1932

Abstract

The equation-of-motion coupled-cluster (EOM-CC) approach is a versatile electronic-structure tool that allows one to describe a variety of multiconfigurational wave functions within single-reference formalism. This review provides a guide to established EOM methods illustrated by examples that demonstrate the types of target states currently accessible by EOM. It focuses on applications of EOM-CC to electronically excited and open-shell species. The examples emphasize EOM's advantages for selected situations often perceived as multireference cases [e.g., interacting states of different nature, Jahn-Teller (JT) and pseudo-JT states, dense manifolds of ionized states, diradicals, and triradicals]. I also discuss limitations and caveats and offer practical solutions to some problematic situations. The review also touches on some formal aspects of the theory and important current developments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physchem.59.032607.093602
2008-05-05
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/pc/59/1/annurev.physchem.59.032607.093602.html?itemId=/content/journals/10.1146/annurev.physchem.59.032607.093602&mimeType=html&fmt=ahah

Literature Cited

  1. Helgaker T, Jørgensen P, Olsen J. 1.  2000. Molecular Electronic Structure Theory New York: Wiley & Sons [Google Scholar]
  2. Cramer CJ. 2.  2002. Essentials of Computational Chemistry: Theories and Models New York: Wiley & Sons [Google Scholar]
  3. Hirao K. 3. ed. 1999. Recent Advances in Multi-Reference Methods Singapore: World Sci. [Google Scholar]
  4. Roos BO, Taylor PR, Siegbahn PEM. 4.  1980. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48:157–73 [Google Scholar]
  5. Ruedenberg K, Schmidt MW, Gilbert MM, Elbert ST. 5.  1982. Are atoms intrinsic to molecular wavefunction? I. The FORS model. Chem. Phys. 71:41–49 [Google Scholar]
  6. Rowe DJ. 6.  1968. Equations-of-motion method and the extended shell model. Rev. Mod. Phys. 40:153–66 [Google Scholar]
  7. Emrich K. 7.  1981. An extension of the coupled-cluster formalism to excited states (I). Nucl. Phys. A 351:379–96 [Google Scholar]
  8. Geertsen J, Rittby M, Bartlett RJ. 8.  1989. The equation-of-motion coupled-cluster method: excitation energies of Be and CO. Chem. Phys. Lett. 164:57–62 [Google Scholar]
  9. Stanton JF, Bartlett RJ. 9.  1993. The equation of motion coupled-cluster method: a systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J. Chem. Phys. 98:7029–39 [Google Scholar]
  10. Levchenko SV, Krylov AI. 10.  2004. Equation-of-motion spin-flip coupled-cluster model with single and double substitutions: theory and application to cyclobutadiene. J. Chem. Phys. 120:175–85 [Google Scholar]
  11. Sinha D, Mukhopadhyay D, Mukherjee D. 11.  1986. A note on the direct calculation of excitation energies by quasi-degenerate MBPT and coupled-cluster theory. Chem. Phys. Lett. 129:369–74 [Google Scholar]
  12. Pal S, Rittby M, Bartlett RJ, Sinha D, Mukherjee D. 12.  1987. Multireference coupled-cluster methods using an incomplete model space: application to ionization potentials and excitation energies of formaldehyde. Chem. Phys. Lett. 137:273–78 [Google Scholar]
  13. Stanton JF, Gauss J. 13.  1994. Analytic energy derivatives for ionized states described by the equation-of-motion coupled cluster method. J. Chem. Phys. 101:8938–44 [Google Scholar]
  14. Nooijen M, Bartlett RJ. 14.  1995. Equation of motion coupled cluster method for electron attachment. J. Chem. Phys. 102:3629–47 [Google Scholar]
  15. Mukherjee D, Pal S. 15.  1989. Use of cluster expansion methods in the open-shell correlation problem. Adv. Q. Chem. 20:291–373Reviews different MR-CC approaches including Fock-space methods and EOM. [Google Scholar]
  16. Bartlett RJ, Stanton JF. 16.  1994. Applications of post-Hartree-Fock methods: a tutorial. Rev. Comp. Chem. 5:65–169 [Google Scholar]
  17. Bartlett RJ. 17.  2002. To multireference or not to multireference: That is the question?. Int. J. Mol. Sci. 3:579–603Discusses a relation between MR-CC, Fock space, and EOM methods. [Google Scholar]
  18. Stanton JF, Gauss J. 18.  2003. A discussion on some problems associated with the quantum mechanical treatment of open-shell molecules. Adv. Chem. Phys. 125:101–46Discusses in detail vibronic interactions and spin adaptation of EOM-CC. [Google Scholar]
  19. Krylov AI. 19.  2006. The spin-flip equation-of-motion coupled-cluster electronic structure method for a description of excited states, bond breaking, diradicals, and triradicals. Acc. Chem. Res. 39:83–91 [Google Scholar]
  20. Christiansen O. 20.  2006. Coupled cluster theory with emphasis on selected new developments. Theor. Chim. Acta 116:106–23 [Google Scholar]
  21. Monkhorst HJ. 21.  1977. Calculation of properties with the coupled-cluster method. Int. J. Quant. Chem. Symp. 11:421–32 [Google Scholar]
  22. Sekino H, Bartlett RJ. 22.  1984. A linear response, coupled-cluster theory for excitation energy. Int. J. Quant. Chem. Symp. 18:255–65 [Google Scholar]
  23. Koch H, Jensen HJAa, Jørgensen P, Helgaker T. 23.  1990. Excitation energies from the coupled clusters singles and doubles linear response functions (CCSDLR): applications to Be, CH+, CO, and H2O. J. Chem. Phys. 93:3345–50 [Google Scholar]
  24. Head-Gordon M, Lee TJ. 24.  1997. Single reference coupled cluster and perturbation theories of electronic excitation energies. In Modern Ideas in Coupled Cluster Theoryed. RJ Bartlett pp. 221–53 Singapore: World Sci. [Google Scholar]
  25. Nakatsuji H, Hirao K. 25.  1978. Cluster expansion of the wavefunction: symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory. J. Chem. Phys. 68:2053–65 [Google Scholar]
  26. Nakatsuji H. 26.  1991. Description of two- and many-electron processes by the SAC-CI method. Chem. Phys. Lett. 177:331–37 [Google Scholar]
  27. Jeziorski B, Monkhorst HJ. 27.  1981. Coupled-cluster method for multideterminantal reference states. Phys. Rev. A 24:1668–81 [Google Scholar]
  28. Jeziorski B, Paldus J. 28.  1989. Valence-universal exponential ansatz and the cluster structure of multireference configuration interaction wave function. J. Chem. Phys. 90:2714–31 [Google Scholar]
  29. Evangelista FA, Allen WD, Schaefer HF. 29.  2006. High-order excitations in state-universal and state-specific multireference coupled cluster theories: model systems. J. Chem. Phys. 125:154113Provides an overview of different MR-CC approaches and gives numerical examples. [Google Scholar]
  30. Olsen J. 30.  2000. The initial implementation and applications of a general active space coupled cluster method. J. Chem. Phys. 113:7140–48 [Google Scholar]
  31. Meissner L, Bartlett RJ. 31.  1991. Transformation of the Hamiltonian in excitation energy calculations: comparison between Fock-space multireference coupled-cluster and equation-of-motion coupled-cluster methods. J. Chem. Phys. 94:6670–76 [Google Scholar]
  32. Nooijen M, Shamasundar KR, Mukherjee D. 32.  2005. Reflections on size extensivity, size consistency, and generalized extensivity in many-body theory. Mol. Phys. 103:2277–98 [Google Scholar]
  33. Stanton JF. 33.  1994. Separability properties of reduced and effective density matrices in the equation-of-motion coupled cluster method. J. Chem. Phys. 101:8928–37 [Google Scholar]
  34. Koch H, Kobayashi R, de Merás AS, Jørgensen P. 34.  1994. Calculation of size-extensive transition moments from coupled cluster singles and doubles linear response function. J. Chem. Phys. 100:4393–400 [Google Scholar]
  35. Cizek J. 35.  1966. On the correlation problem in atomic and molecular systems: calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys. 45:4256–66 [Google Scholar]
  36. Purvis GD, Bartlett RJ. 36.  1982. A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J. Chem. Phys. 76:1910–18 [Google Scholar]
  37. Kucharski SA, Włoch M, Musiał M, Bartlett RJ. 37.  2001. Coupled-cluster theory for excited electronic states: the full equation-of-motion coupled-cluster single, double, and triple excitation method. J. Chem. Phys. 115:8263–66 [Google Scholar]
  38. Hirata S, Nooijen M, Bartlett RJ. 38.  2000. High-order determinantal equation-of-motion coupled-cluster calculations for electronic excited states. Chem. Phys. Lett. 326:255–62 [Google Scholar]
  39. Slipchenko LV, Krylov AI. 39.  2005. Spin-conserving and spin-flipping equation-of-motion coupled-cluster method with triple excitations. J. Chem. Phys. 123:84107 [Google Scholar]
  40. Wladyslawski M, Nooijen M. 40.  2002. The photoelectron spectrum of the NO3 radical revisited: a theoretical investigation of potential energy surfaces and conical intersections. ACS Symp. Ser. 828:65–92 [Google Scholar]
  41. Sattelmeyer KW, Schaefer HF, Stanton JF. 41.  2003. Use of 2h and 3h-p like coupled-cluster Tamm-Dancoff approaches for the equilibrium properties of ozone. Chem. Phys. Lett. 378:42–46 [Google Scholar]
  42. Krylov AI. 42.  2001. Size-consistent wave functions for bond-breaking: the equation-of-motion spin-flip model. Chem. Phys. Lett. 338:375–84 [Google Scholar]
  43. Larsen H, Hald K, Olsen J, Jørgensen P. 43.  2001. Triplet excitation energies in full configuration interaction and coupled-cluster theory. J. Chem. Phys. 115:3015–20 [Google Scholar]
  44. Fedorov I, Koziol L, Li G, Parr JA, Krylov AI, Reisler H. 44.  2007. Theoretical and experimental investigations of electronic Rydberg states of diazomethane: assignments and state interactions. J. Phys. Chem. A 111:4557–66 [Google Scholar]
  45. Levchenko SV, Krylov AI. 45.  2001. Electronic structure of halogen-substituted methyl radicals: excited states of CH2Cl and CH2F. J. Chem. Phys. 115:7485–94 [Google Scholar]
  46. Levchenko SV, Demyanenko AV, Dribinski V, Potter AB, Krylov AI, Reisler H. 46.  2003. Rydberg-valence interactions in CH2Cl → CH2 + Cl photodissociation: dependence of absorption probability on ground state vibrational excitation. J. Chem. Phys. 118:9233–40 [Google Scholar]
  47. Gessner O, Lee AMD, Shaffer JP, Reisler H, Levchenko S et al.47.  2006. Femtosecond multidimensional imaging of a molecular dissociation. Science 311:219–22 [Google Scholar]
  48. Levchenko S, Reisler H, Krylov A, Gessner O, Stolow A et al.48.  2006. Photodissociation dynamics of the NO dimer. I. Theoretical overview of the UV singlet excited states. J. Chem. Phys. 125:084301 [Google Scholar]
  49. Koziol L, Levchenko SV, Krylov AI. 49.  2006. Beyond vinyl: electronic structure of unsaturated propen-1-yl, propen-2-yl, 1-buten-2-yl, and trans-2-buten-2-yl hydrocarbon radicals. J. Phys. Chem. A 110:2746–58 [Google Scholar]
  50. Mozhayskiy VA, Babikov D, Krylov AI. 50.  2006. Conical and glancing Jahn-Teller intersections in the cyclic trinitrogen cation. J. Chem. Phys. 124:224309 [Google Scholar]
  51. Babikov D, Mozhayskiy VA, Krylov AI. 51.  2006. Photoelectron spectrum of elusive cyclic N3 and characterization of potential energy surface and vibrational states of the ion. J. Chem. Phys. 125:084306 [Google Scholar]
  52. Dillon JJ, Yarkony DR. 52.  2007. Seams near seams: the Jahn-Teller effect in the 1E′′ state of N3+. J. Chem. Phys. 126:124113 [Google Scholar]
  53. Stanton JF. 53.  2001. Coupled-cluster theory, pseudo-Jahn-Teller effects and conical intersections. J. Chem. Phys. 115:10382–93 [Google Scholar]
  54. Stanton JF, Sattelmeyer KW, Gauss J, Allan M, Skalicky T, Bally T. 54.  2001. On the photoelectron spectrum of p-benzoquinone. J. Chem. Phys. 115:1–4 [Google Scholar]
  55. Ichino T, Gianola AJ, Lineberger WC, Stanton JF. 55.  2006. Nonadiabatic effects in the photoelectron spectrum of the pyrazolide-d3 anion: three-state interactions in the pyrazolyl-d3 radical. J. Chem. Phys. 125:084312 [Google Scholar]
  56. Vanovschi V, Krylov AI, Wenthold PG. 56.  2007. Structure, vibrational frequencies, ionization energies, and photoelectron spectrum of the para-benzyne radical anion. Theor. Chim. Acta. In press [Google Scholar]
  57. Slipchenko LV, Krylov AI. 57.  2006. Efficient strategies for accurate calculations of electronic excitation and ionization energies: theory and application to the dehydro-meta-xylylene anion. J. Phys. Chem. A 110:291–98Calculates the EA of DMX by combining CCSD(T) and EOM-CC methods using computational schemes in the spirit of isodesmic reactions. [Google Scholar]
  58. Stanton JF. 58.  2007. On the vibronic level structure in the NO3 radical. I. The ground electronic state. J. Chem. Phys. 126:134309 [Google Scholar]
  59. Köhn A, Tajti A. 59.  2007. Can coupled-cluster theory treat conical intersections?. J. Chem. Phys. 127:044105Formal analysis and numeric examples demonstrating how the non-Hermitian nature of EOM affects the topology of conical intersections. [Google Scholar]
  60. Hättig C. 60.  2005. Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2). Adv. Quant. Chem. 50:37–60 [Google Scholar]
  61. Szalay PG, Gauss J. 61.  2000. Spin-restricted open-shell coupled-cluster theory for excited states. J. Chem. Phys. 112:4027–36 [Google Scholar]
  62. Maurice D, Head-Gordon M. 62.  1995. Configuration interaction with single substitutions for excited states of open-shell molecules. Int. J. Quant. Chem. Symp. 29:361–70 [Google Scholar]
  63. Krylov AI, Sherrill CD. 63.  2002. Perturbative corrections to the equation-of-motion spin-flip SCF model: application to bond-breaking and equilibrium properties of diradicals. J. Chem. Phys. 116:3194–203 [Google Scholar]
  64. Krylov AI. 64.  2001. Spin-flip configuration interaction: an electronic structure model that is both variational and size consistent. Chem. Phys. Lett. 350:522–30 [Google Scholar]
  65. Sears JS, Sherrill CD, Krylov AI. 65.  2003. A spin-complete version of the spin-flip approach to bond breaking: What is the impact of obtaining spin eigenfunctions?. J. Chem. Phys. 118:9084–94 [Google Scholar]
  66. Shao Y, Head-Gordon M, Krylov AI. 66.  2003. The spin-flip approach within time-dependent density functional theory: theory and applications to diradicals. J. Chem. Phys. 118:4807–18 [Google Scholar]
  67. Slipchenko LV, Krylov AI. 67.  2002. Singlet-triplet gaps in diradicals by the spin-flip approach: a benchmark study. J. Chem. Phys. 117:4694–708 [Google Scholar]
  68. Golubeva A, Nemukhin AV, Harding L, Klippenstein SJ, Krylov AI. 68.  2007. Performance of spin-flip and multireference methods for bond-breaking in hydrocarbons: a benchmark study. J. Phys. Chem. A. In press [Google Scholar]
  69. Slipchenko LV, Krylov AI. 69.  2003. Electronic structure of the trimethylenemethane diradical in its ground and electronically excited states: bonding, equilibrium structures and vibrational frequencies. J. Chem. Phys. 118:6874–83 [Google Scholar]
  70. Wang T, Krylov AI. 70.  2005. The effect of substituents on singlet-triplet energy separations in meta-xylylene diradicals: qualitative insights from quantitative studies. J. Chem. Phys. 123:104304 [Google Scholar]
  71. Krylov AI. 71.  2005. Triradicals. J. Phys. Chem. A 109:10638–45 [Google Scholar]
  72. Slipchenko LV, Krylov AI. 72.  2003. Electronic structure of the 1,3,5,-tridehydrobenzene triradical in its ground and excited states. J. Chem. Phys. 118:9614–22 [Google Scholar]
  73. Slipchenko LV, Munsch TE, Wenthold PG, Krylov AI. 73.  2004. 5-dehydro-1,3-quinodimethane: a hydrocarbon with an open-shell doublet ground state. Angew. Chem. Int. Ed. Engl. 43:742–45 [Google Scholar]
  74. Munsch TE, Slipchenko LV, Krylov AI, Wenthold PG. 74.  2004. Reactivity and structure of the 5-dehydro-m-xylylene anion. J. Org. Chem. 69:5735–41 [Google Scholar]
  75. Cristian AMC, Shao Y, Krylov AI. 75.  2004. Bonding patterns in benzene triradicals from structural, spectroscopic, and thermochemical perspectives. J. Phys. Chem. A 108:6581–88Develops and applies computational schemes for calculating accurate thermochemical values for the reactions involving diradicals and triradicals to characterize partial bonds between radical centers. [Google Scholar]
  76. Wang T, Krylov AI. 76.  2006. Electronic structure of the two dehydro-meta-xylylene triradicals and their derivatives. Chem. Phys. Lett. 426:196–200 [Google Scholar]
  77. Koziol L, Winkler M, Houk KN, Venkataramani S, Sander W, Krylov AI. 77.  2007. The 1,2,3-tridehydrobenzene triradical: 2B or not 2B? The answer is 2A!. J. Phys. Chem. A 111:5071–80 [Google Scholar]
  78. Saeh JC, Stanton JF. 78.  1999. Application of an equation-of-motion coupled cluster method including higher-order corrections to potential energy surfaces of radicals. J. Chem. Phys. 111:8275–85 [Google Scholar]
  79. Yang CH, Hsu CP. 79.  2006. The dynamical correlation in spacer-mediated electron transfer couplings. J. Chem. Phys. 124:244507 [Google Scholar]
  80. Pieniazek PA, Arnstein SA, Bradforth SE, Krylov AI, Sherrill CD. 80.  2007. Benchmark full configuration interaction and EOM-IP-CCSD results for prototypical charge transfer systems: noncovalent ionized dimers. J. Chem. Phys. 127:164110 [Google Scholar]
  81. Pieniazek PA, Krylov AI, Bradforth SE. 81.  2007. Electronic structure of the benzene dimer cation. J. Chem. Phys. 127:044317 [Google Scholar]
  82. Nooijen M. 82.  2002. State selective equation-of-motion coupled cluster theory: some preliminary results. Int. J. Mol. Sci. 3:656–75 [Google Scholar]
  83. McWeeny R. 83.  1992. Methods of Molecular Quantum Mechanics New York: Academic, 2nd.ed. [Google Scholar]
  84. Epstein ST. 84.  1974. The Variation Method in Quantum Chemistry New York: Academic [Google Scholar]
  85. Löwdin P-O. 85.  1982. On operators, superoperators, Hamiltonians and Liouvillians. Int. J. Quant. Chem. Symp. 16:485–560 [Google Scholar]
  86. Löwdin P-O. 86.  1985. Some aspects on the Hamiltonian and Liouvillian formalism, the special propagator methods, and the equation of motion approach. Adv. Q. Chem. 17:285–334 [Google Scholar]
  87. McCurdy CW, Rescigno TN, Yeager DL, McKoy V. 87.  1977. The equations of motion method: an approach to dynamical properties of atoms and molecules. In Modern Theoretical ChemistryVol. 3pp. 339–86 New York: Plenum [Google Scholar]
  88. Comeau DC, Bartlett RJ. 88.  1993. The equation-of-motion coupled-cluster method: applications to open- and closed-shell reference states. Chem. Phys. Lett. 207:414–23 [Google Scholar]
  89. Szekeres Z, Szabados Á, Kállay M, Surján PR. 89.  2001. On the “killer condition” in the equation-of-motion method: ionization potentials from multi-reference wave functions. Phys. Chem. Chem. Phys. 3:696–701 [Google Scholar]
  90. Purvis GD III, Sekino H, Bartlett RJ. 90.  1988. Multiplicity of many-body wavefunctions using unrestricted Hartree-Fock reference functions. Collect. Czech. Chem. Commun. 53:2203–13 [Google Scholar]
  91. Stanton JF. 91.  1994. On the extent of spin contamination in open-shell coupled-cluster wave functions. J. Chem. Phys. 101:371–74 [Google Scholar]
  92. Sherrill CD, Krylov AI, Byrd EFC, Head-Gordon M. 92.  1998. Energies and analytic gradients for a coupled-cluster doubles model using variational Brueckner orbitals: application to symmetry breaking in O4+. J. Chem. Phys. 109:4171–81 [Google Scholar]
  93. Krylov AI, Sherrill CD, Head-Gordon M. 93.  2000. Excited states theory for optimized orbitals and valence optimized orbitals coupled-cluster doubles models. J. Chem. Phys. 113:6509–27 [Google Scholar]
  94. Hirata S, Nooijen M, Bartlett RJ. 94.  2000. High-order determinantal equation-of-motion coupled-cluster calculations for ionized and electron-attached states. Chem. Phys. Lett. 328:459–68 [Google Scholar]
  95. Kamyia M, Hirata S. 95.  2006. Higher-order equation-of-motion coupled-cluster methods for ionization processes. J. Chem. Phys. 125:074111 [Google Scholar]
  96. Stanton JF. 96.  1993. Many-body methods for excited state potential energy surfaces. I. General theory of energy gradients for the equation-of-motion coupled-cluster method. J. Chem. Phys. 99:8840–47 [Google Scholar]
  97. Stanton JF, Gauss J. 97.  1995. Many-body methods for excited state potential energy surfaces. II. Analytic second derivatives for excited state energies in the equation-of-motion coupled-cluster method. J. Chem. Phys. 103:88931 [Google Scholar]
  98. Levchenko SV, Wang T, Krylov AI. 98.  2005. Analytic gradients for the spin-conserving and spin-flipping equation-of-motion coupled-cluster models with single and double substitutions. J. Chem. Phys. 122:224106 [Google Scholar]
  99. Gauss J, Stanton JF. 99.  2002. Electron-correlated approaches for the calculation of NMR chemical shifts. Adv. Chem. Phys. 123:355–422 [Google Scholar]
  100. Crawford TD. 100.  2006. Ab initio calculation of molecular chiroptical properties. Theor. Chim. Acta 115:227–45 [Google Scholar]
  101. Hättig C, Christiansen O, Jørgensen P. 101.  1998. Multiphoton transition moments and absorption cross sections in coupled cluster response theory employing variational transition moment functionals. J. Chem. Phys. 108:8331–54 [Google Scholar]
  102. Epifanovsky E, Krylov AI. 102.  2007. Direct location of the minimum point on intersection seams of potential energy surfaces with equation-of-motion coupled-cluster methods. Mol. Phys. In press [Google Scholar]
  103. Christiansen O, Gauss J, Schimmelpfennig B. 103.  2000. Spin-orbit coupling constants from coupled-cluster response theory. Phys. Chem. Chem. Phys. 2:965–71 [Google Scholar]
  104. Oana M, Krylov AI. 104.  2007. Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion formalism: theory, implementation and examples. J. Chem. Phys. In press [Google Scholar]
  105. Stanton JF, Gauss J. 105.  2007. A quasidiabatic approach in equation-of-motion coupled cluster theory: perspective, derivations and preliminary applications. Private communication
  106. Noga J, Bartlett RJ, Urban M. 106.  1987. Towards a full CCSDT model for electron correlation: CCSDT-n models. Chem. Phys. Lett. 134:126–32 [Google Scholar]
  107. Watts JD, Bartlett RJ. 107.  1995. Economical triple excitation equation-of-motion coupled-cluster methods for excitation energies. Chem. Phys. Lett. 233:81–87 [Google Scholar]
  108. Watts JD, Bartlett RJ. 108.  1996. Iterative and noniterative triple excitation corrections in coupled-cluster methods for excited electronic states: the EOM-CCSDT-3 and EOM-CCSD(˜T) methods. Chem. Phys. Lett. 258:581–88 [Google Scholar]
  109. Koch H, Christiansen O, Jørgensen P, de Meras AMS, Helgaker T. 109.  1997. The CC3 model: an iterative coupled cluster approach including connected triples. J. Chem. Phys. 106:1808–18 [Google Scholar]
  110. Koch H, Christiansen O, Jørgensen P, Olsen J. 110.  1995. Excitation energies of BH, CH2, and Ne in full configuration interaction and the hierarchy CCS, CC2, CCSD, and CC3 of coupled cluster models. Chem. Phys. Lett. 244:75–82 [Google Scholar]
  111. Christiansen O, Koch H, Jorgensen P. 111.  1995. Response functions in the CC3 iterative triple excitation model. J. Chem. Phys. 103:7429–41 [Google Scholar]
  112. Smith CE, King RA, Crawford TD. 112.  2005. Coupled cluster methods including triple excitations for excited states of radicals. J. Chem. Phys. 122:054110 [Google Scholar]
  113. Sattelmeyer KW, Stanton JF, Olsen J, Gauss J. 113.  2001. A comparison of excited state properties for iterative approximate triples linear response coupled cluster methods. Chem. Phys. Lett. 347:499–504 [Google Scholar]
  114. Piecuch P, Włoch M. 114.  2005. Renormalized coupled-cluster methods exploiting left eigenstates of the similarity transformed Hamiltonian. J. Chem. Phys. 123:224105 [Google Scholar]
  115. Piecuch P, Kowalski K, Pimienta ISO, McGuire MJ. 115.  2002. Recent advances in electronic structure theory: method of moments of coupled-cluster equations and renormalized coupled-cluster approaches. Int. Rev. Phys. Chem. 21:527–655 [Google Scholar]
  116. Kowalski K, Piecuch P. 116.  2000. The active-space equation-of-motion coupled-cluster methods for excited electronic states: the EOMCCSDt approach. J. Chem. Phys. 113:8490–502 [Google Scholar]
  117. Kowalski K, Piecuch P. 117.  2001. The active-space equation-of-motion coupled-cluster methods for excited electronic states: full EOMCCSDt. J. Chem. Phys. 115:643–51 [Google Scholar]
  118. Gour J, Piecuch P. 118.  2006. Efficient formulation and computer implementation of the active-space electron-attached and ionized equation-of-motion coupled-cluster methods. J. Chem. Phys. 125:234107 [Google Scholar]
  119. Fan PD, Kamiya M, Hirata S. 119.  2007. Active-space equation-of-motion coupled-cluster methods through quadruples for excited, ionized, and electron-attached states. J. Chem. Theory Comput. 3:1036–46 [Google Scholar]
  120. Nooijen M, Bartlett RJ. 120.  1997. Similarity transformed equation-of-motion coupled-cluster study of ionized, electron attached, and excited states of free base porphin. J. Chem. Phys. 106:6449–55 [Google Scholar]
  121. Nooijen M, Bartlett RJ. 121.  1997. Similarity transformed equation-of-motion coupled-cluster theory: details, examples, and comparisons. J. Chem. Phys. 107:6812–30 [Google Scholar]
  122. Hättig C, Hald K. 122.  2002. Implementation of RI-CC2 triplet excitation energies with an application to trans-azobenzene. Phys. Chem. Chem. Phys. 4:2111–18 [Google Scholar]
  123. Köhn A, Hättig C. 123.  2003. Analytic gradients for excited states in the coupled-cluster model CC2 employing the resolution-of-the-identity approximation. J. Chem. Phys. 119:5021–36 [Google Scholar]
  124. Rhee YM, Head-Gordon M. 124.  2007. Scaled second-order perturbation corrections to configuration interaction singles: efficient and reliable excitation energy methods. J. Phys. Chem. A 111:5314–26 [Google Scholar]
  125. Korona T, Werner HJ. 125.  2003. Local treatment of electron excitations in the EOM-CCSD method. J. Chem. Phys. 118:3006–19 [Google Scholar]
  126. Kats D, Korona T, Schütz M. 126.  2006. Local CC2 electronic excitation energies for large molecules with density fitting. J. Chem. Phys. 125:104106 [Google Scholar]
  127. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C et al.127.  2006. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8:3172–91 [Google Scholar]
  128. Stanton JF, Gauss J, Watts JD, Lauderdale WJ, Bartlett RJ. 128.  1993. ACES II software..
  129. Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M et al.129.  2007. Molpro version 2006.1. http://www.molpro.net
  130. Crawford TD, Sherrill CD, Valeev EF, Fermann JT, King RA et al.130.  2007. PSI3: an open-source ab initio electronic structure package. J. Comput. Chem. 28:1610–16 [Google Scholar]
  131. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS et al.131.  1993. General atomic and molecular electronic structure system. J. Comput. Chem. 14:1347–63 [Google Scholar]
  132. 132. DALTON 2005. Release 2.0. http://www.kjemi.uio.no/software/dalton/dalton.html
/content/journals/10.1146/annurev.physchem.59.032607.093602
Loading
/content/journals/10.1146/annurev.physchem.59.032607.093602
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error