1932

Abstract

▪ Abstract 

G protein–coupled receptors (GPCRs) have proven to be the most highly favorable class of drug targets in modern pharmacology. Over 90% of nonsensory GPCRs are expressed in the brain, where they play important roles in numerous neuronal functions. GPCRs can be desensitized following activation by agonists by becoming phosphorylated by members of the family of G protein–coupled receptor kinases (GRKs). Phosphorylated receptors are then bound by arrestins, which prevent further stimulation of G proteins and downstream signaling pathways. Discussed in this review are recent progress in understanding basics of GPCR desensitization, novel functional roles, patterns of brain expression, and receptor specificity of GRKs and βarrestins in major brain functions. In particular, screening of genetically modified mice lacking individual GRKs or βarrestins for alterations in behavioral and biochemical responses to cocaine and morphine has revealed a functional specificity in dopamine and μ-opioid receptor regulation of locomotion and analgesia. An important and specific role of GRKs and βarrestins in regulating physiological responsiveness to psychostimulants and morphine suggests potential involvement of these molecules in certain brain disorders, such as addiction, Parkinson's disease, mood disorders, and schizophrenia. Furthermore, the utility of a pharmacological strategy aimed at targeting this GPCR desensitization machinery to regulate brain functions can be envisaged.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.neuro.27.070203.144206
2004-07-21
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ne/27/1/annurev.neuro.27.070203.144206.html?itemId=/content/journals/10.1146/annurev.neuro.27.070203.144206&mimeType=html&fmt=ahah

Literature Cited

  1. Angers S, Salahpour A, Bouvier M. 2002. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42:409–35 [Google Scholar]
  2. Arriza JL, Dawson TM, Simerly RB, Martin LJ, Caron MG. et al. 1992. The G protein-coupled receptor kinases βARK1 and βARK2 are widely distributed at synapses in rat brain. J. Neurosci. 12:4045–55 [Google Scholar]
  3. Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J. et al. 1992. Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J. Biol. Chem. 267:17882–90 [Google Scholar]
  4. Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA. et al. 2003. Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder. Mol. Psychiatry 8:546–57 [Google Scholar]
  5. Benovic JL, Mayor F Jr, Staniszewski C, Lefkowitz RJ, Caron MG. 1987. Purification and characterization of the beta-adrenergic receptor kinase. J. Biol. Chem. 262:9026–32 [Google Scholar]
  6. Benovic JL, Gomez J. 1993. Molecular cloning and expression of GRK6. A new member of the G protein-coupled receptor kinase family J. Biol. Chem. 268:19521–27 [Google Scholar]
  7. Berman DM, Gilman AG. 1998. Mammalian RGS proteins: barbarians at the gate. J. Biol. Chem. 273:1269–72 [Google Scholar]
  8. Bibb JA, Chen J, Taylor JR, Svenningsson P, Nishi A. et al. 2001. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410:376–80 [Google Scholar]
  9. Boekhoff I, Inglese J, Schleicher S, Koch WJ, Lefkowitz RJ, Breer H. 1994. Olfactory desensitization requires membrane targeting of receptor kinase mediated by beta gamma-subunits of heterotrimeric G proteins. J Biol. Chem. 269:37–40 [Google Scholar]
  10. Bohm SK, Grady EF, Bunnett NW. 1997. Regulatory mechanisms that modulate signaling by G-protein-coupled receptors. Biochem. J. 322:1–18 [Google Scholar]
  11. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. 1999. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286:2495–98 [Google Scholar]
  12. Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG. 2000. Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–23 [Google Scholar]
  13. Bohn LM, Lefkowitz RJ, Caron MG. 2002. Differential mechanisms of morphine anti-nociceptive tolerance revealed in (beta)arrestin-2 knock-out mice. J. Neurosci. 22:10494–500 [Google Scholar]
  14. Bohn LM, Gainetdinov RR, Sotnikova TD, Lefkowitz RJ, Dykstra LA, Caron MG. 2003. Enhanced rewarding properties of morphine, but not cocaine, in βarrestin-2 knockout mice. J. Neurosci. 23:10265–73 [Google Scholar]
  15. Bushell T, Endoh T, Simen AA, Ren D, Bindokas VP, Miller RJ. 2002. Molecular components of tolerance to opiates in single hippocampal neurons. Mol. Pharmacol. 61:55–64 [Google Scholar]
  16. Carlsson A. 2001. A paradigm shift in brain research. Science 294:1021–24 [Google Scholar]
  17. Celver JP, Lowe J, Kovoor A, Gurevich VV, Chavkin C. 2001. Threonine 180 is required for G-protein-coupled receptor kinase 3- and beta-arrestin 2-mediated desensitization of the mu-opioid receptor in Xenopus oocytes. J. Biol. Chem. 276:4894–900 [Google Scholar]
  18. Chen CK, Burns ME, Spencer M, Niemi GA, Chen J. et al. 1999a. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc. Natl. Acad. Sci. USA 96:3718–22 [Google Scholar]
  19. Chen J, Simon MI, Matthes MT, Yasumura D, LaVail MM. 1999b. Increased susceptibility to light damage in an arrestin knockout mouse model of Oguchi disease (stationary night blindness). Invest. Ophthalmol. Vis. Sci. 40:2978–82 [Google Scholar]
  20. Chen W, ten Berge D, Brown J, Ahn S, Hu LA. et al. 2003. Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301:1391–94 [Google Scholar]
  21. Cheng ZJ, Yu QM, Wu YL, Ma L, Pei G. 1998. Selective interference of beta-arrestin 1 with kappa and delta but not mu opioid receptor/G protein coupling. J. Biol. Chem. 273:24328–33 [Google Scholar]
  22. Claing A, Laporte SA, Caron MG, Lefkowitz RJ. 2002. Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog. Neurobiol. 66:61–79 [Google Scholar]
  23. Conner DA, Mathier MA, Mortensen RM, Christe M, Vatner SF. et al. 1997. beta-Arrestin1 knockout mice appear normal but demonstrate altered cardiac responses to beta-adrenergic stimulation. Circ. Res. 81:1021–26 [Google Scholar]
  24. Diaz A, Pazos A, Florez J, Ayesta FJ, Santana V, Hurle MA. 2002. Regulation of mu-opioid receptors, G-protein-coupled receptor kinases and beta-arrestin 2 in the rat brain after chronic opioid receptor antagonism. Neuroscience 112:345–53 [Google Scholar]
  25. Di Chiara G, North RA. 1992. Neurobiology of opiate abuse. Trends Pharmacol. Sci. 13:185–93 [Google Scholar]
  26. Dickey BF, Birnbaumer L. ed 1993. GTPases in Biology (Handbook of Experimental Pharmacology) Berlin: Springer-VerlagVol. 108 [Google Scholar]
  27. Diverse-Pierluissi M, Inglese J, Stoffel RH, Lefkowitz RJ, Dunlap K. 1996. G protein-coupled receptor kinase mediates desensitization of norepinephrine-induced Ca2+ channel inhibition. Neuron 16:579–85 [Google Scholar]
  28. Dohlman HG, Thorner J. 1997. RGS proteins and signaling by heterotrimeric G proteins. J. Biol. Chem. 272:3871–74 [Google Scholar]
  29. Eisinger DA, Ammer H, Schulz R. 2002. Chronic morphine treatment inhibits opioid receptor desensitization and internalization. J. Neurosci. 22:10192–200 [Google Scholar]
  30. Elmer GI, Pieper JO, Rubinstein M, Low MJ, Grandy DK, Wise RA. 2002. Failure of intravenous morphine to serve as an effective instrumental reinforcer in dopamine D2 receptor knock-out mice. J. Neurosci. 22:RC224 [Google Scholar]
  31. Erdtmann-Vourliotis M, Mayer P, Ammon S, Reichert U, Hollt V. 2001. Distribution of G protein-coupled receptor kinase (GRK) isoforms 2, 3, 5 and 6 mRNA in the rat brain. Brain Res. Mol. Brain. Res. 95:129–37 [Google Scholar]
  32. Fan X, Zhang J, Zhang X, Yue W, Ma L. 2002. Acute and chronic morphine treatments and morphine withdrawal differentially regulate GRK2 and GRK5 gene expression in rat brain. Neuropharmacology 43:809–16 [Google Scholar]
  33. Fan XL, Zhang JS, Zhang XQ, Yue W, Ma L. 2003. Differential regulation of beta-arrestin 1 and beta-arrestin 2 gene expression in rat brain by morphine. Neuroscience 117:383–89 [Google Scholar]
  34. Fehr C, Fickova M, Hiemke C, Reuss S, Dahmen N. 1997. Molecular cloning of rat G-protein-coupled receptor kinase 6 (GRK6) from brain tissue, and its mRNA expression in different brain regions and peripheral tissues. Brain Res. Mol. Brain Res. 49:278–82 [Google Scholar]
  35. Ferguson SS, Downey WE 3rd, Colapietro AM, Barak LS, Menard L, Caron MG. 1996. Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271:363–66 [Google Scholar]
  36. Ferguson SS, Zhang J, Barak LS, Caron MG. 1998. Molecular mechanisms of G protein-coupled receptor desensitization and resensitization. Life Sci. 62:1561–65 [Google Scholar]
  37. Fong AM, Premont RT, Richardson RM, Yu YR, Lefkowitz RJ, Patel DD. 2002. A positive regulatory role for the GRK-βarrestin system in lymphocyte chemotaxis. Proc. Natl. Acad. Sci. USA 99:7478–83 [Google Scholar]
  38. Gainetdinov RR, Bohn LM, Walker JKL, Laporte SA, Macrae AD. et al. 1999a. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice. Neuron 24:1029–36 [Google Scholar]
  39. Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG. 1999b. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283:397–401 [Google Scholar]
  40. Gainetdinov RR, Premont RT, Caron MG, Lefkowitz RJ. 2000. Reply: receptor specificity of G protein-coupled receptor kinases. Trends Pharmacol. Sci. 21:366–67 [Google Scholar]
  41. Gainetdinov RR, Bohn LM, Sotnikova TD, Cyr M, Laakso A. et al. 2003a. Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. Neuron 38:291–303 [Google Scholar]
  42. Gainetdinov RR, Caron MG. 2003b. Monoamine transporters: from genes to behavior. Annu. Rev. Pharmacol. Toxicol. 43:261–84 [Google Scholar]
  43. Gardner B, Liu ZF, Jiang D, Sibley DR. 2001. The role of phosphorylation/dephosphorylation in agonist-induced desensitization of D1 dopamine receptor function. Mol. Pharmacol. 59:310–21 [Google Scholar]
  44. Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L. et al. 1999. Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc. Natl. Acad. Sci. USA 96:1692–97 [Google Scholar]
  45. Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB. et al. 1996. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–50 [Google Scholar]
  46. Grandy DK, Civelli O. 1992. G-protein-coupled receptors: the new dopamine receptor subtypes. Curr. Opin. Neurobiol. 2:275–81 [Google Scholar]
  47. Grange-Midroit M, Garcia-Sevilla JA, Ferrer-Alcon M, La Harpe R, Huguelet P, Guimon J. 2003. Regulation of GRK 2 and 6, beta-arrestin-2 and associated proteins in the prefrontal cortex of drug-free and antidepressant drug-treated subjects with major depression. Brain Res. Mol. Brain Res. 111:31–41 [Google Scholar]
  48. Gurevich EV, Benovic JL, Gurevich VV. 2002. Arrestin2 and arrestin3 are differentially expressed in the rat brain during postnatal development. Neuroscience 109:421–36 [Google Scholar]
  49. Gurevich VV, Gurevich EV. 2003. The new face of active receptor bound arrestin attracts new partners. Structure 11:1037–42 [Google Scholar]
  50. Haberstock H, Wein M, Barrot M, Colago EE, Rahman Z. et al. 2003. Morphine acutely regulates opioid receptor trafficking selectively in dendrites of nucleus accumbens neurons. J. Neurosci. 23:4324–32 [Google Scholar]
  51. Hall RA, Premont RT, Lefkowitz RJ. 1999. Heptahelical receptor signaling: beyond the G protein paradigm. J. Cell Biol. 145:927–32 [Google Scholar]
  52. Hamm HE, Gilchrist A. 1996. Heterotrimeric G proteins. Curr. Opin. Cell Biol. 8:189–96 [Google Scholar]
  53. Hanks SK, Quinn AM, Hunter T. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52 [Google Scholar]
  54. Hausdorff WP, Caron MG, Lefkowitz RJ. 1990. Turning off the signal: desensitization of β-adrenergic receptor function. FASEB J. 4:2881–89 [Google Scholar]
  55. Hornykiewicz O. 1966. Dopamine (3-hydroxy-tyramine) and brain function. Pharmacol. Rev. 18:925–64 [Google Scholar]
  56. Hurle MA. 2001. Changes in the expression of G protein-coupled receptor kinases and β-arrestin 2 in rat brain during opioid tolerance and supersensitivity. J. Neurochem. 77:486–92 [Google Scholar]
  57. Hyman SE, Malenka RC. 2001. Addiction and the brain: the neurobiology of compulsion and its persistence. Nature Rev. Neurosci. 2:695–703 [Google Scholar]
  58. Iacovelli L, Sallese M, Mariggio S, de Blasi A. 1999. Regulation of G-protein-coupled receptor kinase subtypes by calcium sensor proteins. FASEB J. 13:1–8 [Google Scholar]
  59. Iacovelli L, Salvatore L, Capobianco L, Picascia A, Barletta E. et al. 2003. Role of G protein-coupled receptor kinase 4 and beta-arrestin 1 in agonist-stimulated metabotropic glutamate receptor 1 internalization and activation of mitogen-activated protein kinases. J. Biol. Chem. 278:12433–42 [Google Scholar]
  60. Ito K, Haga T, Lameh J, Sadee W. 1999. Sequestration of dopamine D2 receptors depends on coexpression of G protein-coupled receptor kinases 2 or 5. Eur. J. Biochem. 260:112–19 [Google Scholar]
  61. Iwata K, Ito K, Fukuzaki A, Inaki K, Haga T. 1999. Dynamin and rab5 regulate GRK2-dependent internalization of dopamine D2 receptors. Eur. J. Biochem. 263:596–602 [Google Scholar]
  62. Jaber M, Koch WJ, Rockman H, Smith B, Bond RA. et al. 1996. Essential role of β-adrenergic receptor kinase 1 in cardiac development and function. Proc. Natl. Acad. Sci. USA 93:12974–79 [Google Scholar]
  63. Janowsky DS, Overstreet DH, Nurnberger JI Jr. 1994. Is cholinergic sensitivity a genetic marker for the affective disorders. Am. J. Med. Genet. 54:335–44 [Google Scholar]
  64. Janssen PA, Leysen JE, Megens AA, Awouters FH. 1999. Does phenylethylamine act as an endogenous amphetamine in some patients. Int. J. Neuropsychopharmacol. 2:229–40 [Google Scholar]
  65. Jenner P, Marsden CD. 1987. Chronic pharmacological manipulation of dopamine receptors in brain. Neuropharmacology 26:931–40 [Google Scholar]
  66. Jones SR, Gainetdinov RR, Wightman RM, Caron MG. 1998. Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J. Neurosci. 18:1979–86 [Google Scholar]
  67. Kabbani N, Negyessy L, Lin R, Goldman-Rakic P, Levenson R. 2002. Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J. Neurosci. 22:8476–86 [Google Scholar]
  68. Kavelaars A, Vroon A, Raatgever R, Fong AM, Premont RT. et al. 2003. Increased acute inflammation, leukotriene B4-induced chemotaxis and signaling in mice deficient for GRK6. J. Immunol. 171:6128–34 [Google Scholar]
  69. Kieffer BL. 1999. Opioids: first lessons from knockout mice. Trends Pharmacol. Sci. 20:19–26 [Google Scholar]
  70. Kim KM, Valenzano KJ, Robinson SR, Yao WD, Barak LS, Caron MG. 2001. Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and β-arrestins. J. Biol. Chem. 276:37409–14 [Google Scholar]
  71. Kittel A, Komori N. 1999. Ultrastructural localization of beta-arrestin-1 and -2 in rat lumbar spinal cord. J. Comp. Neurol. 412:649–55 [Google Scholar]
  72. Koh PO, Undie AS, Kabbani N, Levenson R, Goldman-Rakic PS, Lidow MS. 2003. Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc. Natl. Acad. Sci. USA 100:313–17 [Google Scholar]
  73. Kohout TA, Lin FS, Perry SJ, Conner DA, Lefkowitz RJ. 2001. beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc. Natl. Acad. Sci. USA 98:1601–6 [Google Scholar]
  74. Koob GF. 1992. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol. Sci. 13:177–84 [Google Scholar]
  75. Kovoor A, Celver JP, Wu A, Chavkin C. 1998. Agonist induced homologous desensitization of mu-opioid receptors mediated by G protein-coupled receptor kinases is dependent on agonist efficacy. Mol. Pharmacol. 54:704–11 [Google Scholar]
  76. Kunapuli P, Onorato JJ, Hosey MM, Benovic JL. 1994. Expression, purification, and characterization of the G protein-coupled receptor kinase GRK5. J. Biol. Chem. 269:1099–105 [Google Scholar]
  77. Laakso A, Mohn AR, Gainetdinov RR, Caron MG. 2002. Experimental genetic approaches to addiction. Neuron 36:213–28 [Google Scholar]
  78. Lamey M, Thompson M, Varghese G, Chi H, Sawzdargo M. et al. 2002. Distinct residues in the carboxyl tail mediate agonist-induced desensitization and internalization of the human dopamine D1 receptor. J. Biol. Chem. 277:9415–21 [Google Scholar]
  79. Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS. et al. 1999. The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc. Natl. Acad. Sci. USA 96:3712–17 [Google Scholar]
  80. Lefkowitz RJ. 1998. G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization J. Biol. Chem. 273:18677–80 [Google Scholar]
  81. Li AH, Wang HL. 2001. G protein-coupled receptor kinase 2 mediates mu-opioid receptor desensitization in GABAergic neurons of the nucleus raphe magnus. J. Neurochem. 77:435–44 [Google Scholar]
  82. Loh HH, Liu HC, Cavalli A, Yang W, Chen YF, Wei LN. 1998. mu Opioid receptor knockout in mice: effects on ligand-induced analgesia and morphine lethality. Brain Res. Mol. Brain Res. 54:321–26 [Google Scholar]
  83. Lodowski DT, Pitcher JA, Capel WD, Lefkowitz RJ, Tesmer JJ. 2003. Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science 300:1256–62 [Google Scholar]
  84. Lowe JD, Celver JP, Gurevich VV, Chavkin C. 2002. mu-Opioid receptors desensitize less rapidly than delta-opioid receptors due to less efficient activation of arrestin. J. Biol. Chem. 277:15729–35 [Google Scholar]
  85. Luttrell LM, Lefkowitz RJ. 2002. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell. Sci. 115:455–65 [Google Scholar]
  86. Maldonado R, Saiardi A, Valverde O, Samad TA, Roques BP, Borrelli E. 1997. Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388:586–89 [Google Scholar]
  87. Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S. et al. 1996. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383:819–23 [Google Scholar]
  88. Menard L, Ferguson SS, Barak LS, Bertrand L, Premont RT. et al. 1996. Members of the G protein-coupled receptor kinase family that phosphorylate the beta2-adrenergic receptor facilitate sequestration. Biochemistry 35:4155–60 [Google Scholar]
  89. Miralles A, Asensio VJ, Garcia-Sevilla JA. 2002. Acute treatment with the cyclic antidepressant desipramine, but not fluoxetine, increases membrane-associated G protein-coupled receptor kinases 2/3 in rat brain. Neuropharmacology 43:1249–57 [Google Scholar]
  90. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. 1998. Dopamine receptors: from structure to function. Physiol. Rev. 78:189–225 [Google Scholar]
  91. Neill JD, Musgrove LC, Duck LW, Sellers JC. 1999. High efficiency method for gene transfer in normal pituitary gonadotropes: adenoviral-mediated expression of G protein-coupled receptor kinase 2 suppresses luteinizing hormone secretion. Endocrinology 140:2562–69 [Google Scholar]
  92. Nestler EJ, Aghajanian GK. 1997. Molecular and cellular basis of addiction. Science 278:58–63 [Google Scholar]
  93. Nestler EJ. 2001. Molecular basis of long-term plasticity underlying addiction. Nature Rev. Neurosci. 2:119–28 [Google Scholar]
  94. Neubig RR, Siderovski DP. 2002. Regulators of G-protein signalling as new central nervous system drug targets. Nat. Rev. Drug Discov. 1:187–97 [Google Scholar]
  95. Noble F, Cox BM. 1996. Differential desensitization of mu- and delta-opioid receptors in selected neural pathways following chronic morphine treatment. Br. J. Pharmacol. 117:161–69 [Google Scholar]
  96. Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS. 2000. Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275:17201–10 [Google Scholar]
  97. Ohguro H, Chiba S, Igarashi Y, Matsumoto H, Akino T, Palczewski K. 1993. Beta-arrestin and arrestin are recognized by autoantibodies in sera from multiple sclerosis patients. Proc. Natl. Acad. Sci. USA 90:3241–45 [Google Scholar]
  98. Ohsawa M, Mizoguchi H, Narita M, Nagase H, Dun NJ, Tseng LF. 2003. Involvement of beta-arrestin-2 in modulation of the spinal antinociception induced by mu-opioid receptor agonists in the mouse. Neurosci. Lett. 346:13–16 [Google Scholar]
  99. Overstreet DH, Miller CS, Janowsky DS, Russell RW. 1996. Potential animal model of multiple chemical sensitivity with cholinergic supersensitivity. Toxicology 111:119–34 [Google Scholar]
  100. Ozaita A, Escriba PV, Ventayol P, Murga C, Mayor F Jr, Garcia-Sevilla JA. 1998. Regulation of G protein-coupled receptor kinase 2 in brains of opiate-treated rats and human opiate addicts. J. Neurochem. 70:1249–57 [Google Scholar]
  101. Pandey GN, Garver DL, Tamminga C, Ericksen S, Ali SI, Davis JM. 1977. Postsynaptic supersensitivity in schizophrenia. Am. J. Psychiatry 134:518–22 [Google Scholar]
  102. Parruti G, Peracchia F, Sallese M, Ambrosini G, Masini M. et al. 1993. Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing J. Biol. Chem. 268:9753–61 [Google Scholar]
  103. Penela P, Alvarez-Dolado M, Munoz A, Mayor F Jr. 2000. Expression patterns of the regulatory proteins G protein-coupled receptor kinase 2 and beta-arrestin 1 during rat postnatal brain development: effect of hypothyroidism. Eur. J. Biochem. 267:4390–96 [Google Scholar]
  104. Penn RB, Pronin AN, Benovic JL. 2000. Regulation of G protein-coupled receptor kinases. Trends Cardiovasc. Med. 10:81–89 [Google Scholar]
  105. Peppel K, Boekhoff I, McDonald P, Breer H, Caron MG, Lefkowitz RJ. 1997. G protein-coupled receptor kinase 3 (GRK3) gene disruption leads to loss of odorant receptor desensitization. J. Biol. Chem. 272:25425–28 [Google Scholar]
  106. Perroy J, Adam L, Qanbar R, Chenier S, Bouvier M. 2003. Phosphorylation-independent desensitization of GABA(B) receptor by GRK4. EMBO J. 22:3816–24 [Google Scholar]
  107. Perry SJ, Lefkowitz RJ. 2002. Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol. 12:130–38 [Google Scholar]
  108. Picetti R, Saiardi A, Abdel Samad T, Bozzi Y, Baik JH, Borrelli E. 1997. Dopamine D2 receptors in signal transduction and behavior. Crit. Rev. Neurobiol. 11:121–42 [Google Scholar]
  109. Pitcher JA, Freedman NJ, Lefkowitz RJ. 1998a. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67:653–92 [Google Scholar]
  110. Pitcher JA, Hall RA, Daaka Y, Zhang J, Ferguson SS. et al. 1998b. The G protein-coupled receptor kinase 2 is a microtubule-associated protein kinase that phosphorylates tubulin. J. Biol. Chem. 273:12316–24 [Google Scholar]
  111. Premont RT, Koch WJ, Inglese J, Lefkowitz RJ. 1994. Identification, purification, and characterization of GRK5, a member of the family of G protein-coupled receptor kinases. J. Biol. Chem. 269:6832–41 [Google Scholar]
  112. Premont RT, Inglese J, Lefkowitz RJ. 1995. Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J. 9:175–82 [Google Scholar]
  113. Premont RT, Macrae AD, Stoffel RH, Chung N, Pitcher JA. et al. 1996. Characterization of the G protein coupled receptor kinase GRK4. Identification of four splice variants J. Biol. Chem. 271:6403–10 [Google Scholar]
  114. Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch J, Lefkowitz RJ. 1999. The GRK4 subfamily of G protein-coupled receptor kinases: alternative splicing, gene organization and sequence conservation. J. Biol. Chem. 274:29381–89 [Google Scholar]
  115. Premont RT, Gainetdinov RR, Caron MG. 2001. Following the trace of elusive amines. Proc. Natl. Acad. Sci. USA 98:9474–75 [Google Scholar]
  116. Pronin AN, Satpaev DK, Slepak VZ, Benovic JL. 1997. Regulation of G protein-coupled receptor kinases by calmodulin and localization of the calmodulin binding domain. J. Biol. Chem. 272:18273–80 [Google Scholar]
  117. Pronin AN, Morris AJ, Surguchov A, Benovic JL. 2000. Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J. Biol. Chem. 275:26515–22 [Google Scholar]
  118. Przewlocka B, Sieja A, Starowicz K, Maj M, Bilecki W, Przewlocki R. 2002. Knockdown of spinal opioid receptors by antisense targeting beta-arrestin reduces morphine tolerance and allodynia in rat. Neurosci. Lett. 325:107–10 [Google Scholar]
  119. Rahman Z, Schwarz J, Gold SJ, Zachariou V, Wein MN. et al. 2003. RGS9 modulates dopamine signaling in the basal ganglia. Neuron 38:941–52 [Google Scholar]
  120. Robinson TE, Berridge KC. 1993. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18:247–91 [Google Scholar]
  121. Rockman HA, Choi DJ, Rahman NU, Akhter SA, Lefkowitz RJ, Koch WJ. 1996. Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc. Natl. Acad. Sci. USA 93:9954–59 [Google Scholar]
  122. Rockman HA, Choi DJ, Akhter SA, Jaber M, Giros B. et al. 1998. Control of myocardial contractile function by the level of beta-adrenergic receptor kinase 1 in gene-targeted mice. J. Biol. Chem. 273:18180–84 [Google Scholar]
  123. Rockman HA, Koch WJ, Lefkowitz RJ. 2002. Seven-transmembrane-spanning receptors and heart function. Nature 415:206–12 [Google Scholar]
  124. Sallese M, Salvatore L, D'Urbano E, Sala G, Storto M. et al. 2000. The G-protein-coupled receptor kinase GRK4 mediates homologous desensitization of metabotropic glutamate receptor 1. FASEB J. 14:2569–80 [Google Scholar]
  125. Sapolsky RM. 1998. The stress of Gulf War syndrome. Nature 393:308–9 [Google Scholar]
  126. Schulz R, Wehmeyer A, Murphy J, Schulz K. 1999. Phosducin, beta-arrestin and opioid receptor migration. Eur. J. Pharmacol. 375:349–57 [Google Scholar]
  127. Schwartz JC, Levesque D, Martres MP, Sokoloff P. 1993. Dopamine D3 receptor: basic and clinical aspects. Clin. Neuropharmacol. 16:295–314 [Google Scholar]
  128. Shenoy SK, Lefkowitz RJ. 2003. Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem. J. 375:503–15 [Google Scholar]
  129. Sibley DR. 1999. New insights into dopamine receptor function using antisense and genetically altered animals. Annu. Rev. Pharmacol. Toxicol. 39:313–41 [Google Scholar]
  130. Sills TL, Fletcher PJ. 1997. Fluoxetine attenuates morphine-induced locomotion and blocks morphine-sensitization. Eur. J. Pharmacol. 337:161–64 [Google Scholar]
  131. Sim LJ, Selley DE, Dworkin SI, Childers SR. 1996. Effects of chronic morphine administration on mu opioid receptor-stimulated [35S]GTPgammaS autoradiography in rat brain. J. Neurosci. 16:2684–92 [Google Scholar]
  132. Singer HS. 1994. Neurobiological issues in Tourette syndrome. Brain Dev. 16:353–64 [Google Scholar]
  133. Seeman P, Van Tol HH. 1994. Dopamine receptor pharmacology. Trends Pharmacol. Sci. 15:264–70 [Google Scholar]
  134. Snyder SH, Pasternak GW. 2003. Historical review: opioid receptors. Trends Pharmacol. Sci. 24:198–205 [Google Scholar]
  135. Sterne-Marr R, Benovic JL. 1995. Regulation of G protein-coupled receptors by receptor kinases and arrestins. Vitam. Horm. 51:193–234 [Google Scholar]
  136. Stoffel RH, Randall RR, Premont RT, Lefkowitz RJ, Inglese J. 1994. Palmitoylation of G protein-coupled receptor kinase, GRK6: lipid modification diversity in the GRK family. J. Biol. Chem. 269:27791–94 [Google Scholar]
  137. Stoffel RH, Inglese J, Macrae AD, Lefkowitz RJ, Premont RT. 1998. Palmitoylation increases the kinase activity of the G protein-coupled receptor kinase, GRK6. Biochemistry 37:16053–59 [Google Scholar]
  138. Sunayashiki-Kusuzaki K, Kikuchi T, Wawrousek EF, Shinohara T. 1997. Arrestin and phosducin are expressed in a small number of brain cells. Brain Res. Mol. Brain Res. 52:112–20 [Google Scholar]
  139. Tao R, Auerbach SB. 1994. Increased extracellular serotonin in rat brain after systemic or intraraphe administration of morphine. J. Neurochem. 63:517–24 [Google Scholar]
  140. Terman GW, Jin W, Cheong YP, Lowe J, Caron MG. et al. 2004. G-protein receptor kinase 3 (GRK3) influences opioid analgesic tolerance but not opioid withdrawal. Br. J. Pharmacol. 141:55–64 [Google Scholar]
  141. Terwilliger RZ, Ortiz J, Guitart X, Nestler EJ. 1994. Chronic morphine administration increases β-adrenergic receptor kinase (βARK) levels in the rat locus coeruleus. J. Neurochem. 63:1983–86 [Google Scholar]
  142. Tiberi M, Nash SR, Bertrand L, Lefkowitz RJ, Caron MG. 1996. Differential regulation of dopamine D1a responsiveness by various G protein-coupled receptor kinases. J. Biol. Chem. 271:3771–78 [Google Scholar]
  143. Uhl GR, Sora I, Wang Z. 1999. The mu opiate receptor as a candidate gene for pain: polymorphisms, variations in expression, nociception, and opiate responses. Proc. Natl. Acad. Sci. USA 96:7752–55 [Google Scholar]
  144. Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE. et al. 2003. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. USA 100:4903–8 [Google Scholar]
  145. Vroon A, Heijnen CJ, Raatgever R, Touw IP, Ploemacher RE. et al. 2004. GRK6 deficiency is associated with enhanced CXCR4-mediated neutrophil chemotaxis in vitro and impaired responsiveness to G-CSF in vivo. J. Leukoc. Biol. 75: doi:10.1189/jlb.0703320. In press [Google Scholar]
  146. Walker JKL, Peppel K, Lefkowitz RJ, Caron MG, Fisher JT. 1999. Altered airway and cardiac responses in mice lacking G protein-coupled receptor kinase 3. Am. J. Physiol. 276:R1214–21 [Google Scholar]
  147. Walker JKL, Fong AM, Lawson BL, Savov JD, Patel DD. et al. 2003. Beta-arrestin-2 regulates the development of allergic asthma. J. Clin. Invest. 112:566–74 [Google Scholar]
  148. Walker JKL, Gainetdinov RR, Feldman DS, McFawn PK, Caron MG. et al. 2004. G protein-coupled receptor kinase 5 regulates airway responses induced by muscarinic receptor activation. Am. J. Physiol. Lung Cell. Mol. Physiol 286:L31219 [Google Scholar]
  149. Wang YM, Gainetdinov RR, Fumagalli F, Xu F, Jones SR. et al. 1997. Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron 19:1285–96 [Google Scholar]
  150. Watanabe H, Xu J, Bengra C, Jose PA, Felder RA. 2002. Desensitization of human renal D1 receptors by G protein-coupled receptor kinase 4. Kidney Int. 62:790–98 [Google Scholar]
  151. Watson S, Arkinstall S. ed 1994. The G-Protein Linked Receptor Facts-Book San Diego: Academic [Google Scholar]
  152. Wess J. 2000. Physiological roles of G-protein-coupled receptor kinases revealed by gene-targeting technology. Trends Pharmacol. Sci. 21:364–67 [Google Scholar]
  153. Whistler JL, von Zastrow M. 1998. Morphine-activated opioid receptors elude desensitization by beta-arrestin. Proc. Natl. Acad. Sci. USA 95:9914–19 [Google Scholar]
  154. Whistler JL, Chuang HH, Chu P, Jan LY, von Zastrow M. 1999. Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23:737–46 [Google Scholar]
  155. Wickman K, Clapham DE. 1995. Ion channel regulation by G proteins. Physiol. Rev. 75:865–85 [Google Scholar]
  156. Wilcox RE, Smith RV, Anderson JA, Riffee WH. 1980. Apomorphine-induced stereotypic cage climbing in mice as a model for studying changes in dopamine receptor sensitivity. Pharmacol. Biochem. Behav. 12:29–33 [Google Scholar]
  157. Willets J, Kelly E. 2001. Desensitization of endogenously expressed delta-opioid receptors: no evidence for involvement of G protein-coupled receptor kinase 2. Eur. J. Pharmacol. 431:133–41 [Google Scholar]
  158. Willets JM, Challiss RA, Nahorski SR. 2003. Non-visual GRKs: Are we seeing the whole picture. Trends Pharmacol. Sci. 24:626–33 [Google Scholar]
  159. Wise RA, Bozarth MA. 1987. A psychomotor stimulant theory of addiction. Psychol. Rev. 94:469–92 [Google Scholar]
  160. Wise A, Jupe SC, Rees S. 2004. The identification of ligands at orphan G-protein coupled receptors. Annu. Rev. Pharmacol. Toxicol. 44:43–66 [Google Scholar]
  161. Yamamoto S, Sippel KC, Berson EL, Dryja TP. 1997. Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat. Genet. 15:175–78 [Google Scholar]
  162. Zachariou V, Georgescu D, Sanchez N, Rahman Z, DiLeone R. et al. 2003. Essential role for RGS9 in opiate action. Proc. Natl. Acad. Sci. USA 100:13656–61 [Google Scholar]
  163. Zhang J, Ferguson SS, Barak LS, Bodduluri SR, Laporte SA. et al. 1998. Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. Proc. Natl. Acad. Sci. USA 95:7157–62 [Google Scholar]
  164. Zhang J, Barak LS, Anborgh PH, Laporte SA, Caron MG, Ferguson SS. 1999. Cellular trafficking of G protein-coupled receptor/beta-arrestin endocytic complexes. J. Biol. Chem. 274:10999–1006 [Google Scholar]
/content/journals/10.1146/annurev.neuro.27.070203.144206
Loading
/content/journals/10.1146/annurev.neuro.27.070203.144206
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error