1932

Abstract

Oligosaccharides play a crucial role in many of the recognition, signaling, and adhesion events that take place at the surface of cells. Abnormalities in the synthesis or presentation of these carbohydrates can lead to misfolded and inactive proteins, as well as to several debilitating disease states. However, their diverse structures, which are the key to their function, have hampered studies by biologists and chemists alike. This review presents an overview of techniques for examining and manipulating cell surface oligosaccharides through genetic, enzymatic, and chemical strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.cellbio.17.1.1
2001-11-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/17/1/annurev.cellbio.17.1.1.html?itemId=/content/journals/10.1146/annurev.cellbio.17.1.1&mimeType=html&fmt=ahah

Literature Cited

  1. Bagriaaik EU, Miller KS. 1999. Cell surface sialic acid and the regulation of immune cell interactions: the neuraminidase effect reconsidered.. Glycobiology 9:267–75 [Google Scholar]
  2. Barran P, Fellinger W, Warren CE, Dennis JW, Ziltener HJ. 1997. Modification on CD43 and other lymphocyte O-glycoproteins by core 2 N-acetylglucosaminyltransferase.. Glycobiology 7:129–36 [Google Scholar]
  3. Bruckner K, Perez L, Clausen H, Cohen S. 2000. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions.. Nature 406:411–15 [Google Scholar]
  4. Byrd JC, Dahiya R, Huang J, Kim YS. 1995. Inhibition of mucin synthesis by benzyl-αGalNAc in KATO III gastric cancer and Caco-2 colon cancer cells.. Eur. J. Cancer 31A:1498–505 [Google Scholar]
  5. Collins BE, Fralich TJ, Itonori S, Ichikawa Y, Schnaar RL. 2000. Conversion of cellular sialic acid expression from N-acetyl- to N-glycolylneuraminic acid using a synthetic precursor, N-glycolylmannosamine pentaacetate: inhibition of myelin-associated glycoprotein binding to neural cells.. Glycobiology 10:11–20 [Google Scholar]
  6. Comer FI, Hart GW. 2000. O-glycosylation of nuclear and cytosolic proeins.. J. Biol. Chem. 275:29179–82 [Google Scholar]
  7. Cook GMW. 1995. Glycobiology of the cell surface: the emergence of sugars as an important feature of the cell periphery.. Glycobiology 5:449–58 [Google Scholar]
  8. Dennis JW, Granovsky M, Warren CE. 1999. Protein glycosylation in development and disease.. BioEssays 21:412–21 [Google Scholar]
  9. De Vries T, Palcic MM, Schoenmakers PS, Van Den Eijnden DH, Joziasse DH. 1997. Acceptor specificity of GDP-Fuc:Galβ1–4GlcNAc-R α3-fucosyltransferase VI (Fuc-TVI) expressed in insect cells as a soluble, secreted enzyme.. Glycobiology 7:921–27 [Google Scholar]
  10. Dwek RA. 1996. Glycobiology—toward understanding the function of sugars.. Chem. Rev. 96:683–720 [Google Scholar]
  11. Eason PD, Imperiali B. 1999. A potent oligosaccharyl transferase inhibitor that crosses the intracellular endoplasmic reticulum membrane.. Biochemistry 38(17):5430–37 [Google Scholar]
  12. Elbein AD. 1987. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains.. Annu. Rev. Biochem. 56:497–534 [Google Scholar]
  13. Elbein AD. 1991. Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing.. FASEB J. 5:3055–63 [Google Scholar]
  14. Ernst B, Oehrlein R. 1999. Substrate and donor specificity of glycosyl transferases.. Glycoconjugate J. 16:161–70 [Google Scholar]
  15. Galili U, Anaraki F. 1995. α-Galactosyl (Galα1-3Galβ1-4GlcNAc-R) epitopes on human cells: synthesis of the epitope on human red cells by recombinant primate α1,3 galactosyltransferase expressed in E. coli.. Glycobiology 5:775–82 [Google Scholar]
  16. Galvan M, Tsuboi S, Fukuda M, Baum LG. 2000. Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1.. J. Biol. Chem. 275:16730–37 [Google Scholar]
  17. Goon S, Bertozzi CR. 2000. Metabolic substrate engineering as a tool for glycobiology. In Glycochemistry: Principles, Synthesis and Applications, ed. PG Wong, CR Bertozzi 641–74 New York: Dekker
  18. Gross HJ, Brossmer R. 1995. Enzymatic transfer of sialic acids modified at C-5 employing four different sialyltransferases.. Glycoconjugate J. 12:739–46 [Google Scholar]
  19. Hang HC, Bertozzi CR. 2001. Ketone isosteres of 2-N-acetamidosugars as substrates for metabolic cell surface engineering.. J. Am. Chem. Soc. 123:1242–43 [Google Scholar]
  20. Helland AC, Hindsgaul O, Palcic MM, Stults CLM, Macher BA. 1995. Methyl 3-amino-3-deoxy-β-D-galactopyranosyl-(1–4)-2-ace-tamido-2-deoxy-β-D-glucopyranoside: an inhibitor of UDP-D-galactose:-β-D-galactopyranosyl-(1–4)-2-acetamido-2-deoxy-D-glucose(1–3)-α-D-galactopyranosyltransferase.. Carbohydr. Res. 276:91–98 [Google Scholar]
  21. Hennet T, Chui D, Paulson JC, Marth JD. 1998. Immune regulation by the ST6Gal sialyltransferase.. Proc. Natl. Acad. Sci. USA 95:4504–9 [Google Scholar]
  22. Hennet T, Ellies LG. 1999. The remodeling of glycoconjugates in mice.. Biochim. Biophys. Acta 1473:123–36 [Google Scholar]
  23. Huang J, Byrd JC, Yoon WH, Kim YS. 1992. Effect of benzyl-α-GalNAc, an inhibitor of mucin glycosylation, on cancer-associated antigens in human colon cancer cells.. Oncol. Res. 4:507–15 [Google Scholar]
  24. Huang MC, Zollner O, Moll T, Maly P, Thall AD. et al. 2000. P-selectin glycoprotein ligand-1 and E-selectin ligand-1 are differentially modified by fucosyltransferases Fuc-TIV and Fuc-TVII in mouse neutrophils.. J. Biol. Chem. 275:31353–60 [Google Scholar]
  25. Imperiali B, Rickert KW. 1995. Conformational implications of asparagine-linked glycosylation.. Proc. Natl. Acad. Sci. USA 92:97–101 [Google Scholar]
  26. Jacobs CL, Yarema KJ, Mahal LK, Nauman DA, Charters NW, Bertozzi CR. 2000. Metabolic labeling of glycoproteins with chemical tags through unnatural sialic acid biosynthesis.. Meth. Enzymol. 327:260–75 [Google Scholar]
  27. Kayser H, Zeitler R, Kannicht C, Grunow D, Nuck R, Reutter W. 1992. Biosynthesis of nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors.. J. Biol. Chem. 267:16934–38 [Google Scholar]
  28. Kellenberger C, Hendrickson TL, Imperiali B. 1997. Structural and functional analysis of peptidyl oligosaccharyl transferase inhibitors.. Biochemistry 36:12554–59 [Google Scholar]
  29. Kelm S, Brossmer R, Isecke R, Gross HJ, Strenge K, Schauer R. 1998. Functional groups of sialic acids involved in binding to siglecs (sialoadhesins) deduced from interactions with synthetic analogues.. Eur. J. Biochem. 255:663–72 [Google Scholar]
  30. Keppler OT, Herrmann M, von der Lieth CW, Stehling P, Reutter W, Pawlita M. 1998. Elongation of the N-acyl side chain of sialic acids in MDCK II cells inhibits influenza A virus infection.. Biochem. Biophys. Res. Commun. 253:437–42 [Google Scholar]
  31. Keppler OT, Hinderlich S, Langner J, Schwartz-Albiez R, Reutter W, Pawlita M. 1999. UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation.. Science 284:1372–76 [Google Scholar]
  32. Keppler OT, Stehling P, Herrmann M, Kayser H, Grunow D. et al. 1995. Biosynthetic modulation of sialic acid-dependent virus-receptor interactions of two primate polyoma viruses.. J. Biol. Chem. 270:1308–14 [Google Scholar]
  33. Kiefel MJ, von Itzstein M. 1999. Influenza virus sialidase: a target for drug discovery.. Prog. Med. Chem. 36:1–28 [Google Scholar]
  34. Koeller KM, Wong CH. 2000. Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies.. Chem. Rev. 100:4465–93 [Google Scholar]
  35. Koma M, Miyagawa S, Honke K, Ikeda Y, Koyota S. et al. 2000. Reduction of the major xenoantigen on glycosphingolipids of swine endothelial cells by various glycosyltransferases.. Glycobiology 10:745–51 [Google Scholar]
  36. Kornfeld R, Kornfeld S. 1985. Assembly of asparagine-linked oligosaccharides.. Annu. Rev. Biochem. 54:631–64 [Google Scholar]
  37. Laferte S, Chan NWC, Sujino K, Lowary TL, Palcic MM. 2000. Intracellular inhibition of blood group A glycosyltransferase.. Eur. J. Biochem. 267:4840–49 [Google Scholar]
  38. LaTemple D, Henion TR, Anaraki F, Galili U. 1996. Synthesis of α-galactosyl epitopes by recombinant α1,3galactosyltransferase for opsonization of human tumor cell vaccines by anti-galactose.. Cancer Res. 56:3069–74 [Google Scholar]
  39. Le XC, Zhang Y, Dovichi NJ, Compston CA, Palcic MM. et al. 1997. Study of the enzymatic transformation of fluorescently labeled oligosaccharides in human epidermoid cells using capillary electrophoresis with laser-induced fluorescence detection.. J. Chromatogr. A 781:515–22 [Google Scholar]
  40. Lee JH, Baker TJ, Mahal LK, Zabner J, Bertozzi CR. et al. 1999. Engineering novel cell surface receptors for virus-mediated gene transfer.. J. Biol. Chem. 274:21878–84 [Google Scholar]
  41. Lemieux GA, Bertozzi CR. 1998. Chemoselective ligation reactions with proteins, oligosaccharides and cells.. Trends Biotechnol. 16:506–13 [Google Scholar]
  42. Lemieux GA, Bertozzi CR. 2001. Modulating cell surface immunoreactivity by metabolic induction of unnatural carbohydrate antigens.. Chem. Biol. In press [Google Scholar]
  43. Lemieux GA, Yarema KJ, Jacobs CL, Bertozzi CR. 1999. Exploiting differences in sialoside expression for selective targeting of MRI contrast reagents.. J. Am. Chem. Soc. 121:4278–79 [Google Scholar]
  44. Lew W, Chen XW, Kim CU. 2000. Discovery and development of GS 4104 (oseltamivir): an orally active influenza neuraminidase inhibitor.. Curr. Med. Chem. 7:663–72 [Google Scholar]
  45. Liu C, Air GM. 1993. Selection and characterization of a neuraminidase-minus mutant of influenza virus and its rescue by cloned neuraminidase genes.. Virology 194:403–7 [Google Scholar]
  46. Liu T, Guo Z, Yang Q, Sad S, Jennings HJ. 2000. Biochemical engineering of surface α2–8 polysialic acid for immunotargeting tumor cells.. J. Biol. Chem. 275:32832–36 [Google Scholar]
  47. Lowe JB, Stoolman LM, Nair RP, Larsen RD, Berhend TL, Marks RM. 1990. ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA.. Cell 63:475–84 [Google Scholar]
  48. Lu PP, Hindsgaul O, Li H, Palcic MM. 1997. Synthesis and evaluation of eight aminodeoxy trisaccharide inhibitors for N-acetylglucosaminyltransferase-V.. Carbohydrate Res. 303:283–91 [Google Scholar]
  49. Mahal LK, Bertozzi CR. 1997. Engineered cell surfaces: fertile ground for molecular landscaping.. Chem. Biol. 4:415–22 [Google Scholar]
  50. Mahal LK, Yarema KJ, Bertozzi CR. 1997. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis.. Science 276:1125–28 [Google Scholar]
  51. Maly P, Thall AD, Petryniak B, Rogers CE, Smith PE. et al. 1996. The alpha(1,3)-fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis.. Cell 86:643–53 [Google Scholar]
  52. Manzi AE, Norgard-Sumnicht K, Argade S, Marth JD, van Halbeek H, Varki A. 2000. Exploring the glycan repertoire of genetically modified mice by isolation and profiling of the major glycan classes and nano-NMR analysis of glycan mixtures.. Glycobiology 10:669–89 [Google Scholar]
  53. Marth JD. 1994. Will the transgenic mouse serve as a Rosetta Stone to glycoconjugate function?. Glycoconjugate J. 11:3–8 [Google Scholar]
  54. Marth JD. 1996. Complexity in O-linked oligosaccharide biosynthesis engendered by multiple polypeptide N-acetylgalactosaminyltransferases.. Glycobiology 6:701–5 [Google Scholar]
  55. Miao HQ, Fritz TA, Esko JD, Zimmermann J, Yayon A, Vlodavsky I. 1995. Heparan sulfate primed on β-D-xylosides restores binding of basic fibroblast growth factor.. J. Cell. Biochem. 57:173–84 [Google Scholar]
  56. Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L. et al. 2000. Fringe is a glycosyltransferase that modifies Notch.. Nature 406:369–75 [Google Scholar]
  57. Munro S, Freeman M. 2000. The Notch signalling regulator Fringe acts in the Golgi apparatus and requires the glycosyltransferase signature motif DxD.. Curr. Biol. 10:813–20 [Google Scholar]
  58. Nosjean O, Briolay A, Roux B. 1997. Mammalian GPI proteins: sorting, membrane residence and functions.. Biochim. Biophys. Acta 1331:153–86 [Google Scholar]
  59. Patnaik SK, Zhang A, Shi S, Stanley P. 2000. α(1,3)Fucosyltransferases expressed by the gain-of-function Chinese Hamster Ovary glycosylation mutants LEC12, LEC29, and LEC30.. Arch. Biochem. Biophys. 375:322–32 [Google Scholar]
  60. Plante OJ, Palmacci ER, Seeberger PH. 2001. Automated solid-phase synthesis of oligosaccharides.. Science 291:1523–27 [Google Scholar]
  61. Puri KD, Springer TA. 1996. A Schiff base with mildly oxidized carbohydrate ligands stabilizes L-selectin and not P-selectin or E-selectin rolling adhesions in shear flow.. J. Biol. Chem. 271:5404–13 [Google Scholar]
  62. Qiao L, Murray BW, Shimazaki M, Schultz J, Wong CH. 1996. Synergistic inhibition of human α-1,3-fucosyltransferase V.. J. Am. Chem. Soc. 118:7653–62 [Google Scholar]
  63. Rebbaa A, Hurh J, Yamamoto H, Kersey DS, Bremer EG. 1996. Ganglioside GM3 inhibition of EGF receptor mediated signal transduction.. Glycobiology 6:399–406 [Google Scholar]
  64. Rosen SD. 1999. Endothelial ligands for L-selectin.. Am. J. Pathol. 155:1013–20 [Google Scholar]
  65. Rosen SD, Bertozzi CR. 1996. Leukocyte adhesion-two selectins converge on sulphate.. Curr. Biol. 6:261–64 [Google Scholar]
  66. Rudd PM, Dwek RA. 1997a. Glycosylation: heterogeneity and the 3D structure of proteins.. Crit. Rev. Biochem. Mol. Biol. 1:1–100 [Google Scholar]
  67. Rudd PM, Dwek RA. 1997b. Rapid, sensitive sequencing of oligosaccharides from glycoproteins.. Curr. Opin. Biotechnol. 8:488–97 [Google Scholar]
  68. Rudd PM, Wormald MR, Stanfield RL, Huang M, Mattsson N. et al. 1999. Roles for glycosylation of cell surface receptors in cellular immune recognition.. J. Mol. Biol. 293:351–66 [Google Scholar]
  69. Sarkar AK, Fritz TA, Taylor WH, Esko JD. 1995. Disaccharide uptake and priming in animal cells: inhibition of sLex by acetylated Galβ1–4GlcNAcβ-O-naphthalenemethanol.. Proc. Natl. Acad. Sci. USA 92:3323–27 [Google Scholar]
  70. Sarkar AK, Rostand KS, Jain RK, Matta KL, Esko JD. 1997. Fucosylation of disaccharide precursors of sLex inhibit selectin-mediated cell adhesion.. J. Biol. Chem. 272:25608–16 [Google Scholar]
  71. Saxon E, Bertozzi CR. 2000. Cell surface engineering by a modified Staudinger reaction.. Science 287:2007–10 [Google Scholar]
  72. Schaub C, Muller B, Schmidt RR. 2000. Sialyltransferase inhibitors based on CMP-quinic acid.. Eur. J. Org. Chem. 9:1745–58 [Google Scholar]
  73. Schmidt C, Stehling P, Schnitzer J, Reutter W, Horstkorte R. 1998. Biochemical engineering of neural cell surfaces by the synthetic N-propanoyl-substituted neuraminic acid precursor.. J. Biol. Chem. 273:19146–52 [Google Scholar]
  74. Seto NOL, Compston CA, Evans SV, Bundle DR, Narang SA, Palcic MM. 1999. Donor substrate specificity of recombinant human blood group A, B and hybrid A/B glycosyltransferases expressed in Escherichia coli.. Eur. J. Biochem. 259:770–75 [Google Scholar]
  75. Shafi R, Iyer SPN, Ellies LG, O'Donnell N, Marek KW. et al. 2000. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny.. Proc. Natl. Acad. Sci. USA 97:5735–39 [Google Scholar]
  76. Srivastava G, Kaur KJ, Hindsgaul O, Palcic MM. 1992. Enzymatic transfer of a preassembled trisaccharide antigen to cell surfaces using a fucosyltransferase.. J. Biol. Chem. 267:22356–61 [Google Scholar]
  77. Stanley P, Ioffe E. 1995. Glycosyltransferase mutants: key to new insights in glycobiology.. FASEB J. 9:1436–44 [Google Scholar]
  78. Stanley P, Raju TS, Bhaumik M. 1996a. CHO cells provide access to novel N-glycans and developmentally regulated glycosyltransferases.. Glycobiology 6:695–99 [Google Scholar]
  79. Stanley P, Raju TS, Bhaumik M. 1996b. LEC 14, a dominant CHO glycosylation mutant expresses complex N-glycans with a new N-acetylglucosamine residue in the core region.. J. Biol. Chem. 271:7484–93 [Google Scholar]
  80. Tanemura M, Yin D, Chong AS, Galili U. 2000. Differential immune responses to αGal epitopes on xenografts and allografts: implications for accommodation in xenotransplantation.. J. Clin. Invest. 105:301–10 [Google Scholar]
  81. Thall AD, Murphy HS, Lowe JB. 1996. α-1,3–Galactosyltransferase-deficient mice produce naturally occurring cytotoxic anti-Gal antibodies.. Trans. Proc. 28:556–57 [Google Scholar]
  82. Tsuboi S, Isogai Y, Hada N, King JK, Hindsgaul O, Fukuda M. 1996. 6′-Sulfo sialyl Lex but not 6-sulfo sialyl Lex expressed on the cell surface supports L-selectin mediated adhesion.. J. Biol. Chem. 271:27213–16 [Google Scholar]
  83. Tsuboi S, Srivastava OP, Palcic MM, Hindsgaul O, Fukuda M. 2000. Acquisition of P-selectin binding activity by en bloc transfer of sulfo Lex trisaccharide to the cell surface: comparison to a sialyl Lex tetrasaccharide transferred on the cell surface.. Arch. Biochem. Biophys. 374:100–6 [Google Scholar]
  84. Ufret MD, Imperiali B. 2000. Probing the extended binding determinants of oligosaccharyl transferase with synthetic inhibitors of asparagine-linked glycosylation.. Bioorg. Med. Chem. Lett. 10:281–84 [Google Scholar]
  85. VandenSteen P, Rudd PM, Dwek RA, Opdenakker G. 1998. Concepts and principles of O-linked glycosylation.. Crit. Rev. Biochem. Mol. Biol. 33:151–208 [Google Scholar]
  86. Varki A. 1993. Biological roles of oligosaccharides: all of the theories are correct.. Glycobiology 3:97–130 [Google Scholar]
  87. Venkataraman G, Shriver Z, Raman R, Sasisekharan R. 1999. Sequencing complex polysaccharides.. Science 286(5439):537–42 [Google Scholar]
  88. Weninger W, Ulfman LH, Cheng G, Souchkova N, Quackenbush EJ. et al. 2000. Specialized contributions by α(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels.. Immunity 12:665–76 [Google Scholar]
  89. Wieser JR, Heisner A, Stehling P, Oesch F, Reutter W. 1996. In vivo modulated N-acyl side chain of N-acetylneuraminic acid modulates the cell contact dependent inhibition of growth FEBS Lett. 395:170–73
  90. Wormald MR, Dwek RA. 1999. Glycoproteins: glycan presentation and protein-fold stability.. Structure 7:R155–60 [Google Scholar]
  91. Yarema KJ, Mahal LK, Bruehl RE, Rodriguez EC, Bertozzi CR. 1998. Metabolic delivery of ketone groups to sialic acid residues—application to cell surface glycoform engineering.. J. Biol. Chem. 273:31168–79 [Google Scholar]
/content/journals/10.1146/annurev.cellbio.17.1.1
Loading
/content/journals/10.1146/annurev.cellbio.17.1.1
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error