1932

Abstract

This review describes how singular perturbation theory grew out of Prandtl's fluid dynamical boundary-layer theory of 1904. Developments were centered at Göttingen until 1933, when research spread worldwide. After that, singular perturbations developed more rapidly as the subject became centered within applied mathematics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.fluid.060909.133212
2011-09-01
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/fluid/42/1/annurev.fluid.060909.133212.html?itemId=/content/journals/10.1146/annurev.fluid.060909.133212&mimeType=html&fmt=ahah

Literature Cited

  1. Ackroyd JAD, Axcell BP, Ruban AJ. 2001. Early Developments of Modern Aerodynamics Oxford: Butterworth-Heinemann [Google Scholar]
  2. Anderson JD Jr. 2005. Ludwig Prandtl's boundary layer. Phys. Today 58:42–48 [Google Scholar]
  3. Batchelor G. 1996. The Life and Legacy of G. I. Taylor Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  4. Beyerchen A. 1977. Scientists Under Hitler, Politics and the Physics Community in the Third Reich New Haven, CT: Yale Univ. Press [Google Scholar]
  5. Birkhoff GD. 1908. On the asymptotic character of the solutions of certain linear differential equations containing a parameter. Trans. Am. Math. Soc. 9:219–31 [Google Scholar]
  6. Birkhoff GD. 1938. Fifty years of American mathematics. Semicentennial Addresses of the American Mathematical Society, 2270–315 New York: Am. Math. Soc. [Google Scholar]
  7. Blasius H. 1908. Grenzschlichten in Flüssigkeiten mit Kleiner Reibung. Z. Math. Phys. 56:1–37 [Google Scholar]
  8. Cesari L, Kannan R, Weinberger H. 1978. Nonlinear Analysis: A Collection of Papers in Honor of Erich H. Rothe New York: Academic [Google Scholar]
  9. Chang KW, Howes FA. 1984. Nonlinear Singular Perturbation Phenomena: Theory and Application New York: Springer-Verlag [Google Scholar]
  10. Cole JD. 1968. Perturbation Methods in Applied Mathematics Waltham: Blaisdell [Google Scholar]
  11. Cole JD. 1994. The development of perturbation theory at GALCIT. SIAM Rev. 36:425–30 [Google Scholar]
  12. Colton D. 1979. Arthur Erdélyi. Bull. Lond. Math. Soc. 11:191–207 [Google Scholar]
  13. Cornwell J. 2003. Hitler's Scientists New York: Viking [Google Scholar]
  14. Darrigold O. 2005. Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl Oxford, UK: Oxford Univ. Press [Google Scholar]
  15. Dauben JW. 1995. Abraham Robinson: The Creation of Nonstandard Analysis, a Personal and Mathematical Odyssey Princeton, NJ: Princeton Univ. Press [Google Scholar]
  16. De Coster C, Habets P. 2006. Two-Point Boundary Value Problems: Lower and Upper Solutions Amsterdam: Elsevier [Google Scholar]
  17. Dryden HL. 1955. Fifty years of boundary layer theory and experiment. Science 121:375–80 [Google Scholar]
  18. Eckert M. 2006. The Dawn of Fluid Dynamics Weinheim: Wiley-VCH [Google Scholar]
  19. Eckhaus W. 1997. Witus en de jaren van angst, Een reconstructie Amsterdam: Bas Lubberhuizen [Google Scholar]
  20. Flügge-Lotz I, Flügge W. 1973. Ludwig Prandtl in the nineteen-thirties: reminiscences. Annu. Rev. Fluid Mech. 5:1–9 [Google Scholar]
  21. Friedrichs KO. 1953. Special Topics in Fluid Mechanics Lecture Notes New York: New York Univ. [Google Scholar]
  22. Friedrichs KO. 1955. Asymptotic phenomena in mathematical physics. Bull. Am. Math. Soc. 61:367–81 [Google Scholar]
  23. Friedrichs KO, Stoker JJ. 1941. The nonlinear boundary value problem of the buckled plate. Am. J. Math. 63:839–88 [Google Scholar]
  24. Friedrichs KO, Wasow W. 1946. Singular perturbations of nonlinear oscillations. Duke Math. J. 13:367–81 [Google Scholar]
  25. Germain P. 2000. The ‘new’ mechanics of fluids of Ludwig Prandtl. Ludwig Prandtl, ein Führer in der Strömungslehre GEA Meier 31–40 Braunschweig: Vieweg [Google Scholar]
  26. Gol'denveizer AL. 1960. Some mathematical problems in the linear theory of thin elastic shells. Russ. Math. Surv. 15:51–73 [Google Scholar]
  27. Goldstein S. 1930. Concerning some solutions of the boundary layer equations in hydrodynamics. Proc. Camb. Philos. Soc. 26:1–30 [Google Scholar]
  28. Goldstein S. 1938. Modern Development in Fluid Dynamics Oxford: Oxford Univ. Press [Google Scholar]
  29. Goldstein S. 1963. Richard von Mises 1883–1953. Selected Papers of Richard von Mises 1 P Frank et al., pp. ix–xiv Providence, RI: Am. Math. Soc. [Google Scholar]
  30. Goldstein S. 1969. Fluid mechanics in the first half of this century. Annu. Rev. Fluid Mech. 1:1–28 [Google Scholar]
  31. Gorn MH. 1992. The Universal Man: Theodore von Kármán's Life in Aeronautics Washington, DC: Smithsonian Inst. Press [Google Scholar]
  32. Greenberg JL, Goldstein JR. 1983. Theodore von Kármán and applied mathematics in America. Science 222:1300–4 [Google Scholar]
  33. Hanle PA. 1982. Bringing Aeronautics to America Cambridge, MA: MIT Press [Google Scholar]
  34. Hirschel EH, Prem H, Madelung G. 2004. Aeronautical Research in Germany: From Lilienthal until Today Berlin: Springer [Google Scholar]
  35. Holton G. 1988. Thematic Origins of Scientific Thought: Kepler to Einstein Cambridge, MA: Harvard Univ. Press. Rev. ed. [Google Scholar]
  36. Kaplun S. 1967. Fluid Mechanics and Singular Perturbations PA Lagerstrom, LN Howard, C-S Liu New York: Academic [Google Scholar]
  37. Krylov NM, Bogoliubov NN. 1943. Introduction to Nonlinear Mechanics Princeton, NJ: Princeton Univ. Press [Google Scholar]
  38. Lagerstrom PA. 1988. Matched Asymptotic Expansions New York: Springer-Verlag [Google Scholar]
  39. Lamb H. 1924. Hydrodynamics Cambridge, UK: Cambridge Univ. Press, 5th. ed. [Google Scholar]
  40. Lienhard JH. 1970. Ludwig Prandtl. Dictionary of Scientific Biography CC Gillispie 11123–25 New York: Scribner [Google Scholar]
  41. Mac Lane S. 1994. Jobs in the 1930s and the views of George D. Birkhoff. Math. Intell. 16:36–7 [Google Scholar]
  42. Mac Lane S. 2005. Saunders Mac Lane: A Mathematical Autobiography Wellesley: A.K. Peters [Google Scholar]
  43. Math. Res. Center 1970. Studies and Essays Presented to Yu-Why Chen Taipei: Math. Res. Center, Natl. Taiwan Univ. [Google Scholar]
  44. Mehrtens H, Kingsbury VM. 1989. The Gleichschaltung of mathematical societies in Nazi Germany. Math. Intell. 11:48–60 [Google Scholar]
  45. Meier GEA. 2000. Ludwig Prandtl, ein Führer in der Strömungslehre Vieweg: Braunschweig [Google Scholar]
  46. Meier GEA. 2006. Prandtl's boundary layer concept and the work in Göttingen. See Meier et al. 2006 1–18
  47. Meier GEA, Sreenivasan KR, Heinemann H-J. 2006. IUTAM Symposium on One Hundred Years of Boundary Layer Research Dordrecht: Springer [Google Scholar]
  48. Morawetz CS. 1968. Kurt Otto Friedrichs Selecta Boston: Birkhäuser [Google Scholar]
  49. Nohel JA. 1998. Commentary. Selected Papers of Norman Levinson 1 JA Nohel, DH Sattinger 267–87 Boston: Birkhäuser [Google Scholar]
  50. O'Malley RE Jr. 1991. Singular Perturbation Methods for Ordinary Differential Equations New York: Springer-Verlag [Google Scholar]
  51. O'Malley RE Jr. 1993. Obituary: Wolfgang R. Wasow. SIAM News2–3 [Google Scholar]
  52. Pinl M, Furtmüller L. 1973. Mathematicians under Hitler. Year Book of the Leo Baeck Institute 18129–82 London: Leo Baeck Inst. [Google Scholar]
  53. Prandtl L. 1905. Über Flüssigkeits bewegung bei kleiner Reibung. Verh. III Int. Math. Kongr.484–91 Leipzig: Tuebner [Google Scholar]
  54. Prandtl L. 1948. Mein Weg zu Hydrodynamischen Theorien. Phys. Bl. 4:89–92 [Google Scholar]
  55. Prandtl L. 1961. Gesammelte Abhandlungen zur angewandten Mechanik, Hydro- und Aerodynamik W Tollmien, H Schlichting, H Görtler Berlin: Springer-Verlag [Google Scholar]
  56. Reid C. 1976. Courant in Göttingen and New York: The Story of an Improbable Mathematician New York: Springer-Verlag [Google Scholar]
  57. Reingold N. 1981. Refugee mathematicians in the United States of America, 1933–1941: reception and reaction. Ann. Sci. 38:313–38 [Google Scholar]
  58. Reissner E. 1949. On the theory of thin elastic shells. Reissner Anniversary Volume: Contributions to Applied Mechanics Dep. Aeronaut. Eng. Appl. Mech. Polytech. Inst. Brooklyn 231–47 Ann Arbor, MI: J.W. Edwards [Google Scholar]
  59. Reissner H. 1912. Spannungen in Kugelschalen (Kuppeln). Festschrift H. Müller-Breslau, pp, 181–193 Leipzig [Google Scholar]
  60. Rosenhead L. 1963. Laminar Boundary Layers Oxford: Clarendon Press [Google Scholar]
  61. Rothe E. 1933a. Über asymptotische Entwicklungen bei Randwertaufgaben der Gleichung ΔΔu + λk u = λk υ. Math. Ann. 109:267–72 [Google Scholar]
  62. Rothe E. 1933b. Zur Theorie des Skin-effekts. Z. Phys. 83:184–86 [Google Scholar]
  63. Rothe E. 1936. Über asymptotische Entwicklungen bei gewissen nicht-linearen Randwertaufgaben. Comp. Math. 3:310–27 [Google Scholar]
  64. Rothe E. 1939. Asymptotic solution of a boundary value problem. Iowa State College J. Sci. 13:369–72 [Google Scholar]
  65. Schlichting H, Gersten K. 2000. Boundary Layer Theory Berlin: Springer, 8th. ed. [Google Scholar]
  66. Segal SL. 2003. Mathematicians Under the Nazis Princeton, NJ: Princeton Univ. Press [Google Scholar]
  67. Siegmund-Schultze R. 1997. The emancipation of mathematical research publishing in the United States from German dominance (1878–1945). Hist. Math. 24:135–66 [Google Scholar]
  68. Siegmund-Schultze R. 2001. Rockefeller and the Internationalization of Mathematics Between the Two World Wars Basel: Birkhäuser [Google Scholar]
  69. Siegmund-Schultze R. 2009. Mathematicians Fleeing from Nazi Germany Princeton, NJ: Princeton Univ. Press [Google Scholar]
  70. Tani I. 1977. History of boundary-layer theory. Annu. Rev. Fluid Mech. 9:87–111 [Google Scholar]
  71. Taylor GI. 1973. Memories of von Kármán. SIAM Rev. 15:447–52 [Google Scholar]
  72. Ting L. 2000. Boundary layer theory to matched asymptotics. Z. Angew. Math. Mech. 80:845–55 [Google Scholar]
  73. Tschen Y-W. 1935. Über das Verhalten der Lösungen einer Folge von Differential gleichungen welche im Limes ausarten. Comp. Math. 2:378–401 [Google Scholar]
  74. Van Dyke M. 1994. Nineteenth-century roots of the boundary layer idea. SIAM Rev. 36:415–24 [Google Scholar]
  75. Verhulst F. 2005. Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics New York: Springer [Google Scholar]
  76. Vogel-Prandtl J. 1993. Ludwig Prandtl, Ein Lebensbild Erinnerungen Mitterluugen aus dem Max-Plank-Institut für Ström. No. 107. Göttingen [Google Scholar]
  77. von Kármán T. 1954. Aerodynamics: Selected Topics in Light of Their Historical Development Ithaca, NY: Cornell Univ. Press [Google Scholar]
  78. von Kármán T, Edson L. 1967. The Wind and Beyond: Theodore von Kármán, Pioneer in Aviation and Pathfinder in Space Boston: Little-Brown [Google Scholar]
  79. von Mises R, Friedrichs KO. 1971. Fluid Dynamics New York: Springer-Verlag [Google Scholar]
  80. Wasow W. 1942. On boundary layer problems in the theory of ordinary differential equations PhD diss. New York Univ. [Google Scholar]
  81. Wasow WR. 1965. Asymptotic Expansions for Ordinary Differential Equations New York: Wiley-Interscience [Google Scholar]
  82. Wasow WR. 1985. Linear Turning Point Theory New York: Springer-Verlag [Google Scholar]
  83. Wasow WR. 1986. Memories of Seventy Years, 1909–1979 Private printing [Google Scholar]
  84. Yamaguti M, Nirenberg L, Mizohata S, Sibuya Y. 1993. Mitio Nagumo Collected Papers Tokyo: Springer-Verlag [Google Scholar]
/content/journals/10.1146/annurev.fluid.060909.133212
Loading
/content/journals/10.1146/annurev.fluid.060909.133212
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error