Aspects of the production and dissolution of CaCO hard parts dominate the literature regarding contemporary marine chemistry and paleoceanography. During my long career I have contributed more than 200 papers related to this subject. In this prefatory article in the first volume of the , I recount what I consider to be the highlights of my attempts to understand the cycle of CaCO in today's ocean and in oceans of the past. These studies began in the Bahamas in the early 1960s and then quickly graduated to the world ocean. Although much of my research has involved stable and radioisotopes contained in shells and coral directed toward reconstruction of the late Quaternary operation of the earth system, in this review I concentrate on carbonate chemistry and, in particular, the compensation in the deep sea for the overproduction of CaCO by marine organisms.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Barker S, Elderfield H. 2002. Response of foraminiferal calcification to glacial-interglacial changes in atmospheric carbon dioxide. Science 297:833–36 [Google Scholar]
  2. Berger WH, Keir RS. 1984. Glacial-Holocene changes in atmospheric CO2 and the deep-sea record. Climate Processes and Climate Sensitivity Geophysical Monograph 29, Maurice Ewing 5337–51 American Geophysical Union [Google Scholar]
  3. Berner W, Stauffer B, Oeschger H. 1979. Past atmospheric composition and climate, gas parameters measured on ice cores. Nature 275:53–55 [Google Scholar]
  4. Broecker WS. 1965. An application of natural radon to problems in ocean circulation. Symposium on diffusion in oceans and fresh waters116–145 Lamont Geol. Observatory of Columbia Univ., Palisades New York: [Google Scholar]
  5. Broecker WS. 1971. A kinetic model for the chemical composition of sea water. Quat. Res. 1:188–207 [Google Scholar]
  6. Broecker WS. 1981. Glacial to interglacial changes in ocean and atmosphere chemistry. Climatic Variations and Variability: Facts & Theories A. Berger 111121 Holland: D. Reidel Pub. Co. [Google Scholar]
  7. Broecker WS. 1982. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11:151–97 [Google Scholar]
  8. Broecker WS, Clark E. 1999. CaCO3 size distribution: A paleo carbonate ion proxy. Paleoceanography 14:596–04 [Google Scholar]
  9. Broecker WS, Clark E. 2001. Reevaluation of the CaCO3 size index paleo carbonate ion proxy. Paleoceanography 16:669–71 [Google Scholar]
  10. Broecker WS, Clark E. 2002. A major dissolution event at the close of MIS 5e in the western equatorial Atlantic. Geochem. Geophys. Geosyst. 3:21009 [Google Scholar]
  11. Broecker WS, Clark E. 2003. Pseudo dissolution of marine calcite. Earth Planet. Sci. Lett. 208:291–96 [Google Scholar]
  12. Broecker WS, Clark E. 2004. Shell weights from the South Atlantic. Geochem. Geophys. Geosyst. 5:Q03003m doi: 10.1029/2003GC000625 [Google Scholar]
  13. Broecker W, Clark E. 2007. Is the magnitude of the carbonate ion decrease in the abyssal ocean over the last 8 kyr consistent with the 20 ppm rise in atmospheric CO2 content?. Paleoceanography 22:PA1202 doi:10.1029/2006PA001311 [Google Scholar]
  14. Broecker WS, Takahashi T. 1966. Calcium carbonate precipitation on the Bahama Banks. J. Geophys. Res. 71:1575–1602 [Google Scholar]
  15. Broecker WS, Cromwell J, Li YH. 1968. Rates of vertical eddy diffusion near the ocean floor based on measurements of the distribution of excess 222Rn. Earth Planet. Sci. Lett. 5:101–5 [Google Scholar]
  16. Broecker WS, Sanyal A, Takahashi T. 2000. The origin of Bahamian whitings revisited. Geophys. Res. Lett. 27:3759–60 [Google Scholar]
  17. Broecker WS, Clark E, McCorkle DC, Hajdas I, Bonani G. 1999. Core top 14C ages as a function of latitude and water depth on the Ontong-Java plateau. Paleoceanography 14:13–22 [Google Scholar]
  18. Chiu T-C, Broecker WS. 2008. Towards better paleo-carbonate ion reconstructions—A new insight regarding the CaCO3 size index. Paleoceanography doi:10.1029/2008PA001599 [Google Scholar]
  19. Cramer BS, Kent DV. 2005. Bolide summer: The Paleocene/Eocene thermal maximum as a response to an extraterrestrial trigger. Paleogeog. Palaeoclim. Palaeoecol. 224:144–66 [Google Scholar]
  20. Delmas RJ, Ascencio J-M, Legrand M. 1980. Polar ice evidence that atmospheric CO2 29000 years BP was 50% of the present. Nature 284:155–57 [Google Scholar]
  21. Dickens G, O'Neil J, Rea D, Owen R. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:965–71 [Google Scholar]
  22. Farley KA, Eltgroth SF. 2003. An alternative age model for the Paleocene-Eocene thermal maximum using extraterrestrial 3He. Earth Planet. Sci. Lett. 208:135–48 [Google Scholar]
  23. Jahnke RA, Jahnke DB. 2004. Calcium carbonate dissolution in deep sea sediments: Reconciling microelectrode, pore water and benthic flux chamber results. Geochim. Cosmochim. Acta 68:47–59 [Google Scholar]
  24. Kennett JP, Stott LD. 1991. Abrupt deep-sea warming, Palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353:225–29 [Google Scholar]
  25. Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J. et al. 2000. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem. Cycles 14:639–54 [Google Scholar]
  26. Lohmann GP. 1995. A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography 10:445–57 [Google Scholar]
  27. Messenger S. 2000. Identification of molecular-cloud material in interplanetary dust particles. Nature 404:968–71 [Google Scholar]
  28. Oxburgh R. 1998. The Holocene preservation history of equatorial Pacific sediments. Paleoceanography 13:50–62 [Google Scholar]
  29. Peng T-H, Broecker WS, Berger WH. 1979. Rates of benthic mixing in deep sea sediment as determined by radioactive tracers. Quat. Res. 11:141–49 [Google Scholar]
  30. Peng T-H, Broecker WS, Kipphut G, Shackleton N. 1977. Benthic mixing in deep sea cores as determined by 14C dating and its implications regarding climate stratigraphy and the fate of fossil fuel CO2. The Fate of Fossil Fuel CO2 in the Oceans NR Andersen, A Malahoff 355–73 New York, NY: Plenum Publishing Corporation [Google Scholar]
  31. Sillen LG. 1961. The physical chemistry of sea water. Oceanography M. Sears 549–81 Am. Assoc. Advancement Sci. Washington D.C.: [Google Scholar]
  32. Sillen LG. 1967. The ocean as a chemical system. Science 156:1189–97 [Google Scholar]
  33. Thomas DJ, Zachos JC, Bralower TJ, Thomas E, Bohaty S. 2002. Warming the fuel for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology 30:1067–70 [Google Scholar]
  34. Van Andel TH. 1975. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet. Sci. Lett. 26:187–94 [Google Scholar]
  35. Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hodell DA. et al. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1611–15 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error