▪ Abstract 

This commentary presents a series of examples of “impossible experimental problems” that we have encountered over the years in addressing various challenging questions in physiology. We aim to show how stimulating the challenges of physiology can be and demonstrate how our naive invocation of methods from disparate fields of science and engineering has led to delightful resolutions of physiological challenges that were utterly new to this intrepid interdisciplinary researcher.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Gilmer GH, Gilmore W, Huang J, Webb WW. 1965. Diffuse interface in a critical fluid mixture. Phys. Rev. Lett. 14:491–94 [Google Scholar]
  2. Huang JS, Webb WW. 1969. Diffuse interface in a critical fluid mixture. J. Chem. Phys. 50:3677–93 [Google Scholar]
  3. Huang JS, Webb WW. 1969. Viscous damping of thermal excitations on interface of critical fluid mixtures. Phys. Rev. Lett. 23:160–63 [Google Scholar]
  4. Lukens JE, Warburton RJ, Webb WW. 1970. Onset of quantized thermal fluctuations in one-dimensional superconductors. Phys. Rev. Lett. 25:1180–84 [Google Scholar]
  5. Henkels WH, Webb WW. 1971. Intrinsic fluctuations in the driven Josephson oscillator. Phys. Rev. Lett. 26:1164–67 [Google Scholar]
  6. Watts DR, Goldburg WI, Jackel LD, Webb WW. 1972. Preliminary observations of light scattering from the 3He-4He mixture near its consolute critical point. J. Physiol. Paris 33:C1–155 [Google Scholar]
  7. Magde D, Elson E, Webb WW. 1972. Thermodynamic fluctuations in a reacting system: Measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29:705–8 [Google Scholar]
  8. Elson EL, Webb WW. 1975. Concentration correlation spectroscopy: New biophysical probe based on occupation number fluctuations. Annu. Rev. Biophys. Bioeng. 4:311–34 [Google Scholar]
  9. Mertz J, Xu C, Webb WW. 1995. Singlemolecule detection by two-photon-excited fluorescence. Optics Letters 20:2532–34 [Google Scholar]
  10. Haupts U, Maiti S, Schwille P, Webb WW. 1998. Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. USA 95:13573–78 [Google Scholar]
  11. Zipfel WR, Webb WW. 2001. In vivo diffusion measurements using multiphoton excited fluorescence photobleaching recovery (MPFPR) and fluorescence correlation spectroscopy (MPFCS). In Methods in Cellular Imaging ed. A Periasamy pp. 216–35 Oxford, England: Oxford Univ. Press [Google Scholar]
  12. Kohler RH, Schwille P, Webb WW, Hanson MR. 2000. Active protein transport through plastid tubules: Velocity quantified by fluorescence correlation spectroscopy. J. Cell Sci. 113:3921–30 [Google Scholar]
  13. Webb WW. 2001. Fluorescence correlation spectroscopy: Genesis, evolution, maturation and prognosis. In Fluorescence Correlation Spectroscopy Theory and Applications ed. R Rigler, ES Elson pp. 305–30 Berlin: Springer-Verlag [Google Scholar]
  14. Webb WW. 2001. Fluorescence correlation spectroscopy: Inception, biophysical experimentations and prospectus. Appl. Opt. 40:3969–83 [Google Scholar]
  15. Hess ST, Huang S, Heikal AA, Webb WW. 2002. Biological and chemical applications of fluorescence correlation spectroscopy: A review. Biochemistry 41:697–705 [Google Scholar]
  16. Larson D, Ma YM, Vogt VM, Webb WW. 2003. Direct measurement of Gag–Gag interaction during retrovirus assembly with FRET and fluorescence correlation spectroscopy. J. Cell Biol. 162:1233–44 [Google Scholar]
  17. Foquet M, Korlach J, Zipfel WR, Webb WW, Craighead HG. 2004. Focal volume confinement by submicrometer-sized fluidic channels. Anal. Chem. 76:1618–26 [Google Scholar]
  18. Singer SJ, Nicolson GL. 1972. Fluid mosaic model of structure of cell membranes. Science 175:720–31 [Google Scholar]
  19. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. 1976. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16:1055–69 [Google Scholar]
  20. Elson EL, Schlessinger J, Koppel DE, Axelrod D, Webb WW. 1976. Measurement of lateral transport on cell surfaces. In Measurement of Lateral Transport on Cell Surfaces ed. VT Marchesi pp. 137–40 New York: Alan R. Liss, Inc. [Google Scholar]
  21. Saffman PG, Delbruck M. 1975. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. USA 72:3111–13 [Google Scholar]
  22. Barak LS, Webb WW. 1981. Fluorescent low-density lipoprotein for observation of dynamics of individual receptor complexes on cultured human fibroblasts. J. Cell Biol. 90:595–604 [Google Scholar]
  23. Ghosh RN, Webb WW. 1988. Results of automated tracking of LDL receptors on cell surfaces Presented at Annu. Meet. Am. Biophys. Soc., 41st, New Orleans [Google Scholar]
  24. Ghosh RN, Webb WW. 1994. Automated detection and tracking of individual and clustered cell-surface low-density-lipoprotein receptor molecules. Biophys. J. 66:1301–18 [Google Scholar]
  25. Thompson RE, Larson DR, Webb WW. 2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82:2775–83 [Google Scholar]
  26. Schwille P, Haupts U, Maiti S, Webb WW. 1999. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J. 77:2251–65 [Google Scholar]
  27. Sheetz MP. 1983. Membrane skeletal dynamics: Role in modulation of red-cell deformability, mobility of transmembrane proteins, and shape. Semin. Hematol. 20:175–88 [Google Scholar]
  28. Feder TJ, Brust-Mascher I, Slattery JP, Baird B, Webb WW. 1996. Constrained diffusion or immobile fraction on cell surfaces: A new interpretation. Biophys. J. 70:2767–73 [Google Scholar]
  29. Bouchaud JP, Georges A. 1990. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 195:127–293 [Google Scholar]
  30. Thomas JL, Holowka D, Baird B, Webb WW. 1994. Large-scale coaggregation of fluorescent lipid probes with cell-surface proteins. J. Cell Biol. 125:795–802 [Google Scholar]
  31. Schlessinger J, Barak LS, Hammes GG, Yamada KM, Pastan I. et al. 1977. Mobility and distribution of a cell-surface glycoprotein and its interaction with other membrane components. Proc. Natl. Acad. Sci. USA 74:2909–13 [Google Scholar]
  32. Tank DW, Wu ES, Meers PR, Webb WW. 1982. Lateral diffusion of gramicidin-C in phospholipid multibilayers: Effects of cholesterol and high gramicidin concentration. Biophys. J. 40:129–35 [Google Scholar]
  33. Bloom JA, Webb WW. 1983. Lipid diffusibility in the intact erythrocyte membrane. Biophys. J. 42:295–305 [Google Scholar]
  34. Ryan TA, Myers J, Holowka D, Baird B, Webb WW. 1988. Molecular crowding on the cell surface. Science 239:61–64 [Google Scholar]
  35. Smith AK, Buboltz J, Spink CH, Feigenson GW. 2003. Ternary phase diagram of the lipid mixture sphingomyelin/DOPC/cholesterol. Biophys. J. 84:372A [Google Scholar]
  36. Schwille P, Korlach J, Webb WW. 1999. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36:176–82 [Google Scholar]
  37. Korlach J, Schwille P, Webb WW, Feigenson GW. 1999. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. USA 96:8461–66 [Google Scholar]
  38. Baumgart T, Hess ST, Webb WW. 2003. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–24 [Google Scholar]
  39. Lipowsky R, Dimova R. 2003. Domains in membranes and vesicles. J. Phys. Condens. Matter 15:S31–S45 [Google Scholar]
  40. Baumgart T, Das S, Webb WW, Jenkins JT. 2005. Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 89:1067–80 [Google Scholar]
  41. Schneider MB, Jenkins JT, Webb WW. 1984. Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles. J. Phys. 45:1457–72 [Google Scholar]
  42. Nelson DR. 1977. Recent developments in phase-transitions and critical phenomena. Nature 269:379–83 [Google Scholar]
  43. Nelson DR, Peliti L. 1987. Fluctuations in membranes with crystalline and hexatic order. J. Phys. 48:1085–92 [Google Scholar]
  44. Selinger JV, Nelson DR. 1988. Theory of hexatic-to-hexatic transitions. Phys. Rev. Lett. 61:416–19 [Google Scholar]
  45. Selinger JV, Nelson DR. 1989. Theory of transitions among tilted hexatic phases in liquid crystals. Phys. Rev. A 39:3135–47 [Google Scholar]
  46. Leiderer P, Watts DR, Webb WW. 1974. Light-scattering by He-3-He-4 mixtures near tricritical point. Phys. Rev. Lett. 33:483–85 [Google Scholar]
  47. Leiderer P, Nelson DR, Watts DR, Webb WW. 1975. Tricritical slowing down of superfluid dynamics in He-3-He-4 mixtures. Phys. Rev. Lett. 34:1080–83 [Google Scholar]
  48. Leiderer P, Nelson DR, Watts DR, Webb WW. 1975. Tricritical slowing down of superfluid dynamics in He-3-He-4 mixtures Presented at Proc. Intl. Cong. Low Temp. Phys., 14th, Amsterdam [Google Scholar]
  49. Huganir RL, Racker E. 1982. Properties of proteoliposomes reconstituted with acetylcholine receptor from Torpedo californica. J. Biol. Chem. 25:9372–78 [Google Scholar]
  50. Tank DW, Miller C, Webb WW. 1982. Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from torpedo electroplax. Proc. Natl. Acad. Sci. USA 79:7749–53 [Google Scholar]
  51. Tank DW, Huganir RL, Greengard P, Webb WW. 1983. Patch-recorded single-channel currents of the purified and reconstituted torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 80:5129–33 [Google Scholar]
  52. Kloppenburg P, Zipfel WR, Webb WW, Harris-Warrick RM. 2000. Highly localized Ca2+ accumulation revealed by multiphoton microscopy in an identified motoneuron and its modulation by dopamine. J. Neurosci. 20:2523–33 [Google Scholar]
  53. Dombeck DA, Blanchard-Desce M, Webb WW. 2004. Optical recording of action potentials with second-harmonic generation microscopy. J. Neurosci. 24:999–1003 [Google Scholar]
  54. Opsahl LR, Webb WW. 1994. Lipid-glass adhesion in giga-sealed patch-clamped membranes. Biophys. J. 66:75–79 [Google Scholar]
  55. Opsahl LR, Webb WW. 1994. Transduction of membrane tension by the ion-channel alamethicin. Biophys. J. 66:71–74 [Google Scholar]
  56. Mak DOD, Webb WW. 1995. Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis. Biophys. J. 69:2337–49 [Google Scholar]
  57. Dragsten PR, Webb WW, Paton JA, Capranic RR. 1974. Auditory membrane vibrations: Measurements at sub-angstrom levels by optical heterodyne spectroscopy. Science 185:55–57 [Google Scholar]
  58. Dragsten PR, Webb WW, Paton JA, Capranica RR. 1976. Light-scattering heterodyne interferometer for vibration measurements in auditory organs. J. Acoust. Soc. Am. 60:663–71 [Google Scholar]
  59. Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. 2000. Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy. Neoplasia 2:9–25 [Google Scholar]
  60. Denk W, Webb WW. 1990. Optical measurement of picometer displacements of transparent microscopic objects. Appl. Opt. 29:2382–91 [Google Scholar]
  61. Denk W, Webb WW, Hudspeth AJ. 1989. Mechanical properties of sensory hair bundles are reflected in their Brownian motion measured with a laser differential interferometer. Proc. Natl. Acad. Sci. USA 86:5371–75 [Google Scholar]
  62. Denk W, Webb WW. 1992. Forward and reverse transduction at the limit of sensitivity studied by correlating electrical and mechanical fluctuations in frog saccular hair cells. Hear. Res. 60:89–102 [Google Scholar]
  63. Denk W, Webb WW. 1989. Thermal-noise-limited transduction observed in mechanosensory receptors of the inner ear. Phys. Rev. Lett. 63:207–10 [Google Scholar]
  64. Denk W, Keolian RM, Webb WW. 1992. Mechanical response of frog saccular hair bundles to the aminoglycoside block of mechanoelectrical transduction. J. Neurophysiol. 68:927–32 [Google Scholar]
  65. White JG, Amos WB, Fordham M. 1987. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell Biol. 105:41–48 [Google Scholar]
  66. Goeppert-Mayer M. 1931. Elementary file with two quantum fissures. Ann. Phys. 9:273–94 [Google Scholar]
  67. Denk W, Strickler JH, Webb WW. 1990. Two-photon laser scanning fluorescence microscopy. Science 248:73–76 [Google Scholar]
  68. Denk W. 1994. Two-photon scanning photochemical microscopy: Mapping ligand-gated ion-channel distributions. Proc. Natl. Acad. Sci. USA 91:6629–33 [Google Scholar]
  69. Strickler JH, Webb WW. 1991. Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt. Lett. 16:1780–82 [Google Scholar]
  70. Wu ES, Webb WW, Strickler JH, Harrell WR. 1992. Two-photon lithography for microelectronic application. Proc. SPIE 1674:776–82 [Google Scholar]
  71. Maiti S, Shear JB, Williams RM, Zipfel WR, Webb WW. 1997. Measuring serotonin distribution in live cells with three-photon excitation. Science 275:530–32 [Google Scholar]
  72. Shear JB, Xu C, Webb WW. 1997. Multiphoton-excited visible emission by serotonin solutions. Photochem. Photobiol. 65:931–36 [Google Scholar]
  73. Xu C, Guild J, Webb WW, Denk W. 1995. Determination of absolute two-photon excitation cross-sections by in-situ second-order autocorrelation. Opt. Lett. 20:2372–74 [Google Scholar]
  74. Xu C, Webb WW. 1996. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. B 13:481–91 [Google Scholar]
  75. Xu C, Zipfel W, Shear JB, Williams RM, Webb WW. 1996. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. USA 93:10763–68 [Google Scholar]
  76. Xu C, Webb WW. 1997. Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy. In Topics in Fluorescence Spectroscopy: Volume 5: Nonlinear and Two-Photon-Induced Fluorescence ed. J Lakowicz pp. 471–540 New York: Plenum [Google Scholar]
  77. Albota MA, Xu C, Webb WW. 1998. Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl. Opt. 37:7352–56 [Google Scholar]
  78. Albota M, Beljonne D, Bredas JL, Ehrlich JE, Fu JY. et al. 1998. Design of organic molecules with large two-photon absorption cross sections. Science 281:1653–56 [Google Scholar]
  79. Dickson RM, Cubitt AB, Tsien RY, Moerner WE. 1997. On/off blinking and switching behaviour of single green fluorescent protein molecules. Nature 388:355–58 [Google Scholar]
  80. Hess ST, Heikal AA, Webb WW. 2004. Fluorescence photoconversion kinetics in novel green fluorescent protein pH sensors (pHluorins). J. Phys. Chem. B 108:10138–48 [Google Scholar]
  81. Yao J, Larson DR, Vishwasrao HD, Zipfel WR, Webb WW. 2005. Blinking and non-radiant dark fraction of water-soluble quantum dots in aqueous solution. Proc. Natl. Acad. Sci. USA 102:14284–89 [Google Scholar]
  82. Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U. 2005. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 5:113–17 [Google Scholar]
  83. Ouzounov DG, Moll KD, Foster MA, Zipfel WR, Webb WW, Gaeta AL. 2002. Delivery of nanojoule femtosecond pulses through large-core microstructured fibers. Opt. Lett. 27:1513–15 [Google Scholar]
  84. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. 2004. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103 [Google Scholar]
  85. Vishwasrao HD, Heikal AA, Kasischke KA, Webb WW. 2005. Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. J. Biol. Chem. 280:25119–26 [Google Scholar]
  86. Wilson T, Sheppard CJR. 1984. Theory and Practice of Scanning Optical Microscopy London: Academic213 pp. [Google Scholar]
  87. Williams RM, Zipfel WR, Webb WW. 2005. Interpreting second harmonic generation images of collagen I fibrils. Biophys. J. 88:1377–86 [Google Scholar]
  88. Dombeck DA, Kasischke KA, Vishwasrao HD, Ingelsson M, Hyman BT, Webb WW. 2003. Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. Proc. Natl. Acad. Sci. USA 100:7081–86 [Google Scholar]
  89. Christie RH, Bacskai BJ, Zipfel WR, Williams RM, Kajdasz ST. et al. 2001. Growth arrest of individual senile plaques in a model of Alzheimer's disease observed by in vivo multiphoton microscopy. J. Neurosci. 21:858–64 [Google Scholar]
  90. Bacskai BJ, Kajdasz ST, Christie RH, Zipfel WR, Williams RM. et al. 2001. Chronic imaging of amyloid plaques in the live mouse brain using multiphoton microscopy. In Multiphoton Microscopy in the Biomedical Sciences ed. A Periasamy, PTC So, Proc. SPIE 4262125–33 Bellingham, WA: Int. Soc. Opt. Eng. [Google Scholar]
  91. Zipfel WR, Williams RM, Christie RH, Nikitin AY, Hyman BT, Webb WW. 2003. Live tissue intrinsic emission microscopy using multiphoton excited intrinsic fluorescence and second harmonic generation. Proc. Natl. Acad. Sci. USA 100:7075–80 [Google Scholar]
  92. Zipfel WR, Williams RM, Webb WW. 2003. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol. 21:1369–77 [Google Scholar]
  93. Webb WW. 2003. U.S. Patent No. 6,839,586 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error