This paper reviews literature, current concepts and approaches in computational anatomy (CA). The model of CA is a Grenander deformable template, an orbit generated from a template under groups of diffeomorphisms. The metric space of all anatomical images is constructed from the geodesic connecting one anatomical structure to another in the orbit. The variational problems specifying these metrics are reviewed along with their associated Euler-Lagrange equations. The Euler equations of motion derived by Arnold for the geodesics in the group of divergence-free volume-preserving diffeomorphisms of incompressible fluids are generalized for the larger group of diffeomorphisms used in CA with nonconstant Jacobians. Metrics that accommodate photometric variation are described extending the anatomical model to incorporate the construction of neoplasm. Metrics on landmarked shapes are reviewed as well as Joshi's diffeomorphism metrics, Bookstein's thin-plate spline approximate-metrics, and Kendall's affine invariant metrics. We conclude by showing recent experimental results from the Toga & Thompson group in growth, the Van Essen group in macaque and human cortex mapping, and the Csernansky group in hippocampus mapping for neuropsychiatric studies in aging and schizophrenia.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error