1932

Abstract

Molecular interactions are the language that molecules use to communicate recognition, binding, and regulation, events central to biological control mechanisms. Traditionally, such interactions involve direct, atom-to-atom, noncovalent contacts, or indirect contacts bridged by relatively fixed solvent molecules. Here we discuss a third class of molecular communication that, to date, has received less experimental attention, namely solvent-mediated communication between noncontacting macromolecules. This form of communication can be understood in terms of fundamental, well-established principles (coupled equilibria and linkage thermodynamics) that govern interactions between individual polymers and their solutions. In contrast to simple solutions used in laboratory studies, biological systems contain a multitude of nominally noninteracting biopolymers within the same solution environment. The exquisite control of biological function requires some form of communication between many of these solution components, even in the absence of direct and/or indirect contacts. Such communication must be considered when describing potential mechanisms of biological regulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biophys.33.110502.133332
2005-06-09
2024-12-04
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.biophys.33.110502.133332
Loading
/content/journals/10.1146/annurev.biophys.33.110502.133332
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error