- Home
- A-Z Publications
- Annual Review of Marine Science
- Previous Issues
- Volume 11, 2019
Annual Review of Marine Science - Volume 11, 2019
Volume 11, 2019
-
-
Passing the Baton to the Next Generation: A Few Problems That Need Solving
Vol. 11 (2019), pp. 1–13More LessThis is a personal account of some of the people and factors that were important in my career in chemical oceanography. I also discuss two areas of oceanographic research and training that I think need more attention. The first is how the difficulty in getting appropriate samples hampers our ability to fully understand biogeochemical processes in the sea. I have worked on dissolved materials, suspended and sinking particles, and sediments in lakes, oceans, rivers, and aerosols. Sample collection problems affect all those areas, although to different degrees. Second, I discuss a few of the issues that I most worry about with regard to graduate education in oceanography, among them an apparent decrease over the past several decades in the ability of many beginning students to write clearly and think logically.
-
-
-
A Conversation with Walter Munk
Walter Munk, and Carl WunschVol. 11 (2019), pp. 15–25More LessIn this interview, Carl Wunsch talks with Walter Munk about his career in oceanography; his relationships with scientists such as Harald Sverdrup, Roger Revelle, Walfrid Ekman, Carl Rossby, Carl Eckart, Henry Stommel, and G.I. Taylor; technological advances over the decades; and his thoughts on the future of the field.
-
-
-
Compound-Specific Isotope Geochemistry in the Ocean
Vol. 11 (2019), pp. 27–56More LessCompound-specific isotope analysis encompasses a variety of methods for examining the naturally occurring isotope ratios of individual organic molecules. In marine environments, these methods have revealed heterogeneous sources and alteration processes that underlie the more commonly measured isotope ratios of bulk materials, as well as revealing signatures of marine metabolisms that may otherwise be impossible to isolate. Recently, compound-specific isotopic techniques have improved the reconstruction of metazoan diets and revealed a new potential of metazoan biomass as an archive of paleoecological information. Despite six decades of practice and a diversity of applications, the use of compound-specific isotopic techniques remains uncommon in marine studies. This review examines broad theoretical motivations behind compound-specific isotopic approaches, some applications to studies of marine carbon cycling and trophic relationships, and methodological limitations. In coming years, improvements in analytical efficiency and molecular or intramolecular specificity may transform compound-specific isotope analysis into a tool that can be applied more broadly and help to build global oceanographic data sets.
-
-
-
Mechanisms and Pathways of Small-Phytoplankton Export from the Surface Ocean
Vol. 11 (2019), pp. 57–74More LessCarbon fixation by phytoplankton near the surface and the sinking of this particulate material to deeper waters are key components of the biological carbon pump. The efficiency of the biological pump is influenced by the size and taxonomic composition of the phytoplankton community. Large, heavily ballasted taxa such as diatoms sink quickly and thus efficiently remove fixed carbon from the upper ocean. Smaller, nonballasted species such as picoplanktonic cyanobacteria are usually thought to contribute little to export production. Research in the past decade, however, has shed new light on the potential importance of small phytoplankton to carbon export, especially in oligotrophic oceans, where small cells dominate primary productivity. Here, I examine the mechanisms and pathways through which small-phytoplankton carbon is exported from the surface ocean and the role of small phytoplankton in food webs of a variety of ocean ecosystems.
-
-
-
Using Noble Gases to Assess the Ocean's Carbon Pumps
Vol. 11 (2019), pp. 75–103More LessNatural mechanisms in the ocean, both physical and biological, concentrate carbon in the deep ocean, resulting in lower atmospheric carbon dioxide. The signals of these carbon pumps overlap to create the observed carbon distribution in the ocean, making the individual impact of each pump difficult to disentangle. Noble gases have the potential to directly quantify the physical carbon solubility pump and to indirectly improve estimates of the biological organic carbon pump. Noble gases are biologically inert, can be precisely measured, and span a range of physical properties. We present dissolved neon, argon, and krypton data spanning the Atlantic, Southern, Pacific, and Arctic Oceans. Comparisons between deep-ocean observations and models of varying complexity enable the rates of processes that control the carbon solubility pump to be quantified and thus provide an important metric for ocean model skill. Noble gases also provide a powerful means of assessing air–sea gas exchange parameterizations.
-
-
-
Biogeochemical Controls on Coastal Hypoxia
Vol. 11 (2019), pp. 105–130More LessAquatic environments experiencing low-oxygen conditions have been described as hypoxic, suboxic, or anoxic zones; oxygen minimum zones; and, in the popular media, the misnomer “dead zones.” This review aims to elucidate important aspects underlying oxygen depletion in diverse coastal systems and provides a synthesis of general relationships between hypoxia and its controlling factors. After presenting a generic overview of the first-order processes, we review system-specific characteristics for selected estuaries where adjacent human settlements contribute to high nutrient loads, river-dominated shelves that receive large inputs of fresh water and anthropogenic nutrients, and upwelling regions where a supply of nutrient-rich, low-oxygen waters generates oxygen minimum zones without direct anthropogenic influence. We propose a nondimensional number that relates the hypoxia timescale and water residence time to guide the cross-system comparison. Our analysis reveals the basic principles underlying hypoxia generation in coastal systems and provides a framework for discussing future changes.
-
-
-
Planktonic Marine Archaea
Vol. 11 (2019), pp. 131–158More LessArchaea are ubiquitous and abundant members of the marine plankton. Once thought of as rare organisms found in exotic extremes of temperature, pressure, or salinity, archaea are now known in nearly every marine environment. Though frequently referred to collectively, the planktonic archaea actually comprise four major phylogenetic groups, each with its own distinct physiology and ecology. Only one group—the marine Thaumarchaeota—has cultivated representatives, making marine archaea an attractive focus point for the latest developments in cultivation-independent molecular methods. Here, we review the ecology, physiology, and biogeochemical impact of the four archaeal groups using recent insights from cultures and large-scale environmental sequencing studies. We highlight key gaps in our knowledge about the ecological roles of marine archaea in carbon flow and food web interactions. We emphasize the incredible uncultivated diversity within each of the four groups, suggesting there is much more to be done.
-
-
-
The Variable Southern Ocean Carbon Sink
Vol. 11 (2019), pp. 159–186More LessThe CO2 uptake by the Southern Ocean (<35°S) varies substantially on all timescales and is a major determinant of the variations of the global ocean carbon sink. Particularly strong are the decadal changes characterized by a weakening period of the Southern Ocean carbon sink in the 1990s and a rebound after 2000. The weakening in the 1990s resulted primarily from a southward shift of the westerlies that enhanced the upwelling and outgassing of respired (i.e., natural) CO2. The concurrent reduction in the storage rate of anthropogenic CO2 in the mode and intermediate waters south of 35°S suggests that this shift also decreased the uptake of anthropogenic CO2. The rebound and the subsequent strong, decade-long reinvigoration of the carbon sink appear to have been driven by cooling in the Pacific Ocean, enhanced stratification in the Atlantic and Indian Ocean sectors, and a reduced overturning. Current-generation ocean models generally do not reproduce these variations and are poorly skilled at making decadal predictions in this region.
-
-
-
Arctic and Antarctic Sea Ice Change: Contrasts, Commonalities, and Causes
Vol. 11 (2019), pp. 187–213More LessArctic sea ice has declined precipitously in both extent and thickness over the past four decades; by contrast, Antarctic sea ice has shown little overall change, but this masks large regional variability. Climate models have not captured these changes. But these differences do not represent a paradox. The processes governing, and impacts of, natural variability and human-induced changes differ markedly at the poles largely because of the ways in which differences in geography control the properties of and interactions among the atmosphere, ice, and ocean. The impact of natural variability on the ice cover is large at both poles, so modeled ice trends are not entirely inconsistent with contributions from both natural variability and anthropogenic forcing. Despite this concurrence, the coupling of natural climate variability, climate feedbacks, and sea ice is not well understood, and significant biases remain in model representations of the ice cover and the processes that drive it.
-
-
-
Biologically Generated Mixing in the Ocean
Vol. 11 (2019), pp. 215–226More LessThis article assesses the contribution to ocean mixing by the marine biosphere at both high and low Reynolds numbers Re=uℓ/ν. While back-of-the-envelope estimates have suggested that swimming marine organisms might generate as much high-Reynolds-number turbulence as deep-ocean tide- and wind-generated internal waves, and that turbulent dissipation rates of O(10−5 W kg−1) (Re ∼ 105) could be produced by aggregations of organisms ranging from O(0.01 m) krill to O(10 m) cetaceans, comparable to strong wind and buoyancy forcing near the surface, microstructure measurements do not find consistently elevated dissipation associated with diel vertically migrating krill. Elevated dissipation rates are associated with schools of O(0.1– 1 m) fish but with low mixing coefficients (γ ∼ 0.002–0.02, as compared with γ ∼ 0.2 for geophysical turbulence). Likewise, viscously induced drift at low Reynolds numbers produces little mixing of temperature, solutes, dissolved nutrients, and gases when realistic swimmers and molecular scalar diffusion are taken into account. The conclusion is that, while the marine biosphere can generate turbulence, it contributes little ocean mixing compared with breaking internal gravity waves.
-
-
-
Global Air–Sea Fluxes of Heat, Fresh Water, and Momentum: Energy Budget Closure and Unanswered Questions
Vol. 11 (2019), pp. 227–248More LessThe ocean interacts with the atmosphere via interfacial exchanges of momentum, heat (via radiation and convection), and fresh water (via evaporation and precipitation). These fluxes, or exchanges, constitute the ocean-surface energy and water budgets and define the ocean's role in Earth's climate and its variability on both short and long timescales. However, direct flux measurements are available only at limited locations. Air–sea fluxes are commonly estimated from bulk flux parameterization using flux-related near-surface meteorological variables (winds, sea and air temperatures, and humidity) that are available from buoys, ships, satellite remote sensing, numerical weather prediction models, and/or a combination of any of these sources. Uncertainties in parameterization-based flux estimates are large, and when they are integrated over the ocean basins, they cause a large imbalance in the global-ocean budgets. Despite the significant progress that has been made in quantifying surface fluxes in the past 30 years, achieving a global closure of ocean-surface energy and water budgets remains a challenge for flux products constructed from all data sources. This review provides a personal perspective on three questions: First, to what extent can time-series measurements from air–sea buoys be used as benchmarks for accuracy and reliability in the context of the budget closures? Second, what is the dominant source of uncertainties for surface flux products, the flux-related variables or the bulk flux algorithms? And third, given the coupling between the energy and water cycles, precipitation and surface radiation can act as twin budget constraints—are the community-standard precipitation and surface radiation products pairwise compatible?
-
-
-
The Global Overturning Circulation
Vol. 11 (2019), pp. 249–270More LessIn this article, I use the Estimating the Circulation and Climate of the Ocean version 4 (ECCO4) reanalysis to estimate the residual meridional overturning circulation, zonally averaged, over the separate Atlantic and Indo-Pacific sectors. The abyssal component of this estimate differs quantitatively from previously published estimates that use comparable observations, indicating that this component is still undersampled. I also review recent conceptual models of the oceanic meridional overturning circulation and of the mid-depth and abyssal stratification. These theories show that dynamics in the Antarctic circumpolar region are essential in determining the deep and abyssal stratification. In addition, they show that a mid-depth cell consistent with observational estimates is powered by the wind stress in the Antarctic circumpolar region, while the abyssal cell relies on interior diapycnal mixing, which is bottom intensified.
-
-
-
The Water Mass Transformation Framework for Ocean Physics and Biogeochemistry
Vol. 11 (2019), pp. 271–305More LessThe water mass transformation (WMT) framework weaves together circulation, thermodynamics, and biogeochemistry into a description of the ocean that complements traditional Eulerian and Lagrangian methods. In so doing, a WMT analysis renders novel insights and predictive capabilities for studies of ocean physics and biogeochemistry. In this review, we describe fundamentals of the WMT framework and illustrate its practical analysis capabilities. We show how it provides a robust methodology to characterize and quantify the impact of physical processes on buoyancy and other thermodynamic fields. We also detail how to extend WMT to insightful analysis of biogeochemical cycles.
-
-
-
Climate Change, Coral Loss, and the Curious Case of the Parrotfish Paradigm: Why Don't Marine Protected Areas Improve Reef Resilience?
Vol. 11 (2019), pp. 307–334More LessScientists have advocated for local interventions, such as creating marine protected areas and implementing fishery restrictions, as ways to mitigate local stressors to limit the effects of climate change on reef-building corals. However, in a literature review, we find little empirical support for the notion of managed resilience. We outline some reasons for why marine protected areas and the protection of herbivorous fish (especially parrotfish) have had little effect on coral resilience. One key explanation is that the impacts of local stressors (e.g., pollution and fishing) are often swamped by the much greater effect of ocean warming on corals. Another is the sheer complexity (including numerous context dependencies) of the five cascading links assumed by the managed-resilience hypothesis. If reefs cannot be saved by local actions alone, then it is time to face reef degradation head-on, by directly addressing anthropogenic climate change—the root cause of global coral decline.
-
-
-
Marine Environmental Epigenetics
Vol. 11 (2019), pp. 335–368More LessMarine organisms’ persistence hinges on the capacity for acclimatization and adaptation to the myriad of interacting environmental stressors associated with global climate change. In this context, epigenetics—mechanisms that facilitate phenotypic variation through genotype–environment interactions—are of great interest ecologically and evolutionarily. Our comprehensive review of marine environmental epigenetics guides our recommendations of four key areas for future research: the dynamics of wash-in and wash-out of epigenetic effects, the mechanistic understanding of the interplay of different epigenetic marks and the interaction with the microbiome, the capacity for and mechanisms of transgenerational epigenetic inheritance, and the evolutionary implications of the interaction of genetic and epigenetic features. Emerging insights in marine environmental epigenetics can be applied to critical issues such as aquaculture, biomonitoring, and biological invasions, thereby improving our ability to explain and predict the responses of marine taxa to global climate change.
-
-
-
Marine Metazoan Modern Mass Extinction: Improving Predictions by Integrating Fossil, Modern, and Physiological Data
Vol. 11 (2019), pp. 369–390More LessEvolution, extinction, and dispersion are fundamental processes affecting marine biodiversity. Until recently, studies of extant marine systems focused mainly on evolution and dispersion, with extinction receiving less attention. Past extinction events have, however, helped shape the evolutionary history of marine ecosystems, with ecological and evolutionary legacies still evident in modern seas. Current anthropogenic global changes increase extinction risk and pose a significant threat to marine ecosystems, which are critical for human use and sustenance. The evaluation of these threats and the likely responses of marine ecosystems requires a better understanding of evolutionary processes that affect marine ecosystems under global change. Here, we discuss how knowledge of (a) changes in biodiversity of ancient marine ecosystems to past extinctions events, (b) the patterns of sensitivity and biodiversity loss in modern marine taxa, and (c) the physiological mechanisms underpinning species’ sensitivity to global change can be exploited and integrated to advance our critical thinking in this area.
-
-
-
Partnering with Fishing Fleets to Monitor Ocean Conditions
Vol. 11 (2019), pp. 391–411More LessEngaging ocean users, including fishing fleets, in oceanographic and ecological research is a valuable method for collecting high-quality data, improving cost efficiency, and increasing societal appreciation for scientific research. As research partners, fishing fleets provide broad access to and knowledge of the ocean, and fishers are highly motivated to use the data collected to better understand the ecosystems in which they harvest. Here, we discuss recent trends in collaborative research that have increased the capacity of and access to scientific data collection. We also describe common elements of successful collaborative research programs, including definition of a scientific problem and goals, choice of technology, data collection and sampling design, data management and dissemination, and data analysis and communication. Finally, we review four case studies that demonstrate the general principles of effective collaborative research as well as the utility of citizen-collected data for academic research and fisheries management. We also discuss the challenge of funding, particularly as it relates to maintaining collaborative research programs in the long term. We conclude with a discussion of likely future trends. Ultimately, we predict that collaborative research will continue to grow in importance as climate change increasingly impacts ocean ecosystems, commercial fisheries, and the global food supply.
-
-
-
The Scientific Legacy of the CARIACO Ocean Time-Series Program
Vol. 11 (2019), pp. 413–437More LessThe CARIACO (Carbon Retention in a Colored Ocean) Ocean Time-Series Program station, located at 10.50°N, 64.66°W, observed biogeochemical and ecological processes in the Cariaco Basin of the southwestern Caribbean Sea from November 1995 to January 2017. The program completed 232 monthly core cruises, 40 sediment trap deployment cruises, and 40 microbiogeochemical process cruises. Upwelling along the southern Caribbean Sea occurs from approximately November to August. High biological productivity (320–628 g C m−2 y−1) leads to large vertical fluxes of particulate organic matter, but only approximately 9–10 g C m−2 y−1 fall to the bottom sediments (∼1–3% of primary production). A diverse community of heterotrophic and chemoautotrophic microorganisms, viruses, and protozoa thrives within the oxic–anoxic interface. A decrease in upwelling intensity from approximately 2003 to 2013 and the simultaneous overfishing of sardines in the region led to diminished phytoplankton bloom intensities, increased phytoplankton diversity, and increased zooplankton densities. The deepest waters of the Cariaco Basin exhibited long-term positive trends in temperature, salinity, hydrogen sulfide, ammonia, phosphate, methane, and silica. Earthquakes and coastal flooding also resulted in the delivery of sediment to the seafloor. The program's legacy includes climate-quality data from suboxic and anoxic habitats and lasting relationships between international researchers.
-
-
-
Unoccupied Aircraft Systems in Marine Science and Conservation
Vol. 11 (2019), pp. 439–463More LessThe use of unoccupied aircraft systems (UASs, also known as drones) in science is growing rapidly. Recent advances in microelectronics and battery technology have resulted in the rapid development of low-cost UASs that are transforming many industries. Drones are poised to revolutionize marine science and conservation, as they provide essentially on-demand remote sensing capabilities at low cost and with reduced human risk. A variety of multirotor, fixed-wing, and transitional UAS platforms are capable of carrying various optical and physical sampling payloads and are being employed in almost every subdiscipline of marine science and conservation. This article provides an overview of the UAS platforms and sensors used in marine science and conservation missions along with example physical, biological, and natural resource management applications and typical analytical workflows. It concludes with details on potential effects of UASs on marine wildlife and a look to the future of UASs in marine science and conservation.
-