1932

Abstract

The OB-fold domain is a compact structural motif frequently used for nucleic acid recognition. Structural comparison of all OB-fold/nucleic acid complexes solved to date confirms the low degree of sequence similarity among members of this family while highlighting several structural sequence determinants common to most of these OB-folds. Loops connecting the secondary structural elements in the OB-fold core are extremely variable in length and in functional detail. However, certain features of ligand binding are conserved among OB-fold complexes, including the location of the binding surface, the polarity of the nucleic acid with respect to the OB-fold, and particular nucleic acid–protein interactions commonly used for recognition of single-stranded and unusually structured nucleic acids. Intriguingly, the observation of shared nucleic acid polarity may shed light on the longstanding question concerning OB-fold origins, indicating that it is unlikely that members of this family arose via convergent evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biophys.32.110601.142506
2003-06-01
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/biophys/32/1/annurev.biophys.32.110601.142506.html?itemId=/content/journals/10.1146/annurev.biophys.32.110601.142506&mimeType=html&fmt=ahah

Literature Cited

  1. Allison TJ, Wood TC, Briercheck DM, Rastinejad F, Richardson JP, Rule GS. 1998. Crystal structure of the RNA-binding domain from transcription termination factor rho.. Nat. Struct. Biol. 5:352–56 [Google Scholar]
  2. Anderson EM, Halsey WH, Wuttke DS. 2002. Delineation of the high-affinity single-stranded telomeric DNA-binding domain of S. cerevisiae Cdc13.. Nucleic Acids Res. 30:4305–13 [Google Scholar]
  3. Anderson EM, Halsey WH, Wuttke DS. 2002. Site-directed mutagenesis reveals the thermodynamic requirements for single-stranded DNA recognition by the telomere-binding protein Cdc13.. Biochemistry 42: In press [Google Scholar]
  4. Antson AA. 2000. Single stranded RNA binding proteins.. Curr. Opin. Struct. Biol. 10:87–94 [Google Scholar]
  5. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution.. Science 289:905–20 [Google Scholar]
  6. Bastin-Shanower SA, Brill SJ. 2001. Functional analysis of the four DNA binding domains of replication protein A.. The role of RPA2 in ssDNA binding J. Biol. Chem. 276:36446–53 [Google Scholar]
  7. Battiste JL, Pestova TV, Hellen CUT, Wagner G. 2000. The eIF1A solution structure reveals a large RNA-binding surface important for scanning function.. Mol. Cell 5:109–19 [Google Scholar]
  8. Berthet-Colominas C, Seignovert L, Härtlein M, Grotli M, Cusack S, Leberman R. 1998. The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate: the mechanism of discrimination between asparagine and aspartic acid.. EMBO J. 17:2947–60 [Google Scholar]
  9. Bochkareva E, Belegu V, Korolev S, Bochkarev A. 2001. Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding.. EMBO J. 20:612–18 [Google Scholar]
  10. Bochkarev A, Bochkareva E, Frappier L, Edwards AM. 1999. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding.. EMBO J. 18:4498–504 [Google Scholar]
  11. Bochkareva E, Korolev S, Lees-Miller SP, Bochkarev A. 2002. Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA.. EMBO J. 21:1855–63 [Google Scholar]
  12. Bochkarev A, Pfuetzner RA, Edwards AM, Frappier L. 1997. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA.. Nature 385:176–81 [Google Scholar]
  13. Bogden CE, Fass D, Bergman N, Nichols MD, Berger JM. 1999. The structural basis for terminator recognition by the rho transcription termination factor.. Mol. Cell 3:487–93 [Google Scholar]
  14. Brennan CA, Dombroski AJ, Platt T. 1987. Transcription termination factor rho is an RNA-DNA helicase.. Cell 48:945–52 [Google Scholar]
  15. Briercheck DM, Wood TC, Allison TJ, Richardson JP, Rule GS. 1998. The NMR structure of the RNA binding domain of E. coli rho factor suggests possible RNA-protein interactions.. Nat. Struct. Biol. 5:393–99 [Google Scholar]
  16. Brodersen DE, Clemons WM Jr, Carter AP, Wimberly BT, Ramakrishnan V. 2002. Crystal structure of the 30S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16S RNA.. J. Mol. Biol. 316:725–68 [Google Scholar]
  17. Bycroft M, Hubbard TJP, Proctor M, Freund SMV, Murzin AG. 1997. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold.. Cell 88:235–42 [Google Scholar]
  18. Carter AP, Clemons WM Jr, Brodersen DE, Morgan-Warren RJ, Hartsch T. et al. 2001. Crystal structure of an initiation factor bound to the 30S ribosomal subunit.. Science 291:498–501 [Google Scholar]
  19. Cavarelli J, Rees B, Ruff M, Thierry J-C, Moras D. 1993. Yeast tRNAAsp recognition by its cognate class II aminoacyl-tRNA synthetase.. Nature 362:181–84 [Google Scholar]
  20. Chédin F, Seitz EM, Kowalczykowski SC. 1998. Novel homologs of replication protein A in archaea: implications for the evolution of ssDNA-binding proteins.. Trends Biochem. Sci. 23:273–77 [Google Scholar]
  21. Classen S, Ruggles JA, Schultz SC. 2001. Crystal structure of the N-terminal domain of Oxytricha nova telomere end-binding protein α subunit both uncomplexed and complexed with telomeric ssDNA.. J. Mol. Biol. 314:1113–25 [Google Scholar]
  22. Commans S, Plateau P, Blanquet S, Dardel F. 1995. Solution structure of the anticodon-binding domain of Escherichia coli lysyl-tRNA synthetase and studies of its interaction with tRNALys.. J. Mol. Biol. 253:100–13 [Google Scholar]
  23. Diedrich G, Spahn CMT, Stelzl U, Schäfer MA, Wooten T. et al. 2000. Ribosomal protein L2 is involved in the association of the ribosomal subunits, tRNA binding to A and P sites and peptidyl transfer.. EMBO J. 19:5241–50 [Google Scholar]
  24. Dolan JW, Marshall NF, Richardson JP. 1990. Transcription termination factor rho has three distinct structural domains.. J. Biol. Chem. 265:5747–54 [Google Scholar]
  25. Dombroski AJ, Platt T. 1988. Structure of rho factor: an RNA-binding domain and a separate region with strong similarity to proven ATP-binding domains.. Proc. Natl. Acad. Sci. USA 85:2538–42 [Google Scholar]
  26. Egebjerg J, Christiansen J, Garrett RA. 1991. Attachment sites of primary binding proteins L1, L2 and L23 on 23S ribosomal RNA of Escherichia coli.. J. Mol. Biol. 222:251–64 [Google Scholar]
  27. Eiler S, Dock-Bregeon A-C, Moulinier L, Thierry J-C, Moras D. 1999. Synthesis of aspartyl-tRNAAsp in Escherichia coli—a snapshot of the second step.. EMBO J. 18:6532–41 [Google Scholar]
  28. Evans SK, Lundblad V. 1999. Est1 and Cdc13 as comediators of telomerase access.. Science 286:117–20 [Google Scholar]
  29. Froelich-Ammon SJ, Dickinson BA, Bevilacqua JM, Schultz SC, Cech TR. 1998. Modulation of telomerase activity by telomere DNA-binding proteins in Oxytricha.. Genes Dev. 12:1504–14 [Google Scholar]
  30. Garvik B, Carson M, Hartwell L. 1995. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint.. Mol. Cell Biol. 15:6128–38 [Google Scholar]
  31. Golden BL, Hoffman DW, Ramakrishnan V, White SW. 1993. Ribosomal protein S17: characterization of the three-dimensional structure by 1H NMR and 15N NMR.. Biochemistry 32:12812–20 [Google Scholar]
  32. Goldgur Y, Mosyak L, Reshetnikova L, Ankilova V, Lavrik O. et al. 1997. The crystal structure of phenylalanyl-tRNA synthetase from Thermus thermophilus complexed with cognate tRNAPhe.. Structure 5:59–68 [Google Scholar]
  33. Gottschling DE, Zakian VA. 1986. Telomere proteins: specific recognition and protection of the natural termini of Oxytricha macronuclear DNA.. Cell 47:195–205 [Google Scholar]
  34. Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S. et al. 2001. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium.. Cell 107:679–88 [Google Scholar]
  35. Horvath MP, Schultz SC. 2001. DNA G-quartets in a 1.86 Å resolution structure of an Oxytricha nova telomeric protein-DNA complex.. J. Mol. Biol. 310:367–77 [Google Scholar]
  36. Horvath MP, Schweiker VL, Bevilacqua JM, Ruggles JA, Schultz SC. 1998. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA.. Cell 95:963–74 [Google Scholar]
  37. Hubbard SJ, Thornton JM. 1993. NACCESS, computer program. London: Dep. Biochem. Mol. Biol., University College [Google Scholar]
  38. Hughes TR, Weilbaecher RG, Walterscheid M, Lundblad V. 2000. Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein.. Proc. Natl. Acad. Sci. USA 97:6457–62 [Google Scholar]
  39. Iftode C, Daniely Y, Borowiec JA. 1999. Replication protein A (RPA): the eukaryotic SSB.. Crit. Rev. Biochem. Mol. Biol. 34:141–80 [Google Scholar]
  40. Jacobs DM, Lipton AS, Isern NG, Daughdrill GW, Lowry DF. et al. 1999. Human replication protein A: Global fold of the N-terminal RPA-70 domain reveals a basic cleft and flexible C-terminal linker.. J. Biol. NMR 14:321–31 [Google Scholar]
  41. Jaishree TN, Ramakrishnan V, White SW. 1996. Solution structure of prokaryotic ribosomal protein S17 by high-resolution NMR spectroscopy.. Biochemistry 35:2845–53 [Google Scholar]
  42. Kelly TJ, Simancek P, Brush GS. 1998. Identification and characterization of a single-stranded DNA-binding protein from the archaeon Methanococcus jannaschii.. Proc. Natl. Acad. Sci. USA 95:14634–39 [Google Scholar]
  43. Khaitovich P, Mankin AS, Green R, Lancaster L, Noller HF. 1999. Characterization of functionally active subribosomal particles from Thermus aquaticus.. Proc. Natl. Acad. Sci. USA 96:85–90 [Google Scholar]
  44. Kim C, Snyder RO, Wold MS. 1992. Binding properties of replication protein A from human and yeast cells.. Mol. Cell Biol. 12:3050–59 [Google Scholar]
  45. Kleywegt GJ. 1996. Use of non-crystallographic symmetry in protein structure refinement.. Acta Crystallogr. D 52:842–57 [Google Scholar]
  46. Kleywegt GJ. 1997. Validation of protein models from Cα coordinates alone.. J. Mol. Biol. 273:371–75 [Google Scholar]
  47. Koradi R, Billeter M, Wüthrich K. 1996. MOLMOL: a program for display and analysis of macromolecular structures.. J. Mol. Graph. 14:51–55 [Google Scholar]
  48. Kraulis PJ. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures.. J. Appl. Crystallogr. 24:946–50 [Google Scholar]
  49. Li W, Hoffman DW. 2001. Structure and dynamics of translation initiation factor aIF-1A from the archaeon Methanococcus jannaschii determined by NMR spectroscopy.. Protein Sci. 10:2426–38 [Google Scholar]
  50. Lin J-J, Zakian VA. 1996. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo.. Proc. Natl. Acad. Sci. USA 93:13760–65 [Google Scholar]
  51. Lohman TM, Ferrari ME. 1994. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities.. Annu. Rev. Biochem. 63:527–70 [Google Scholar]
  52. McGlynn P, Lloyd RG. 2000. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression.. Cell 101:35–45 [Google Scholar]
  53. McGlynn P, Lloyd RG. 2001. Rescue of stalled replication forks by RecG: Simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation.. Proc. Natl. Acad. Sci. USA 98:8227–34 [Google Scholar]
  54. McGlynn P, Mahdi AA, Lloyd RG. 2000. Characterisation of the catalytically active form of RecG helicase.. Nucleic Acids Res. 28:2324–32 [Google Scholar]
  55. Merritt EA, Bacon DJ. 1997. Raster3D: photorealistic molecular graphics.. Methods Enzymol. 277:505–24 [Google Scholar]
  56. Mitton-Fry RM, Anderson EM, Hughes TR, Lundblad V, Wuttke DS. 2002. Conserved structure for single-stranded telomeric DNA recognition.. Science 296:145–47 [Google Scholar]
  57. Murzin AG. 1993. OB (oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences.. EMBO J. 12:861–67 [Google Scholar]
  58. Murzin AG. 1998. How far divergent evolution goes in proteins.. Curr. Opin. Struct. Biol. 8:380–87 [Google Scholar]
  59. Murzin AG, Brenner SE, Hubbard T, Chothia C. 1995. SCOP: a structural classification of proteins database for the investigation of sequences and structures.. J. Mol. Biol. 247:536–40 [Google Scholar]
  60. Nakagawa A, Nakashima T, Taniguchi M, Hosaka H, Kimura M, Tanaka I. 1999. The three-dimensional structure of the RNA-binding domain of ribosomal protein L2; a protein at the peptidyl transferase center of the ribosome.. EMBO J. 18:1459–67 [Google Scholar]
  61. Nugent CI, Hughes TR, Lue NF, Lundblad V. 1996. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance.. Science 274:249–52 [Google Scholar]
  62. Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V. 2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit.. Science 292:897–902 [Google Scholar]
  63. Peersen OB, Ruggles JA, Schultz SC. 2002. Dimeric structure of the Oxytricha nova telomere end-binding protein α-subunit bound to ssDNA.. Nat. Struct. Biol. 9:182–87 [Google Scholar]
  64. Pennock E, Buckley K, Lundblad V. 2001. Cdc13 delivers separate complexes to the telomere for end protection and replication.. Cell 104:387–96 [Google Scholar]
  65. Price CM, Cech TR. 1987. Telomeric DNA-protein interactions of Oxytricha macronuclear DNA.. Genes Dev. 1:783–93 [Google Scholar]
  66. Pütz J, Puglisi JD, Florentz C, Giegé R. 1991. Identity elements for specific aminoacylation of yeast tRNAAsp by cognate aspartyl-tRNA synthetase.. Science 252:1696–99 [Google Scholar]
  67. Raghunathan S, Kozlov AG, Lohman TM, Waksman G. 2000. Structure of the DNA binding domain of E. coli SSB bound to ssDNA.. Nat. Struct. Biol. 7:648–52 [Google Scholar]
  68. Raghunathan S, Ricard CS, Lohman TM, Waksman G. 1997. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-Å resolution.. Proc. Natl. Acad. Sci. USA 94:6652–57 [Google Scholar]
  69. Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A. et al. 1991. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp.. Science 252:1682–89 [Google Scholar]
  70. Russell RB, Barton GJ. 1992. Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels.. Proteins 14:309–23 [Google Scholar]
  71. Sette M, van Tilborg P, Spurio R, Kaptein R, Paci M. et al. 1997. The structure of the translational initiation factor IF1 from E. coli contains an oligomer-binding motif.. EMBO J. 16:1436–43 [Google Scholar]
  72. Shamoo Y, Friedman AM, Parsons MR, Konigsberg WH, Steitz TA. 1995. Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA.. Nature 376:362–66 [Google Scholar]
  73. Singleton MR, Scaife S, Wigley DB. 2001. Structural analysis of DNA replication fork reversal by RecG.. Cell 107:79–89 [Google Scholar]
  74. Suck D. 1997. Common fold, common function, common origin?. Nat. Struct. Biol. 4:161–65 [Google Scholar]
  75. Swofford DL. 2002. PAUP* 4.0—Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, MA: Sinauer Assoc [Google Scholar]
  76. Wang Y, von Hippel PH. 1993. Escherichia coli transcription termination factor rho.. II. Binding of oligonucleotide cofactors J. Biol. Chem. 268:13947–55 [Google Scholar]
  77. Webster G, Genschel J, Curth U, Urbanke C, Kang C, Hilgenfeld R. 1997. A common core for binding single-stranded DNA: structural comparison of the single-stranded DNA-binding proteins (SSB) from E. coli and human mitochondria.. FEBS Lett. 411:313–16 [Google Scholar]
  78. Williamson JR. 2000. Induced fit in RNA-protein recognition.. Nat. Struct. Biol. 7:834–37 [Google Scholar]
  79. Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP. et al. 2000. Structure of the 30S ribosomal subunit.. Nature 407:327–39 [Google Scholar]
  80. Wold MS. 1997. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism.. Annu. Rev. Biochem. 66:61–92 [Google Scholar]
/content/journals/10.1146/annurev.biophys.32.110601.142506
Loading
/content/journals/10.1146/annurev.biophys.32.110601.142506
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error