Glacial–interglacial cycles have constituted a primary mode of climate variability over the last 2.6 million years of Earth's history. While glacial periods cannot be seen simply as a reverse analogue of future warming, they offer an opportunity to test our understanding of the response of precipitation patterns to a much wider range of conditions than we have been able to directly observe. This review explores key features of precipitation patterns associated with glacial climates, which include drying in large regions of the tropics and wetter conditions in substantial parts of the subtropics and midlatitudes. I describe the evidence for these changes and examine the potential causes of hydrological changes during glacial periods. Central themes that emerge include the importance of atmospheric circulation changes in determining glacial–interglacial precipitation changes at the regional scale, the need to take into account climatic factors beyond local precipitation amount when interpreting proxy data, and the role of glacial conditions in suppressing the strength of Northern Hemisphere monsoon systems.
Much of the global cooling during ice ages arose from changes in ocean carbon storage that lowered atmospheric CO2. A slew of mechanisms, both physical and biological, have been proposed as key drivers of these changes. Here we discuss the current understanding of these mechanisms with a focus on how they altered the theoretically defined soft-tissue and biological disequilibrium carbon storage at the peak of the last ice age. Observations and models indicate a role for Antarctic sea ice through its influence on ocean circulation patterns, but other mechanisms, including changes in biological processes, must have been important as well, and may have been coordinated through links with global air temperature. Further research is required to better quantify the contributions of the various mechanisms, and there remains great potential to use the Last Glacial Maximum and the ensuing global warming as natural experiments from which to learn about climate-driven changes in the marine ecosystem.