1932

Abstract

Two sensory rhodopsins (SRI and SRII) mediate color-sensitive phototaxis responses in halobacteria. These seven-helix receptor proteins, structurally and functionally similar to animal visual pigments, couple retinal photoisomerization to receptor activation and are complexed with membrane-embedded transducer proteins (HtrI and HtrII) that modulate a cytoplasmic phosphorylation cascade controlling the flagellar motor. The Htr proteins resemble the chemotaxis transducers from . The SR-Htr signaling complexes allow studies of the biophysical chemistry of signal generation and relay, from the photobiophysics of initial excitation of the receptors to the final output at the level of the flagellar motor switch, revealing fundamental principles of sensory transduction and more broadly the nature of dynamic interactions between membrane proteins. We review here recent advances that have led to new insights into the molecular mechanism of signaling by these membrane complexes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biophys.26.1.223
1997-06-01
2024-12-11
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.biophys.26.1.223
Loading
/content/journals/10.1146/annurev.biophys.26.1.223
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error