Crossref] [Google Scholar]
  94. Nelson W. 1972.. Theory and applications of hazard plotting for censored failure data. . Technometrics 14:(4):94566
    [Crossref] [Google Scholar]
  95. Niezink NM, Campana P. 2022.. When things turn sour: a network event study of organized crime violence. . J. Quant. Criminol. https://doi.org/10.1007/s10940-022-09540-1
    [Google Scholar]
  96. Pallotti F, Weldon SM, Lomi A. 2022.. Lost in translation: collecting and coding data on social relations from audio-visual recordings. . Soc. Netw. 69::10212
    [Crossref] [Google Scholar]
  97. Patison KP, Quintane E, Swain DL, Robins G, Pattison P. 2015.. Time is of the essence: an application of a relational event model for animal social networks. . Behav. Ecol. Sociobiol. 69:(5):84155
    [Crossref] [Google Scholar]
  98. Pattison P, Robins G. 2002.. Neighborhood-based models for social networks. . Sociol. Methodol. 32:(1):30137
    [Crossref] [Google Scholar]
  99. Perry PO, Wolfe PJ. 2013.. Point process modelling for directed interaction networks. . J. R. Stat. Soc. Ser. B 75:(5):82149
    [Crossref] [Google Scholar]
  100. Pilny A, Proulx JD, Dinh L, Bryan AL. 2017.. An adapted structurational framework for the emergence of communication networks. . Commun. Stud. 68:(1):7294
    [Crossref] [Google Scholar]
  101. Pilny A, Schecter A, Poole MS, Contractor N. 2016.. An illustration of the relational event model to analyze group interaction processes. . Group Dyn. Theory Res. Pract. 20:(3):18195
    [Crossref] [Google Scholar]
  102. Pinheiro J, Bates D. 2006.. Mixed-Effects Models in S and S-PLUS. New York:: Springer-Verlag
    [Google Scholar]
  103. Quintane E, Carnabuci G. 2016.. How do brokers broker? Tertius gaudens, tertius iungens, and the temporality of structural holes. . Organ. Sci. 27:(6):134360
    [Crossref] [Google Scholar]
  104. Quintane E, Conaldi G, Tonellato M, Lomi A. 2014.. Modeling relational events: a case study on an open source software project. . Organ. Res. Methods 17:(1):2350
    [Crossref] [Google Scholar]
  105. Quintane E, Pattison P, Robins G, Mol JM. 2013.. Short- and long-term stability in organizational networks: temporal structures of project teams. . Soc. Netw. 35:(4):52840
    [Crossref] [Google Scholar]
  106. Rastelli R, Corneli M. 2021.. Continuous latent position models for instantaneous interactions. . arXiv:2103.17146 [stat.ME]
  107. Renshaw SL, Livas SM, Petrescu-Prahova MG, Butts CT. 2022.. Modeling complex interactions in a disrupted environment: relational events in the WTC response. . Netw. Sci. 11:(2):295323
    [Crossref] [Google Scholar]
  108. Robins G, Pattison P, Kalish Y, Lusher D. 2007.. An introduction to exponential random graph (p*) models for social networks. . Soc. Netw. 29:(2):17391
    [Crossref] [Google Scholar]
  109. Schaefer DR, Marcum CS. 2017.. Modeling network dynamics. . In The Oxford Handbook of Social Networks, ed. R Light, J Moody , pp. 25487 Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  110. Schecter A, Pilny A, Leung A, Poole MS, Contractor N. 2018.. Step by step: capturing the dynamics of work team process through relational event sequences. . J. Organ. Behav. 39:(9):116381
    [Crossref] [Google Scholar]
  111. Schecter A, Quintane E. 2021.. The power, accuracy, and precision of the relational event model. . Organ. Res. Methods 24:(4):80229
    [Crossref] [Google Scholar]
  112. Schweinberger M, Krivitsky PN, Butts CT, Stewart JR. 2020.. Exponential-family models of random graphs: inference in finite, super and infinite population scenarios. . Stat. Sci. 34:(4):62762
    [Google Scholar]
  113. Snijders TAB. 1996.. Stochastic actor-oriented models for network change. . J. Math. Sociol. 21:(1-2):14972
    [Crossref] [Google Scholar]
  114. Snijders TAB. 2001.. The statistical evaluation of social network dynamics. . Sociol. Methodol. 31:(1):36195
    [Crossref] [Google Scholar]
  115. Snijders TAB. 2005.. Models for longitudinal network data. . In Models and Methods in Social Network Analysis 1, ed. PJ Carrington, J Scott, S Wasserman , pp. 21547 Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  116. Snijders TAB. 2017.. Stochastic actor-oriented models for network dynamics. . Annu. Rev. Stat. Appl. 4::34363
    [Crossref] [Google Scholar]
  117. Snijders TAB, Koskinen J, Schweinberger M. 2010a.. Maximum likelihood estimation for social network dynamics. . Ann. Appl. Stat. 4:(2):56788
    [Crossref] [Google Scholar]
  118. Snijders TAB, Pattison P, Robins G, Handcock MS. 2006.. New specifications for exponential random graph models. . Sociol. Methodol. 36:(1):99153
    [Crossref] [Google Scholar]
  119. Snijders TAB, Van de Bunt GG, Steglich C. 2010b.. Introduction to stochastic actor-based models for network dynamics. . Soc. Netw. 32:(1):4460
    [Crossref] [Google Scholar]
  120. Stadtfeld C, Block P. 2017.. Interactions, actors, and time: dynamic network actor models for relational events. . Sociol. Sci. 4::31852
    [Crossref] [Google Scholar]
  121. Stadtfeld C, Geyer-Schulz A. 2011.. Analyzing event stream dynamics in two-mode networks: an exploratory analysis of private communication in a question and answer community. . Soc. Netw. 33:(4):25872
    [Crossref] [Google Scholar]
  122. Stadtfeld C, Hollway J, Block P. 2017.. Dynamic network actor models: investigating coordination ties through time. . Sociol. Methodol. 47:(1). https://doi.org/10.1177/0081175017709295
    [Google Scholar]
  123. Stadtfeld C, Vörös A, Elmer T, Boda Z, Raabe IJ. 2019.. Integration in emerging social networks explains academic failure and success. . PNAS 116:(3):79297
    [Crossref] [Google Scholar]
  124. Stehlé J, Voirin N, Barrat A, Cattuto C, Isella L, et al. 2011.. High-resolution measurements of face-to-face contact patterns in a primary school. . PLOS ONE 6:(8):e23176
    [Crossref] [Google Scholar]
  125. Thomas DC. 1981.. General relative-risk models for survival time and matched case-control analysis. . Biometrics 37:(4):67386
    [Crossref] [Google Scholar]
  126. Tonellato M, Tasselli S, Conaldi G, Lerner J, Lomi A. 2023.. A microstructural approach to self-organizing: the emergence of attention networks. . Organ. Sci. In press
    [Google Scholar]
  127. Tranmer M, Marcum CS, Morton FB, Croft DP, de Kort SR. 2015.. Using the relational event model (REM) to investigate the temporal dynamics of animal social networks. . Anim. Behav. 101::99105
    [Crossref] [Google Scholar]
  128. Tuma NB, Hannan MT. 1984.. Social Dynamics Models and Methods. San Diego, CA:: Harcourt Brace Jovanovic
    [Google Scholar]
  129. Uzaheta A, Amati V, Stadtfeld C. 2023.. Random effects in dynamic network actor models. . Netw. Sci. 11:(2):24966
    [Crossref] [Google Scholar]
  130. Vieira F, Leenders RTAJ, McFarland D, Mulder J. 2022.. Bayesian mixed-effect models for independent dynamic social network data. . arXiv:2204.10676 [stat.ME]
    [Google Scholar]
  131. Vinciotti V, Wit E. 2017.. Preface to the themed issue on “Networks and Society. J. R. Stat. Soc. Ser. C 66:(3):45153
    [Crossref] [Google Scholar]
  132. Vu DQ, Lomi A, Mascia D, Pallotti F. 2017.. Relational event models for longitudinal network data with an application to interhospital patient transfers. . Stat. Med. 36:(14):226587
    [Crossref] [Google Scholar]
  133. Vu DQ, Pattison P, Robins G. 2015.. Relational event models for social learning in MOOCS. . Soc. Netw. 43::12135
    [Crossref] [Google Scholar]
  134. Wang P, Robins G, Pattison P, Lazega E. 2013.. Exponential random graph models for multilevel networks. . Soc. Netw. 35:(1):96115
    [Crossref] [Google Scholar]
  135. Wasserman S, Pattison P. 1996.. Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p*. . Psychometrika 61:(3):40125
    [Crossref] [Google Scholar]
  136. White HC. 1963.. An Anatomy of Kinship: Mathematical Models for Structures of Cumulated Roles. Hoboken, NJ:: Prentice-Hall
    [Google Scholar]
  137. Wood SN. 2017.. Generalized Additive Models: An Introduction with R. Boca Raton, FL:: CRC Press, 2nd ed.
    [Google Scholar]
  138. Wu L, Waber BN, Aral S, Brynjolfsson E, Pentland A. 2008.. Mining face-to-face interaction networks using sociometric badges: predicting productivity in an IT configuration task. . SSRN. https://ssrn.com/abstract=1130251
    [Google Scholar]
  139. Zachrison KS, Amati V, Schwamm LH, Yan Z, Nielsen V, et al. 2022.. Influence of hospital characteristics on hospital transfer destinations for patients with stroke. . Circ. Cardiovasc. Q. Outcomes 15:(5):e008269
    [Google Scholar]
  140. Zappa P, Vu DQ. 2021.. Markets as networks evolving step by step: relational event models for the interbank market. . Phys. A Stat. Mech. Appl. 565:(C):125557
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-statistics-040722-060248
Loading
/content/journals/10.1146/annurev-statistics-040722-060248
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error