- Home
- A-Z Publications
- Annual Review of Physiology
- Previous Issues
- Volume 65, 2003
Annual Review of Physiology - Volume 65, 2003
Volume 65, 2003
- Preface
-
- Review Articles
-
-
-
A Double Life: Academic Physician and Androgen Physiologist
Vol. 65 (2003), pp. 1–21More Less▪ AbstractMy work in physiology was designed to investigate the process of androgen action within target cells and to use this information to provide insight into the clinical disorders of androgen action. The discovery that the circulating male androgen testosterone is 5α-reduced to a more potent hormone, dihydrotestosterone, in target tissues and that dihydrotestosterone and testosterone work by binding to the same androgen receptor protein has provided insight into the inherited syndromes of androgen resistance that impair the formation of the male urogenital tract during embryogenesis and into the role of continued dihydrotestosterone formation in the pathogenesis of prostatic hyperplasia in dogs and men.
-
-
-
-
Lipid Receptors in Cardiovascular Development
Vol. 65 (2003), pp. 23–43More Less▪ AbstractTo most people, concerns over the link between lipids and cardiovascular health most likely end with monitoring their daily consumption of dietary fats. However, it has become increasingly clear that, in addition to effects on adult cardiovascular physiology, lipids also play key roles in the formation of a functioning cardiovascular system. The lysophospholipids, lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), have come to the forefront as developmental and physiological regulators of the cardiovascular system. In this review, we discuss the function of the G protein–coupled receptors responsible for transducing LPA and S1P signals during development of the vertebrate cardiovascular system, focusing first on their role in angiogenesis and then on their function during embryonic development.
-
-
-
Cardiac Hypertrophy: The Good, the Bad, and the Ugly
N. Frey, and E.N. OlsonVol. 65 (2003), pp. 45–79More Less▪ AbstractCardiac hypertrophy is the heart's response to a variety of extrinsic and intrinsic stimuli that impose increased biomechanical stress. While hypertrophy can eventually normalize wall tension, it is associated with an unfavorable outcome and threatens affected patients with sudden death or progression to overt heart failure. Accumulating evidence from studies in human patients and animal models suggests that in most instances hypertrophy is not a compensatory response to the change in mechanical load, but rather is a maladaptive process. Accordingly, modulation of myocardial growth without adversely affecting contractile function is increasingly recognized as a potentially auspicious approach in the prevention and treatment of heart failure. In this review, we summarize recent insights into hypertrophic signaling and consider several novel antihypertrophic strategies.
The same thing that makes you live can kill you in the end.
—Neil Young
-
-
-
Stress-Activated Cytokines and The Heart: From Adaptation to Maladaptation1
Vol. 65 (2003), pp. 81–101More Less▪ AbstractThe ability of the myocardium to successfully compensate for and adapt to environmental stress ultimately determines whether the heart will decompensate and fail or maintain preserved function. Despite the importance of the myocardial response to environmental stress, very little is known with respect to the biochemical mechanisms that are responsible for mediating and integrating the stress response in the heart. In the present review we summarize recent experimental material suggesting that the cytokines expressed within the myocardium in response to environmental injury, namely tumor necrosis factor (TNF), interleukin-1 (IL-1), and the interleukin-6 (IL-6) family, play an important role in initiating and integrating homeostatic responses. However, these stress-activated cytokines all have the potential to produce cardiac decompensation when expressed at sufficiently high concentrations. Accordingly, the theme to emerge from this review is that the short-term expression of stress-activated cytokines within the heart may be an adaptive response to stress, whereas long-term expression of these molecules may be frankly maladaptive by producing cardiac decompensation.
-
-
-
Cell Biology of Acid Secretion by the Parietal Cell
Xuebiao Yao, and John G. ForteVol. 65 (2003), pp. 103–131More Less▪ AbstractAcid secretion by the gastric parietal cell is regulated by paracrine, endocrine, and neural pathways. The physiological stimuli include histamine, acetylcholine, and gastrin via their receptors located on the basolateral plasma membranes. Stimulation of acid secretion typically involves an initial elevation of intracellular calcium and/or cAMP followed by activation of a cAMP-dependent protein kinase cascade that triggers the translocation and insertion of the proton pump enzyme, H,K-ATPase, into the apical plasma membrane of parietal cells. Whereas the H,K-ATPase contains a plasma membrane targeting motif, the stimulation-mediated relocation of the H,K-ATPase from the cytoplasmic membrane compartment to the apical plasma membrane is mediated by a SNARE protein complex and its regulatory proteins. This review summarizes the progress made toward an understanding of the cell biology of gastric acid secretion. In particular we have reviewed the early signaling events following histaminergic and cholinergic activation, the identification of multiple factors participating in the trafficking and recycling of the proton pump, and the role of the cytoskeleton in supporting the apical pole remodeling, which appears to be necessary for active acid secretion by the parietal cell. Emphasis is placed on identifying protein factors that serve as effectors for the mechanistic changes associated with cellular activation and the secretory response.
-
-
-
Permeation and Selectivity in Calcium Channels
Vol. 65 (2003), pp. 133–159More Less▪ AbstractRecent advances—both experimental and theoretical—provide a tentative image of the structures in Ca channels that make them exceptionally selective. The image is very different from K channels, which obtain high selectivity with a rigid pore that tightly fits K+ ions and is lined by carbonyl oxygens of the polypeptide backbone. Ca channels rely on four glutamate residues (the EEEE locus), whose carboxyl side chains likely reach into the pore lumen to interact with passing Ca2+ ions. The structure is thought to be flexible, tightly binding a single Ca2+ ion in order to block Na+ flux but rearranging to interact with multiple Ca2+ ions to allow Ca2+ flux. The four glutamates are not equivalent, a fact that seems important for Ca2+ permeation. This review describes the experimental evidence that leads to these conclusions and the attempts by theorists to explain the combination of high selectivity and high flux that characterizes Ca channels.
-
-
-
Processive and Nonprocessive Models of Kinesin Movement
Vol. 65 (2003), pp. 161–175More Less▪ AbstractConventional kinesin is the prototypic member of a family of diverse proteins that use the chemical energy of ATP hydrolysis to generate force and move along microtubules. These proteins, which are involved in a wide range of cellular functions, have been identified in protozoa, fungi, plants, and animals and possess a high degree of sequence conservation among species in their motor domains. The biochemical properties of kinesin and its homologues, in conjunction with the recently solved three-dimensional structures of several kinesin motors, have contributed to our understanding of the mechanism of kinesin movement along microtubules. We discuss several models for movement, including the hand-over-hand, inchworm, and biased diffusion models of processive movement, as well as models of nonprocessive movement.
-
-
-
Origins and Consequences of Mitochondrial Variation in Vertebrate Muscle
Vol. 65 (2003), pp. 177–201More Less▪ AbstractThis review addresses the mechanisms by which mitochondrial structure and function are regulated, with a focus on vertebrate muscle. We consider the adaptive remodeling that arises during physiological transitions such as differentiation, development, and contractile activity. Parallels are drawn between such phenotypic changes and the pattern of change arising over evolutionary time, as suggested by interspecies comparisons. We address the physiological and evolutionary relationships between ATP production, thermogenesis, and superoxide generation in the context of mitochondrial function. Our discussion of mitochondrial structure focuses on the regulation of membrane composition and maintenance of the three-dimensional reticulum. Current studies of mitochondrial biogenesis strive to integrate muscle functional parameters with signal transduction and molecular genetics, providing insight into the origins of variation arising between physiological states, fiber types, and species.
-
-
-
Functional Genomics and the Comparative Physiology of Hypoxia
Vol. 65 (2003), pp. 203–230More Less▪ AbstractComparative physiology has proven a powerful approach to our understanding of how animals function under hypoxic conditions and to identifying potential adaptations to environmental oxygen levels. This review considers the potential for using a similar comparative approach with functional genomics to understand the genetic basis of such physiological processes and evolutionary adaptations. Comparative functional genomics is currently limited by genome data, which are available for only a few model organisms. However, comparative studies between model organisms of the same species having slightly different genomes (e.g., in-bred strains of laboratory rodents, transgenic mice, and consomic rats) demonstrate the types of results, as well as the analytical challenges, that are possible if comparative functional genomics is applied to more species. Results from wild and domestic animal studies suggest new models to investigate physiological and evolutionary responses to oxygen levels with functional genomics.
-
-
-
Application of Microarray Technology in Environmental and Comparative Physiology
Vol. 65 (2003), pp. 231–259More Less▪ AbstractDNA microarray technology is revolutionizing many aspects of biological research, allowing the expression of many thousands of gene transcripts to be monitored simultaneously. This provides powerful tools for the genome-wide correlation of gene transcript levels with physiological responses and alterations in physiological states. To date, microarray analyses have been applied almost exclusively to a few model species for which the abundant gene sequence data permit the fabrication of whole-genome microarrays. However, many interesting physiological traits and responses are poorly expressed or absent in model species and may be better illustrated in nonmodel organisms. Comparative approaches to understanding function traditionally focus on species that by virtue of their unusual adaptations, lifestyles, and phylogeny are particularly suited to address a specific biological process or problem. In this review, we show that microarray technology can be successfully applied to these nonmodel species and used to generate new insights of comparative and evolutionary significance into animal function.
-
-
-
Nuclear Receptors and the Control of Metabolism
Vol. 65 (2003), pp. 261–311More Less▪ AbstractThe metabolic nuclear receptors act as metabolic and toxicological sensors, enabling the organism to quickly adapt to environmental changes by inducing the appropriate metabolic genes and pathways. Ligands for these metabolic receptors are compounds from dietary origin, intermediates in metabolic pathways, drugs, or other environmental factors that, unlike classical nuclear receptor ligands, are present in high concentrations. Metabolic receptors are master regulators integrating the homeostatic control of (a) energy and glucose metabolism through peroxisome proliferator-activated receptor gamma (PPARγ); (b) fatty acid, triglyceride, and lipoprotein metabolism via PPARα, β/δ, and γ; (c) reverse cholesterol transport and cholesterol absorption through the liver X receptors (LXRs) and liver receptor homolog-1 (LRH-1); (d) bile acid metabolism through the farnesol X receptor (FXR), LXRs, LRH-1; and (e) the defense against xeno- and endobiotics by the pregnane X receptor/steroid and xenobiotic receptor (PXR/SXR). The transcriptional control of these metabolic circuits requires coordination between these metabolic receptors and other transcription factors and coregulators. Altered signaling by this subset of receptors, either through chronic ligand excess or genetic factors, may cause an imbalance in these homeostatic circuits and contribute to the pathogenesis of common metabolic diseases such as obesity, insulin resistance and type 2 diabetes, hyperlipidemia and atherosclerosis, and gallbladder disease. Further studies should exploit the fact that many of these nuclear receptors are designed to respond to small molecules and turn them into therapeutic targets for the treatment of these disorders.
-
-
-
Insulin Receptor Knockout Mice
Vol. 65 (2003), pp. 313–332More Less▪ AbstractTo examine the role of the insulin receptor in fuel homeostasis, we and others have carried out genetic ablation studies in mice. Mice lacking insulin receptors are born with normal features, but develop early postnatal diabetes and die of ketoacidosis. In contrast, mice lacking insulin receptors in specific cell types as a result of conditional mutagenesis develop mild metabolic and reproductive abnormalities. These experiments have uncovered novel functions of insulin receptors in tissues such as brain and pancreatic β-cells. Combined knockout studies of insulin and Igf1 receptors indicate that the insulin receptor also promotes embryonic growth. Experimental crosses of mice with insulin receptor haploinsufficiency have been instrumental to the genetic analysis of insulin action by enabling us to assign specific roles to different insulin receptor substrates and identify novel elements in insulin signaling.
-
-
-
The Physiology of Cellular Liporegulation1
Vol. 65 (2003), pp. 333–347More Less▪ AbstractHere we explore the physiologic role of leptin as a liporegulatory hormone responsible for maintaining intracellular homeostasis in the face of wide variations in caloric intake. Normally, rats can tolerate a 60% fat diet because 96% of the surplus fat is deposited in adipocytes. In contrast, when leptin is congenitally absent or inactive, even on a normal diet, unutilized dietary fat is deposited in nonadipose tissues, causing dysfunction (lipotoxicity) and possible cell death (lipoapoptosis). We theorize that in diet-induced obesity, acquired leptin resistance may also develop as the result of increase in certain leptin resistance factors. Acquired leptin resistance occurs in aging, obesity, Cushing's syndrome, and acquired lipodystrophy, and preliminary evidence suggests that ectopic lipid deposition is increased. We speculate that the metabolic syndrome may be the human equivalent of the lipotoxic syndrome of rodents.
-
-
-
The Gastric Biology of Helicobacter pylori*
Vol. 65 (2003), pp. 349–369More Less▪ AbstractHelicobacter pylori is a neutralophilic, gram-negative, ureolytic organism that is able to colonize the human stomach but does not survive in a defined medium with a pH <4.0 unless urea is present. In order to live in the gastric environment, it has developed a repertoire of acid resistance mechanisms that can be classified into time-independent, acute, and chronic responses. Time-independent acid resistance depends on the structure of the organism's inner and outer membrane proteins that have a high isoelectric point, thereby reducing their proton permeability. Acute acid resistance depends on the constitutive synthesis of a neutral pH optimum urease that is an oligomeric Ni2+-containing heterodimer of UreA and UreB subunits. Gastric juice urea is able to rapidly access intrabacterial urease when the periplasmic pH falls below ∼6.2 owing to pH-gating of a urea channel, UreI. This results in the formation of NH3, which then neutralizes the bacterial periplasm to provide a pH of ∼6.2 and an inner membrane potential of −101 mV, giving a proton motive force of ∼−200 mV. UreI is a six-transmembrane segment protein, with homology to the amiS genes of the amidase gene cluster and to UreI of Helicobacter hepaticus and Streptococcus salivarius. Expression of these UreI proteins in Xenopus oocytes has shown that UreI of H. pylori and H. hepaticus can transport urea only at acidic pH, whereas that of S. salivarius is open at both neutral and acidic pH. Site-directed mutagenesis and chimeric analysis have identified amino acids implicated in maintaining the closed state of the channel at neutral pH and other amino acids that play a structural role in channel function. Deletion of ureI abolishes the ability of the organism to survive in acid and also to colonize the mouse or gerbil stomach. However, if acid secretion is inhibited in gerbils, the deletion mutants do colonize but are eradicated when acid secretion is allowed to return, showing that UreI is essential for gastric survival and that the habitat of H. pylori at the gastric surface must fall to pH 3.5 or below. The chronic response is from increased Ni2+ insertion into the apo-enzyme, which results in a threefold increase in urease, which is also dependent on expression of UreI. This allows the organism to live in either gastric fundus or gastric antrum depending on the level of acidity at the gastric surface. There are other effects of acid on transcript stability that may alter levels of protein synthesis in acid. Incubation of the organism at acidic pH also results in regulation of expression of a variety of genes, such as some outer membrane proteins, that constitutes an acid tolerance response. Understanding of these acid resistance and tolerance responses should provide novel eradication therapies for this carcinogenic gastric pathogen.
-
-
-
Physiology of Gastric Enterochromaffin-Like Cells
Vol. 65 (2003), pp. 371–382More Less▪ AbstractEnterochromaffin-like (ECL) cells are neuroendocrine cells in the gastric mucosa that control acid secretion by releasing histamine as a paracrine stimulant. The antral hormone gastrin and the neural messenger pituitary adenylyl cyclase–activating peptide (PACAP) potently stimulate histamine synthesis, storage, and secretion by ECL cells. Histamine is stored in secretory vesicles via V-type ATPases and vesicular monoamine transporters of subtype 2 (VMAT-2). Plasmalemmal calcium entry occurs via L-type calcium channels upon stimulation with secretagogues. K+ and Cl− channels maintain the membrane potential. Calcium-triggered exocytosis of histamine is mediated by interacting SNARE proteins, especially by synaptobrevin and SNAP-25. Dynamins and amphiphysins appear to play a key role in endocytosis. ECL cells are under transcriptional control of various hormones. Gastrin stimulates transcriptional activity of the histidine decarboxylase (HDC), VMAT-2, and chromogranin A promoter by activation of Sp1 elements and CREB. During chronic Helicobacter pylori infection, pro-inflammatory cytokines are released that can also affect ECL cells, thus impairing their secretory function and viability, which can predispose to hypochlorhydria and gastric carcinogenesis.
-
-
-
Insights into the Regulation of Gastric Acid Secretion Through Analysis of Genetically Engineered Mice
Vol. 65 (2003), pp. 383–400More Less▪ AbstractThe regulation of acid secretion in the stomach involves a complex network of factors that stimulate secretion in response to the ingestion of a meal and maintain homeostasis of gastric pH. Genetically engineered mouse models have provided a new opportunity to investigate the importance and function of specific molecules and pathways involved in the regulation of acid secretion. Mouse mutants with disruptions in the three major stimulatory pathways for acid secretion in parietal cells, gastrin, histamine, and acetylcholine, have been generated. Disruption of the gastrin pathway results in a major impairment in both basal and induced acid secretion. Histamine and acetylcholine pathway mutants also have significant alterations in acid secretion, although the impairment does not appear to be as severe as in gastrin pathway mutants, perhaps due in part to the hypergastrinemia that occurs. Mice with a disruption in the somatostatin pathway have increased gastric acid secretion, which confirms an important negative regulatory role for this factor. This review discusses these genetically engineered mouse models, as well as others, that provide insight into the complex regulation of in vivo gastric acid secretion. The regulation of growth and cellular morphology of the stomach in these mouse models is also presented. In addition, transgene promoters that are expressed in the gastric epithelium are discussed because these promoters will be important tools to alter cellular physiology in new mouse models in the future.
-
-
-
In vivo NMR Studies of the Glutamate Neurotransmitter Flux and Neuroenergetics: Implications for Brain Function
Vol. 65 (2003), pp. 401–427More Less▪ AbstractUntil very recently, non-invasive measurement of the glutamate-glutamine cycle in the intact mammalian brain had not been possible. In this review, we describe some studies that have led to quantitative assessment of the glutamate-glutamine cycle (Vcyc), as well as other important metabolic fluxes (e.g., glucose oxidation, CMRglc(ox)), with 13C magnetic resonance spectroscopy (MRS) in vivo. These 13C MRS studies clearly demonstrate that glutamate released from presynaptic neurons is taken up by the astrocyte for subsequent glutamine synthesis. Contrary to the earlier concept of a small, metabolically inactive neurotransmitter pool, in vivo 13C MRS studies demonstrate that glutamate release and recycling is a major metabolic pathway that cannot be distinguished from its actions of neurotransmission. Furthermore, the in vivo 13C MRS studies demonstrate in the rat cerebral cortex that increases in Vcyc and neuronal CMRglc(ox) are linearly related with a close to 1:1 slope. Measurements in human cerebral cortex are in agreement with this result. This relationship is consistent with more than two thirds of the energy yielded by glucose oxidation being used to support events associated with glutamate neurotransmission, and it supports a molecular model of a stoichiometric coupling between glutamate neurotransmission and functional glucose oxidation. 13C MRS measurements of resting human cerebral cortex have found a high level of glutamate-glutamine cycling. This high resting neuronal activity, which is subtracted away in brain mapping studies by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has significant implications for the interpretations of functional imaging data. Here we review and discuss the importance of neurotransmission and neuroenergetics as measured by 13C MRS for understanding brain function and interpreting fMRI.
-
-
-
Transducing Touch in Caenorhabditis elegans
Vol. 65 (2003), pp. 429–452More Less▪ AbstractMechanosensation has been studied for decades, but understanding of its molecular mechanism is only now emerging from studies in Caenorhabditis elegans and Drosophila melanogaster. In both cases, the entry point proved to be genetic screens that allowed molecules needed for mechanosensation to be identified without any prior understanding of the likely components. In C. elegans, genetic screens revealed molecules needed for touch sensation along the body wall and other regions of force sensitivity. Members of two extensive membrane protein families have emerged as candidate sensory mechanotransduction channels: mec-4 and mec-10, which encode amiloride-sensitive channels (ASCs or DEG/ENaCs), and osm-9, which encodes a TRP ion channel. There are roughly 50 other members of these families whose functions in C. elegans are unknown. This article classifies these channels in C. elegans, with an emphasis on insights into their function derived from mutation. We also review the neuronal cell types in which these channels might be expressed and mediate mechanotransduction.
-
-
-
Hyperpolarization-Activated Cation Currents: From Molecules to Physiological Function
Vol. 65 (2003), pp. 453–480More Less▪ AbstractHyperpolarization-activated cation currents, termed If, Ih, or Iq, were initially discovered in heart and nerve cells over 20 years ago. These currents contribute to a wide range of physiological functions, including cardiac and neuronal pacemaker activity, the setting of resting potentials, input conductance and length constants, and dendritic integration. The hyperpolarization-activated, cation nonselective (HCN) gene family encodes the channels that underlie Ih. Here we review the relation between the biophysical properties of recombinant HCN channels and the pattern of HCN mRNA expression with the properties of native Ih in neurons and cardiac muscle. Moreover, we consider selected examples of the expanding physiological functions of Ih with a view toward understanding how the properties of HCN channels contribute to these diverse functional roles.
-
Previous Volumes
-
Volume 86 (2024)
-
Volume 85 (2023)
-
Volume 84 (2022)
-
Volume 83 (2021)
-
Volume 82 (2020)
-
Volume 81 (2019)
-
Volume 80 (2018)
-
Volume 79 (2017)
-
Volume 78 (2016)
-
Volume 77 (2015)
-
Volume 76 (2014)
-
Volume 75 (2013)
-
Volume 74 (2012)
-
Volume 73 (2011)
-
Volume 72 (2010)
-
Volume 71 (2009)
-
Volume 70 (2008)
-
Volume 69 (2007)
-
Volume 68 (2006)
-
Volume 67 (2005)
-
Volume 66 (2004)
-
Volume 65 (2003)
-
Volume 64 (2002)
-
Volume 63 (2001)
-
Volume 62 (2000)
-
Volume 61 (1999)
-
Volume 60 (1998)
-
Volume 59 (1997)
-
Volume 58 (1996)
-
Volume 57 (1995)
-
Volume 56 (1994)
-
Volume 55 (1993)
-
Volume 54 (1992)
-
Volume 53 (1991)
-
Volume 52 (1990)
-
Volume 51 (1989)
-
Volume 50 (1988)
-
Volume 49 (1987)
-
Volume 48 (1986)
-
Volume 47 (1985)
-
Volume 46 (1984)
-
Volume 45 (1983)
-
Volume 44 (1982)
-
Volume 43 (1981)
-
Volume 42 (1980)
-
Volume 41 (1979)
-
Volume 40 (1978)
-
Volume 39 (1977)
-
Volume 38 (1976)
-
Volume 37 (1975)
-
Volume 36 (1974)
-
Volume 35 (1973)
-
Volume 34 (1972)
-
Volume 33 (1971)
-
Volume 32 (1970)
-
Volume 31 (1969)
-
Volume 30 (1968)
-
Volume 29 (1967)
-
Volume 28 (1966)
-
Volume 27 (1965)
-
Volume 26 (1964)
-
Volume 25 (1963)
-
Volume 24 (1962)
-
Volume 23 (1961)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1958)
-
Volume 19 (1957)
-
Volume 18 (1956)
-
Volume 17 (1955)
-
Volume 16 (1954)
-
Volume 15 (1953)
-
Volume 14 (1952)
-
Volume 13 (1951)
-
Volume 12 (1950)
-
Volume 11 (1949)
-
Volume 10 (1948)
-
Volume 9 (1947)
-
Volume 8 (1946)
-
Volume 7 (1945)
-
Volume 6 (1944)
-
Volume 5 (1943)
-
Volume 4 (1942)
-
Volume 3 (1941)
-
Volume 2 (1940)
-
Volume 1 (1939)
-
Volume 0 (1932)