1932

Abstract

A significant need exists for in situ sensors that can measure chemical species involved in the major processes of primary production (photosynthesis and chemosynthesis) and respiration. Some key chemical species are O, nutrients (N and P), micronutrients (metals), pCO, dissolved inorganic carbon (DIC), pH, and sulfide. Sensors need to have excellent detection limits, precision, selectivity, response time, a large dynamic concentration range, low power consumption, robustness, and less variation of instrument response with temperature and pressure, as well as be free from fouling problems (biological, physical, and chemical). Here we review the principles of operation of most sensors used in marine waters. We also show that some sensors can be used in several different oceanic environments to detect the target chemical species, whereas others are useful in only one environment because of various limitations. Several sensors can be used truly in situ, whereas many others involve water brought into a flow cell via tubing to the analyzer in the environment or aboard ship. Multi-element sensors that measure many chemical species in the same water mass should be targeted for further development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.marine.010908.163817
2009-01-15
2024-06-16
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.marine.010908.163817
Loading
/content/journals/10.1146/annurev.marine.010908.163817
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error