- Home
- A-Z Publications
- Annual Review of Physiology
- Previous Issues
- Volume 68, 2006
Annual Review of Physiology - Volume 68, 2006
Volume 68, 2006
- Preface
-
-
-
COMMENTARY ON THE PLEASURES OF SOLVING IMPOSSIBLE PROBLEMS OF EXPERIMENTAL PHYSIOLOGY
Vol. 68 (2006), pp. 1–28More Less▪ AbstractThis commentary presents a series of examples of “impossible experimental problems” that we have encountered over the years in addressing various challenging questions in physiology. We aim to show how stimulating the challenges of physiology can be and demonstrate how our naive invocation of methods from disparate fields of science and engineering has led to delightful resolutions of physiological challenges that were utterly new to this intrepid interdisciplinary researcher.
-
-
-
CARDIAC REGENERATION: Repopulating the Heart
Vol. 68 (2006), pp. 29–49More Less▪ AbstractMany forms of pediatric and adult heart disease result from a deficiency in cardiomyocyte number. Through repopulation of the heart with new cardiomyocytes (that is, induction of regenerative cardiac growth), cardiac disease potentially can be reversed, provided that the newly formed myocytes structurally and functionally integrate in the preexisting myocardium. A number of approaches have been utilized to effect regenerative growth of the myocardium in experimental animals. These include interventions aimed at enhancing the ability of cardiomyocytes to proliferate in response to cardiac injury, as well as transplantation of cardiomyocytes or myogenic stem cells into diseased hearts. Here we review efforts to induce myocardial regeneration. We also provide a critical review of techniques currently used to assess cardiac regeneration and functional integration of de novo cardiomyocytes.
-
-
-
ENDOTHELIAL-CARDIOMYOCYTE INTERACTIONS IN CARDIAC DEVELOPMENT AND REPAIR
Vol. 68 (2006), pp. 51–66More Less▪ AbstractCommunication between endothelial cells and cardiomyocytes regulates not only early cardiac development but also adult cardiomyocyte function, including the contractile state. In the normal mammalian myocardium, each cardiomyocyte is surrounded by an intricate network of capillaries and is next to endothelial cells. Cardiomyocytes depend on endothelial cells not only for oxygenated blood supply but also for local protective signals that promote cardiomyocyte organization and survival. While endothelial cells direct cardiomyocytes, cardiomyocytes reciprocally secrete factors that impact endothelial cell function. Understanding how endothelial cells communicate with cardiomyocytes will be critical for cardiac regeneration, in which the ultimate goal is not simply to improve systolic function transiently but to establish new myocardium that is both structurally and functionally normal in the long term.
-
-
-
PROTECTING THE PUMP: Controlling Myocardial Inflammatory Responses
Vol. 68 (2006), pp. 67–95More Less▪ AbstractBecause of the anatomy, function, and nonregenerative nature of the myocardium, inflammation in this tissue is not well tolerated. Nevertheless, various diseases of the heart are characterized by inflammatory responses involving the effector mechanisms of innate and adaptive (lymphocyte-dependent) immunity. The innate immune response to ischemia-reperfusion injury is, by far, the most common cause of myocardial inflammation. Innate responses may have beneficial influences that preserve myocardial function in the short term but may be maladaptive in chronic states. Adaptive responses in the myocardium occur with infection or loss of tolerance, and lead to myocarditis. Given the narrow margin for benefit of cardiac inflammation, special regulatory mechanisms likely raise the threshold, compared to other tissues, for the induction and persistence of adaptive immune responses. These mechanisms include strong central and peripheral T cell tolerance to heart antigens and induction of anti-inflammatory feedback mechanisms involving cytokines such as interferon-γ.
-
-
-
TRANSCRIPTION FACTORS AND CONGENITAL HEART DEFECTS
Vol. 68 (2006), pp. 97–121More Less▪ AbstractAlthough there have been important advances in diagnostic modalities and therapeutic strategies for congenital heart defects (CHD), these malformations still lead to significant morbidity and mortality in the human population. Over the past 10 years, characterization of the genetic causes of CHD has begun to elucidate some of the molecular causes of these defects. Linkage analysis and candidate-gene approaches have been used to identify gene mutations that are associated with both familial and sporadic cases of CHD. Complementation of the human studies with developmental studies in mouse models provides information for the roles of these genes in normal development as well as indications for disease pathogenesis. Biochemical analysis of these gene mutations has provided further insight into the molecular effects of these genetic mutations. Here we review genetic, developmental, and biochemical studies of six cardiac transcription factors that have been identified as genetic causes for CHD in humans.
-
-
-
FROM MICE TO MEN: Insights into the Insulin Resistance Syndromes
Vol. 68 (2006), pp. 123–158More Less▪ AbstractThe insulin resistance syndrome refers to a constellation of findings, including glucose intolerance, obesity, dyslipidemia, and hypertension, that promote the development of type 2 diabetes, cardiovascular disease, cancer, and other disorders. Defining the pathophysiological links between insulin resistance, the insulin resistance syndrome, and its sequelae is critical to understanding and treating these disorders. Over the past decade, two approaches have provided important insights into how changes in insulin signaling produce the spectrum of phenotypes associated with insulin resistance. First, studies using tissue-specific knockouts or tissue-specific reconstitution of the insulin receptor in vivo in mice have enabled us to deconstruct the insulin resistance syndromes by dissecting the contributions of different tissues to the insulin-resistant state. Second, in vivo and in vitro studies of the complex network of insulin signaling have provided insight into how insulin resistance can develop in some pathways whereas insulin sensitivity is maintained in others. These data, taken together, give us a framework for understanding the relationship between insulin resistance and the insulin resistance syndromes.
-
-
-
LXRS AND FXR: The Yin and Yang of Cholesterol and Fat Metabolism
Vol. 68 (2006), pp. 159–191More Less▪ AbstractLiver X receptors (LXRs) and farnesoid X receptor (FXR) are nuclear receptors that function as intracellular sensors for sterols and bile acids, respectively. In response to their ligands, these receptors induce transcriptional responses that maintain a balanced, finely tuned regulation of cholesterol and bile acid metabolism. LXRs also permit the efficient storage of carbohydrate- and fat-derived energy, whereas FXR activation results in an overall decrease in triglyceride levels and modulation of glucose metabolism. The elegant, dual interplay between these two receptor systems suggests that they coevolved to constitute a highly sensitive and efficient system for the maintenance of total body fat and cholesterol homeostasis. Emerging evidence suggests that the tissue-specific action of these receptors is also crucial for the proper function of the cardiovascular, immune, reproductive, endocrine pancreas, renal, and central nervous systems. Together, LXRs and FXR represent potential therapeutic targets for the treatment and prevention of numerous metabolic and lipid-related diseases.
-
-
-
DESIGN AND FUNCTION OF SUPERFAST MUSCLES: New Insights into the Physiology of Skeletal Muscle
Vol. 68 (2006), pp. 193–221More Less▪ AbstractSuperfast muscles of vertebrates power sound production. The fastest, the swimbladder muscle of toadfish, generates mechanical power at frequencies in excess of 200 Hz. To operate at these frequencies, the speed of relaxation has had to increase approximately 50-fold. This increase is accomplished by modifications of three kinetic traits: (a) a fast calcium transient due to extremely high concentration of sarcoplasmic reticulum (SR)-Ca2+ pumps and parvalbumin, (b) fast off-rate of Ca2+ from troponin C due to an alteration in troponin, and (c) fast cross-bridge detachment rate constant (g, 50 times faster than that in rabbit fast-twitch muscle) due to an alteration in myosin. Although these three modifications permit swimbladder muscle to generate mechanical work at high frequencies (where locomotor muscles cannot), it comes with a cost: The high g causes a large reduction in attached force-generating cross-bridges, making the swimbladder incapable of powering low-frequency locomotory movements. Hence the locomotory and sound-producing muscles have mutually exclusive designs.
-
-
-
THE COMPARATIVE PHYSIOLOGY OF FOOD DEPRIVATION: From Feast to Famine
Vol. 68 (2006), pp. 223–251More Less▪ AbstractThe ability of animals to survive food deprivation is clearly of considerable survival value. Unsurprisingly, therefore, all animals exhibit adaptive biochemical and physiological responses to the lack of food. Many animals inhabit environments in which food availability fluctuates or encounters with appropriate food items are rare and unpredictable; these species offer interesting opportunities to study physiological adaptations to fasting and starvation. When deprived of food, animals employ various behavioral, physiological, and structural responses to reduce metabolism, which prolongs the period in which energy reserves can cover metabolism. Such behavioral responses can include a reduction in spontaneous activity and a lowering in body temperature, although in later stages of food deprivation in which starvation commences, activity may increase as food-searching is activated. In most animals, the gastrointestinal tract undergoes marked atrophy when digestive processes are curtailed; this structural response and others seem particularly pronounced in species that normally feed at intermittent intervals. Such animals, however, must be able to restore digestive functions soon after feeding, and these transitions appear to occur at low metabolic costs.
-
-
-
OXIDATIVE STRESS IN MARINE ENVIRONMENTS: Biochemistry and Physiological Ecology
Vol. 68 (2006), pp. 253–278More Less▪ AbstractOxidative stress—the production and accumulation of reduced oxygen intermediates such as superoxide radicals, singlet oxygen, hydrogen peroxide, and hydroxyl radicals—can damage lipids, proteins, and DNA. Many disease processes of clinical interest and the aging process involve oxidative stress in their underlying etiology. The production of reactive oxygen species is also prevalent in the world's oceans, and oxidative stress is an important component of the stress response in marine organisms exposed to a variety of insults as a result of changes in environmental conditions such as thermal stress, exposure to ultraviolet radiation, or exposure to pollution. As in the clinical setting, reactive oxygen species are also important signal transduction molecules and mediators of damage in cellular processes, such as apoptosis and cell necrosis, for marine organisms. This review brings together the voluminous literature on the biochemistry and physiology of oxidative stress from the clinical and plant physiology disciplines with the fast-increasing interest in oxidative stress in marine environments.
-
-
-
BRAINSTEM CIRCUITS REGULATING GASTRIC FUNCTION
Vol. 68 (2006), pp. 279–305More Less▪ AbstractBrainstem parasympathetic circuits that modulate digestive functions of the stomach are comprised of afferent vagal fibers, neurons of the nucleus tractus solitarius (NTS), and the efferent fibers originating in the dorsal motor nucleus of the vagus (DMV). A large body of evidence has shown that neuronal communications between the NTS and the DMV are plastic and are regulated by the presence of a variety of neurotransmitters and circulating hormones as well as the presence, or absence, of afferent input to the NTS. These data suggest that descending central nervous system inputs as well as hormonal and afferent feedback resulting from the digestive process can powerfully regulate vago-vagal reflex sensitivity. This paper first reviews the essential “static” organization and function of vago-vagal gastric control neurocircuitry. We then present data on the opioidergic modulation of NTS connections with the DMV as an example of the “gating” of these reflexes, i.e., how neurotransmitters, hormones, and vagal afferent traffic can make an otherwise static autonomic reflex highly plastic.
-
-
-
INTERSTITIAL CELLS OF CAJAL AS PACEMAKERS IN THE GASTROINTESTINAL TRACT
Vol. 68 (2006), pp. 307–343More Less▪ AbstractIn the gastrointestinal tract, phasic contractions are caused by electrical activity termed slow waves. Slow waves are generated and actively propagated by interstitial cells of Cajal (ICC). The initiation of pacemaker activity in the ICC is caused by release of Ca2+ from inositol 1,4,5-trisphosphate (IP3) receptor–operated stores, uptake of Ca2+ into mitochondria, and the development of unitary currents. Summation of unitary currents causes depolarization and activation of a dihydropyridine-resistant Ca2+ conductance that entrains pacemaker activity in a network of ICC, resulting in the active propagation of slow waves. Slow wave frequency is regulated by a variety of physiological agonists and conditions, and shifts in pacemaker dominance can occur in response to both neural and nonneural inputs. Loss of ICC in many human motility disorders suggests exciting new hypotheses for the etiology of these disorders.
-
-
-
SIGNALING FOR CONTRACTION AND RELAXATION IN SMOOTH MUSCLE OF THE GUT
Vol. 68 (2006), pp. 345–374More Less▪ AbstractPhosphorylation of Ser19 on the 20-kDa regulatory light chain of myosin II (MLC20) by Ca2+/calmodulin-dependent myosin light-chain kinase (MLCK) is essential for initiation of smooth muscle contraction. The initial [Ca2+]i transient is rapidly dissipated and MLCK inactivated, whereas MLC20 and muscle contraction are well maintained. Sustained contraction does not reflect Ca2+ sensitization because complete inhibition of MLC phosphatase activity in the absence of Ca2+ induces smooth muscle contraction. This contraction is suppressed by staurosporine, implying participation of a Ca2+-independent MLCK. Thus, sustained contraction, as with agonist-induced contraction at experimentally fixed Ca2+ concentrations, involves (a) G protein activation, (b) regulated inhibition of MLC phosphatase, and (c) MLC20 phosphorylation via a Ca2+-independent MLCK. The pathways that lead to inhibition of MLC phosphatase by Gq/13-coupled receptors are initiated by sequential activation of Gαq/α13, RhoGEF, and RhoA, and involve Rho kinase–mediated phosphorylation of the regulatory subunit of MLC phosphatase (MYPT1) and/or PKC-mediated phosphorylation of CPI-17, an endogenous inhibitor of MLC phosphatase. Sustained MLC20 phosphorylation is probably induced by the Ca2+-independent MLCK, ZIP kinase. The pathways initiated by Gi-coupled receptors involve sequential activation of Gβγi, PI 3-kinase, and the Ca2+-independent MLCK, integrin-linked kinase. The last phosphorylates MLC20 directly and inhibits MLC phosphatase by phosphorylating CPI-17. PKA and PKG, which mediate relaxation, act upstream to desensitize the receptors (VPAC2 and NPR-C), inhibit adenylyl and guanylyl cyclase activities, and stimulate cAMP-specific PDE3 and PDE4 and cGMP-specific PDE5 activities. These kinases also act downstream to inhibit (a) initial contraction by inhibiting Ca2+ mobilization and (b) sustained contraction by inhibiting RhoA and targets downstream of RhoA. This increases MLC phosphatase activity and induces MLC20 dephosphorylation and muscle relaxation.
-
-
-
CNG AND HCN CHANNELS: Two Peas, One Pod
Vol. 68 (2006), pp. 375–401More Less▪ AbstractCyclic nucleotide–activated ion channels play a fundamental role in a variety of physiological processes. By opening in response to intracellular cyclic nucleotides, they translate changes in concentrations of signaling molecules to changes in membrane potential. These channels belong to two families: the cyclic nucleotide–gated (CNG) channels and the hyperpolarization-activated cyclic nucleotide–modulated (HCN) channels. The two families exhibit high sequence similarity and belong to the superfamily of voltage-gated potassium channels. Whereas HCN channels are activated by voltage and CNG channels are virtually voltage independent, both channels are activated by cyclic nucleotide binding. Furthermore, the channels are thought to have similar channel structures, leading to similar mechanisms of activation by cyclic nucleotides. However, although these channels are structurally and behaviorally similar, they have evolved to perform distinct physiological functions. This review describes the physiological roles and biophysical behavior of CNG and HCN channels. We focus on how similarities in structure and activation mechanisms result in common biophysical models, allowing CNG and HCN channels to be viewed as a single genre.
-
-
-
CLAUDINS AND EPITHELIAL PARACELLULAR TRANSPORT
Vol. 68 (2006), pp. 403–429More Less▪ AbstractTight junctions form continuous intercellular contacts controlling solute movement through the paracellular pathway across epithelia. Paracellular barriers vary among epithelia in electrical resistance and behave as if they are lined with pores that have charge and size selectivity. Recent evidence shows that claudins, a large family (at least 24 members) of intercellular adhesion molecules, form the seal and its variable pore-like properties. This evidence comes from the study of claudins expressed in cultured epithelial cell models, genetically altered mice, and human mutants. We review information on the structure, function, and transcriptional and posttranslational regulation of the claudin family as well as of their evolutionarily distant relatives called the PMP22/EMP/MP20/claudin, or pfam00822, superfamily.
-
-
-
ROLE OF FXYD PROTEINS IN ION TRANSPORT
Vol. 68 (2006), pp. 431–459More Less▪ AbstractThe FXYD proteins are a family of seven homologous single transmembrane segment proteins (FXYD1–7), expressed in a tissue-specific fashion. The FXYD proteins modulate the function of Na,K-ATPase, thus adapting kinetic properties of active Na+ and K+ transport to the specific needs of different cells. Six FXYD proteins (1–5, 7) are known to interact with Na,K-ATPase and affect its kinetic properties in specific ways. Although effects of FXYD proteins on parameters such as K1/2Na+, K1/2K+, KmATP, and Vmax are modest, usually twofold, these effects may have important long-term consequences for homeostasis of cation balance. In this review we summarize basic features of FXYD proteins and present recent evidence for functional effects, structure-function relations and structural interactions with Na,K-ATPase. We then discuss possible physiological roles, based on in vitro observations and newly available knockout mice models. Finally, we also consider evidence that FXYD proteins affect functioning of other ion transport systems.
-
-
-
SGK KINASES AND THEIR ROLE IN EPITHELIAL TRANSPORT
Vol. 68 (2006), pp. 461–490More Less▪ AbstractThe serum/glucocorticoid-induced kinase Sgk1 plays an important role in the regulation of epithelial ion transport. This kinase is very rapidly regulated at the transcriptional level as well as via posttranslational modifications involving phosphorylation by the MAP or PI-3 kinase pathways and/or ubiquitylation. Although Sgk1 is a cell survival kinase, its primary role likely concerns the regulation of epithelial ion transport, as suggested by the phenotype of Sgk1-null mice, which display a defect in Na+ homeostasis owing to disturbed renal tubular Na+ handling. In this review we first discuss the molecular, cellular, and regulatory aspects of Sgk1 and its paralogs. We then discuss its roles in the physiology and pathophysiology of epithelial ion transport.
-
-
-
THE ASSOCIATION OF NHERF ADAPTOR PROTEINS WITH G PROTEIN–COUPLED RECEPTORS AND RECEPTOR TYROSINE KINASES*
Vol. 68 (2006), pp. 491–505More Less▪ AbstractThe sodium-hydrogen exchanger regulatory factors (NHERF-1 and NHERF-2) are a family of adaptor proteins characterized by the presence of two tandem PDZ protein interaction domains and a C-terminal domain that binds the cytoskeleton proteins ezrin, radixin, moesin, and merlin. The NHERF proteins are highly expressed in the kidney, small intestine, and other organs, where they associate with a number of transporters and ion channels, signaling proteins, and transcription factors. Recent evidence has revealed important associations between the NHERF proteins and several G protein–coupled receptors such as the β2-adrenergic receptor, the κ-opioid receptor, and the parathyroid hormone receptor, as well as growth factor tyrosine kinase receptors such as the platelet-derived growth factor receptor and the epidermal growth factor receptor. This review summarizes the emerging data on the biochemical mechanisms, physiologic outcomes, and potential clinical implications of the assembly and disassembly of receptor/NHERF complexes.
-
-
-
STRESS TRANSMISSION IN THE LUNG: Pathways from Organ to Molecule
Vol. 68 (2006), pp. 507–541More Less▪ AbstractGas exchange, the primary function of the lung, can come about only with the application of physical forces on the macroscale and their transmission to the scale of small airway, small blood vessel, and alveolus, where they serve to distend and stabilize structures that would otherwise collapse. The pathway for force transmission then continues down to the level of cell, nucleus, and molecule; moreover, to lesser or greater degrees most cell types that are resident in the lung have the ability to generate contractile forces. At these smallest scales, physical forces serve to distend the cytoskeleton, drive cytoskeletal remodeling, expose cryptic binding domains, and ultimately modulate reaction rates and gene expression. Importantly, evidence has now accumulated suggesting that multiscale phenomena span these scales and govern integrative lung behavior.
-
Previous Volumes
-
Volume 86 (2024)
-
Volume 85 (2023)
-
Volume 84 (2022)
-
Volume 83 (2021)
-
Volume 82 (2020)
-
Volume 81 (2019)
-
Volume 80 (2018)
-
Volume 79 (2017)
-
Volume 78 (2016)
-
Volume 77 (2015)
-
Volume 76 (2014)
-
Volume 75 (2013)
-
Volume 74 (2012)
-
Volume 73 (2011)
-
Volume 72 (2010)
-
Volume 71 (2009)
-
Volume 70 (2008)
-
Volume 69 (2007)
-
Volume 68 (2006)
-
Volume 67 (2005)
-
Volume 66 (2004)
-
Volume 65 (2003)
-
Volume 64 (2002)
-
Volume 63 (2001)
-
Volume 62 (2000)
-
Volume 61 (1999)
-
Volume 60 (1998)
-
Volume 59 (1997)
-
Volume 58 (1996)
-
Volume 57 (1995)
-
Volume 56 (1994)
-
Volume 55 (1993)
-
Volume 54 (1992)
-
Volume 53 (1991)
-
Volume 52 (1990)
-
Volume 51 (1989)
-
Volume 50 (1988)
-
Volume 49 (1987)
-
Volume 48 (1986)
-
Volume 47 (1985)
-
Volume 46 (1984)
-
Volume 45 (1983)
-
Volume 44 (1982)
-
Volume 43 (1981)
-
Volume 42 (1980)
-
Volume 41 (1979)
-
Volume 40 (1978)
-
Volume 39 (1977)
-
Volume 38 (1976)
-
Volume 37 (1975)
-
Volume 36 (1974)
-
Volume 35 (1973)
-
Volume 34 (1972)
-
Volume 33 (1971)
-
Volume 32 (1970)
-
Volume 31 (1969)
-
Volume 30 (1968)
-
Volume 29 (1967)
-
Volume 28 (1966)
-
Volume 27 (1965)
-
Volume 26 (1964)
-
Volume 25 (1963)
-
Volume 24 (1962)
-
Volume 23 (1961)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1958)
-
Volume 19 (1957)
-
Volume 18 (1956)
-
Volume 17 (1955)
-
Volume 16 (1954)
-
Volume 15 (1953)
-
Volume 14 (1952)
-
Volume 13 (1951)
-
Volume 12 (1950)
-
Volume 11 (1949)
-
Volume 10 (1948)
-
Volume 9 (1947)
-
Volume 8 (1946)
-
Volume 7 (1945)
-
Volume 6 (1944)
-
Volume 5 (1943)
-
Volume 4 (1942)
-
Volume 3 (1941)
-
Volume 2 (1940)
-
Volume 1 (1939)
-
Volume 0 (1932)