1932

Abstract

Helicases and remodeling enzymes are ATP-dependent motor proteins that play a critical role in every aspect of RNA and DNA metabolism. Most RNA-remodeling enzymes are members of helicase superfamily 2 (SF2), which includes many DNA helicase enzymes that display similar structural and mechanistic features. Although SF2 enzymes are typically called helicases, many of them display other types of functions, including single-strand translocation, strand annealing, and protein displacement. There are two mechanisms by which RNA helicase enzymes unwind RNA: The nonprocessive DEAD group catalyzes local unwinding of short duplexes adjacent to their binding sites. Members of the processive DExH group often translocate along single-stranded RNA and displace paired strands (or proteins) in their path. In the latter case, unwinding is likely to occur by an active mechanism that involves Brownian motor function and stepwise translocation along RNA. Through structural and single-molecule investigations, researchers are developing coherent models to explain the functions and dynamic motions of helicase enzymes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biophys.37.032807.125908
2008-06-09
2024-06-14
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.biophys.37.032807.125908
Loading
/content/journals/10.1146/annurev.biophys.37.032807.125908
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error