The OB-fold domain is a compact structural motif frequently used for nucleic acid recognition. Structural comparison of all OB-fold/nucleic acid complexes solved to date confirms the low degree of sequence similarity among members of this family while highlighting several structural sequence determinants common to most of these OB-folds. Loops connecting the secondary structural elements in the OB-fold core are extremely variable in length and in functional detail. However, certain features of ligand binding are conserved among OB-fold complexes, including the location of the binding surface, the polarity of the nucleic acid with respect to the OB-fold, and particular nucleic acid–protein interactions commonly used for recognition of single-stranded and unusually structured nucleic acids. Intriguingly, the observation of shared nucleic acid polarity may shed light on the longstanding question concerning OB-fold origins, indicating that it is unlikely that members of this family arose via convergent evolution.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allison TJ, Wood TC, Briercheck DM, Rastinejad F, Richardson JP, Rule GS. 1998. Crystal structure of the RNA-binding domain from transcription termination factor rho.. Nat. Struct. Biol. 5:352–56 [Google Scholar]
  2. Anderson EM, Halsey WH, Wuttke DS. 2002. Delineation of the high-affinity single-stranded telomeric DNA-binding domain of S. cerevisiae Cdc13.. Nucleic Acids Res. 30:4305–13 [Google Scholar]
  3. Anderson EM, Halsey WH, Wuttke DS. 2002. Site-directed mutagenesis reveals the thermodynamic requirements for single-stranded DNA recognition by the telomere-binding protein Cdc13.. Biochemistry 42: In press [Google Scholar]
  4. Antson AA. 2000. Single stranded RNA binding proteins.. Curr. Opin. Struct. Biol. 10:87–94 [Google Scholar]
  5. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution.. Science 289:905–20 [Google Scholar]
  6. Bastin-Shanower SA, Brill SJ. 2001. Functional analysis of the four DNA binding domains of replication protein A.. The role of RPA2 in ssDNA binding J. Biol. Chem. 276:36446–53 [Google Scholar]
  7. Battiste JL, Pestova TV, Hellen CUT, Wagner G. 2000. The eIF1A solution structure reveals a large RNA-binding surface important for scanning function.. Mol. Cell 5:109–19 [Google Scholar]
  8. Berthet-Colominas C, Seignovert L, Härtlein M, Grotli M, Cusack S, Leberman R. 1998. The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate: the mechanism of discrimination between asparagine and aspartic acid.. EMBO J. 17:2947–60 [Google Scholar]
  9. Bochkareva E, Belegu V, Korolev S, Bochkarev A. 2001. Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding.. EMBO J. 20:612–18 [Google Scholar]
  10. Bochkarev A, Bochkareva E, Frappier L, Edwards AM. 1999. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding.. EMBO J. 18:4498–504 [Google Scholar]
  11. Bochkareva E, Korolev S, Lees-Miller SP, Bochkarev A. 2002. Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA.. EMBO J. 21:1855–63 [Google Scholar]
  12. Bochkarev A, Pfuetzner RA, Edwards AM, Frappier L. 1997. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA.. Nature 385:176–81 [Google Scholar]
  13. Bogden CE, Fass D, Bergman N, Nichols MD, Berger JM. 1999. The structural basis for terminator recognition by the rho transcription termination factor.. Mol. Cell 3:487–93 [Google Scholar]
  14. Brennan CA, Dombroski AJ, Platt T. 1987. Transcription termination factor rho is an RNA-DNA helicase.. Cell 48:945–52 [Google Scholar]
  15. Briercheck DM, Wood TC, Allison TJ, Richardson JP, Rule GS. 1998. The NMR structure of the RNA binding domain of E. coli rho factor suggests possible RNA-protein interactions.. Nat. Struct. Biol. 5:393–99 [Google Scholar]
  16. Brodersen DE, Clemons WM Jr, Carter AP, Wimberly BT, Ramakrishnan V. 2002. Crystal structure of the 30S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16S RNA.. J. Mol. Biol. 316:725–68 [Google Scholar]
  17. Bycroft M, Hubbard TJP, Proctor M, Freund SMV, Murzin AG. 1997. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold.. Cell 88:235–42 [Google Scholar]
  18. Carter AP, Clemons WM Jr, Brodersen DE, Morgan-Warren RJ, Hartsch T. et al. 2001. Crystal structure of an initiation factor bound to the 30S ribosomal subunit.. Science 291:498–501 [Google Scholar]
  19. Cavarelli J, Rees B, Ruff M, Thierry J-C, Moras D. 1993. Yeast tRNAAsp recognition by its cognate class II aminoacyl-tRNA synthetase.. Nature 362:181–84 [Google Scholar]
  20. Chédin F, Seitz EM, Kowalczykowski SC. 1998. Novel homologs of replication protein A in archaea: implications for the evolution of ssDNA-binding proteins.. Trends Biochem. Sci. 23:273–77 [Google Scholar]
  21. Classen S, Ruggles JA, Schultz SC. 2001. Crystal structure of the N-terminal domain of Oxytricha nova telomere end-binding protein α subunit both uncomplexed and complexed with telomeric ssDNA.. J. Mol. Biol. 314:1113–25 [Google Scholar]
  22. Commans S, Plateau P, Blanquet S, Dardel F. 1995. Solution structure of the anticodon-binding domain of Escherichia coli lysyl-tRNA synthetase and studies of its interaction with tRNALys.. J. Mol. Biol. 253:100–13 [Google Scholar]
  23. Diedrich G, Spahn CMT, Stelzl U, Schäfer MA, Wooten T. et al. 2000. Ribosomal protein L2 is involved in the association of the ribosomal subunits, tRNA binding to A and P sites and peptidyl transfer.. EMBO J. 19:5241–50 [Google Scholar]
  24. Dolan JW, Marshall NF, Richardson JP. 1990. Transcription termination factor rho has three distinct structural domains.. J. Biol. Chem. 265:5747–54 [Google Scholar]
  25. Dombroski AJ, Platt T. 1988. Structure of rho factor: an RNA-binding domain and a separate region with strong similarity to proven ATP-binding domains.. Proc. Natl. Acad. Sci. USA 85:2538–42 [Google Scholar]
  26. Egebjerg J, Christiansen J, Garrett RA. 1991. Attachment sites of primary binding proteins L1, L2 and L23 on 23S ribosomal RNA of Escherichia coli.. J. Mol. Biol. 222:251–64 [Google Scholar]
  27. Eiler S, Dock-Bregeon A-C, Moulinier L, Thierry J-C, Moras D. 1999. Synthesis of aspartyl-tRNAAsp in Escherichia coli—a snapshot of the second step.. EMBO J. 18:6532–41 [Google Scholar]
  28. Evans SK, Lundblad V. 1999. Est1 and Cdc13 as comediators of telomerase access.. Science 286:117–20 [Google Scholar]
  29. Froelich-Ammon SJ, Dickinson BA, Bevilacqua JM, Schultz SC, Cech TR. 1998. Modulation of telomerase activity by telomere DNA-binding proteins in Oxytricha.. Genes Dev. 12:1504–14 [Google Scholar]
  30. Garvik B, Carson M, Hartwell L. 1995. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint.. Mol. Cell Biol. 15:6128–38 [Google Scholar]
  31. Golden BL, Hoffman DW, Ramakrishnan V, White SW. 1993. Ribosomal protein S17: characterization of the three-dimensional structure by 1H NMR and 15N NMR.. Biochemistry 32:12812–20 [Google Scholar]
  32. Goldgur Y, Mosyak L, Reshetnikova L, Ankilova V, Lavrik O. et al. 1997. The crystal structure of phenylalanyl-tRNA synthetase from Thermus thermophilus complexed with cognate tRNAPhe.. Structure 5:59–68 [Google Scholar]
  33. Gottschling DE, Zakian VA. 1986. Telomere proteins: specific recognition and protection of the natural termini of Oxytricha macronuclear DNA.. Cell 47:195–205 [Google Scholar]
  34. Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S. et al. 2001. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium.. Cell 107:679–88 [Google Scholar]
  35. Horvath MP, Schultz SC. 2001. DNA G-quartets in a 1.86 Å resolution structure of an Oxytricha nova telomeric protein-DNA complex.. J. Mol. Biol. 310:367–77 [Google Scholar]
  36. Horvath MP, Schweiker VL, Bevilacqua JM, Ruggles JA, Schultz SC. 1998. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA.. Cell 95:963–74 [Google Scholar]
  37. Hubbard SJ, Thornton JM. 1993. NACCESS, computer program. London: Dep. Biochem. Mol. Biol., University College [Google Scholar]
  38. Hughes TR, Weilbaecher RG, Walterscheid M, Lundblad V. 2000. Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein.. Proc. Natl. Acad. Sci. USA 97:6457–62 [Google Scholar]
  39. Iftode C, Daniely Y, Borowiec JA. 1999. Replication protein A (RPA): the eukaryotic SSB.. Crit. Rev. Biochem. Mol. Biol. 34:141–80 [Google Scholar]
  40. Jacobs DM, Lipton AS, Isern NG, Daughdrill GW, Lowry DF. et al. 1999. Human replication protein A: Global fold of the N-terminal RPA-70 domain reveals a basic cleft and flexible C-terminal linker.. J. Biol. NMR 14:321–31 [Google Scholar]
  41. Jaishree TN, Ramakrishnan V, White SW. 1996. Solution structure of prokaryotic ribosomal protein S17 by high-resolution NMR spectroscopy.. Biochemistry 35:2845–53 [Google Scholar]
  42. Kelly TJ, Simancek P, Brush GS. 1998. Identification and characterization of a single-stranded DNA-binding protein from the archaeon Methanococcus jannaschii.. Proc. Natl. Acad. Sci. USA 95:14634–39 [Google Scholar]
  43. Khaitovich P, Mankin AS, Green R, Lancaster L, Noller HF. 1999. Characterization of functionally active subribosomal particles from Thermus aquaticus.. Proc. Natl. Acad. Sci. USA 96:85–90 [Google Scholar]
  44. Kim C, Snyder RO, Wold MS. 1992. Binding properties of replication protein A from human and yeast cells.. Mol. Cell Biol. 12:3050–59 [Google Scholar]
  45. Kleywegt GJ. 1996. Use of non-crystallographic symmetry in protein structure refinement.. Acta Crystallogr. D 52:842–57 [Google Scholar]
  46. Kleywegt GJ. 1997. Validation of protein models from Cα coordinates alone.. J. Mol. Biol. 273:371–75 [Google Scholar]
  47. Koradi R, Billeter M, Wüthrich K. 1996. MOLMOL: a program for display and analysis of macromolecular structures.. J. Mol. Graph. 14:51–55 [Google Scholar]
  48. Kraulis PJ. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures.. J. Appl. Crystallogr. 24:946–50 [Google Scholar]
  49. Li W, Hoffman DW. 2001. Structure and dynamics of translation initiation factor aIF-1A from the archaeon Methanococcus jannaschii determined by NMR spectroscopy.. Protein Sci. 10:2426–38 [Google Scholar]
  50. Lin J-J, Zakian VA. 1996. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo.. Proc. Natl. Acad. Sci. USA 93:13760–65 [Google Scholar]
  51. Lohman TM, Ferrari ME. 1994. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities.. Annu. Rev. Biochem. 63:527–70 [Google Scholar]
  52. McGlynn P, Lloyd RG. 2000. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression.. Cell 101:35–45 [Google Scholar]
  53. McGlynn P, Lloyd RG. 2001. Rescue of stalled replication forks by RecG: Simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation.. Proc. Natl. Acad. Sci. USA 98:8227–34 [Google Scholar]
  54. McGlynn P, Mahdi AA, Lloyd RG. 2000. Characterisation of the catalytically active form of RecG helicase.. Nucleic Acids Res. 28:2324–32 [Google Scholar]
  55. Merritt EA, Bacon DJ. 1997. Raster3D: photorealistic molecular graphics.. Methods Enzymol. 277:505–24 [Google Scholar]
  56. Mitton-Fry RM, Anderson EM, Hughes TR, Lundblad V, Wuttke DS. 2002. Conserved structure for single-stranded telomeric DNA recognition.. Science 296:145–47 [Google Scholar]
  57. Murzin AG. 1993. OB (oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences.. EMBO J. 12:861–67 [Google Scholar]
  58. Murzin AG. 1998. How far divergent evolution goes in proteins.. Curr. Opin. Struct. Biol. 8:380–87 [Google Scholar]
  59. Murzin AG, Brenner SE, Hubbard T, Chothia C. 1995. SCOP: a structural classification of proteins database for the investigation of sequences and structures.. J. Mol. Biol. 247:536–40 [Google Scholar]
  60. Nakagawa A, Nakashima T, Taniguchi M, Hosaka H, Kimura M, Tanaka I. 1999. The three-dimensional structure of the RNA-binding domain of ribosomal protein L2; a protein at the peptidyl transferase center of the ribosome.. EMBO J. 18:1459–67 [Google Scholar]
  61. Nugent CI, Hughes TR, Lue NF, Lundblad V. 1996. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance.. Science 274:249–52 [Google Scholar]
  62. Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V. 2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit.. Science 292:897–902 [Google Scholar]
  63. Peersen OB, Ruggles JA, Schultz SC. 2002. Dimeric structure of the Oxytricha nova telomere end-binding protein α-subunit bound to ssDNA.. Nat. Struct. Biol. 9:182–87 [Google Scholar]
  64. Pennock E, Buckley K, Lundblad V. 2001. Cdc13 delivers separate complexes to the telomere for end protection and replication.. Cell 104:387–96 [Google Scholar]
  65. Price CM, Cech TR. 1987. Telomeric DNA-protein interactions of Oxytricha macronuclear DNA.. Genes Dev. 1:783–93 [Google Scholar]
  66. Pütz J, Puglisi JD, Florentz C, Giegé R. 1991. Identity elements for specific aminoacylation of yeast tRNAAsp by cognate aspartyl-tRNA synthetase.. Science 252:1696–99 [Google Scholar]
  67. Raghunathan S, Kozlov AG, Lohman TM, Waksman G. 2000. Structure of the DNA binding domain of E. coli SSB bound to ssDNA.. Nat. Struct. Biol. 7:648–52 [Google Scholar]
  68. Raghunathan S, Ricard CS, Lohman TM, Waksman G. 1997. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-Å resolution.. Proc. Natl. Acad. Sci. USA 94:6652–57 [Google Scholar]
  69. Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A. et al. 1991. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp.. Science 252:1682–89 [Google Scholar]
  70. Russell RB, Barton GJ. 1992. Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels.. Proteins 14:309–23 [Google Scholar]
  71. Sette M, van Tilborg P, Spurio R, Kaptein R, Paci M. et al. 1997. The structure of the translational initiation factor IF1 from E. coli contains an oligomer-binding motif.. EMBO J. 16:1436–43 [Google Scholar]
  72. Shamoo Y, Friedman AM, Parsons MR, Konigsberg WH, Steitz TA. 1995. Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA.. Nature 376:362–66 [Google Scholar]
  73. Singleton MR, Scaife S, Wigley DB. 2001. Structural analysis of DNA replication fork reversal by RecG.. Cell 107:79–89 [Google Scholar]
  74. Suck D. 1997. Common fold, common function, common origin?. Nat. Struct. Biol. 4:161–65 [Google Scholar]
  75. Swofford DL. 2002. PAUP* 4.0—Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, MA: Sinauer Assoc [Google Scholar]
  76. Wang Y, von Hippel PH. 1993. Escherichia coli transcription termination factor rho.. II. Binding of oligonucleotide cofactors J. Biol. Chem. 268:13947–55 [Google Scholar]
  77. Webster G, Genschel J, Curth U, Urbanke C, Kang C, Hilgenfeld R. 1997. A common core for binding single-stranded DNA: structural comparison of the single-stranded DNA-binding proteins (SSB) from E. coli and human mitochondria.. FEBS Lett. 411:313–16 [Google Scholar]
  78. Williamson JR. 2000. Induced fit in RNA-protein recognition.. Nat. Struct. Biol. 7:834–37 [Google Scholar]
  79. Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP. et al. 2000. Structure of the 30S ribosomal subunit.. Nature 407:327–39 [Google Scholar]
  80. Wold MS. 1997. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism.. Annu. Rev. Biochem. 66:61–92 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error