1932

Abstract

Natural mechanisms in the ocean, both physical and biological, concentrate carbon in the deep ocean, resulting in lower atmospheric carbon dioxide. The signals of these carbon pumps overlap to create the observed carbon distribution in the ocean, making the individual impact of each pump difficult to disentangle. Noble gases have the potential to directly quantify the physical carbon solubility pump and to indirectly improve estimates of the biological organic carbon pump. Noble gases are biologically inert, can be precisely measured, and span a range of physical properties. We present dissolved neon, argon, and krypton data spanning the Atlantic, Southern, Pacific, and Arctic Oceans. Comparisons between deep-ocean observations and models of varying complexity enable the rates of processes that control the carbon solubility pump to be quantified and thus provide an important metric for ocean model skill. Noble gases also provide a powerful means of assessing air–sea gas exchange parameterizations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-121916-063604
2019-01-03
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/marine/11/1/annurev-marine-121916-063604.html?itemId=/content/journals/10.1146/annurev-marine-121916-063604&mimeType=html&fmt=ahah

Literature Cited

  1. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R 2000. Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature 405:1040–44
    [Google Scholar]
  2. Asher WE, Karle LM, Higgins BJ, Farley PJ, Monahan EC, Leifer IS 1996. The influence of bubble plumes on air-seawater gas transfer velocities. J. Geophys. Res. Oceans 101:12027–41
    [Google Scholar]
  3. Bainbridge AE 1981. GEOSECS Atlantic Expedition, Vol. 1: Hydrographic Data 1972–1973 Washington, DC: Natl. Sci. Found
    [Google Scholar]
  4. Beaird NL, Straneo F, Jenkins WJ 2015. Spreading of Greenland meltwaters in the ocean revealed by noble gases. Geophys. Res. Lett. 42:7705–13
    [Google Scholar]
  5. Beaird NL, Straneo F, Jenkins WJ 2017. Characteristics of meltwater export from Jakobshavn Isbræ and Ilulissat Icefjord. Ann. Glaciol. 58:107–17
    [Google Scholar]
  6. Beaird NL, Straneo F, Jenkins WJ 2018. Export of strongly diluted Greenland meltwater from a major glacial fjord. Geophys. Res. Lett. 45:4163–70
    [Google Scholar]
  7. Bereiter B, Shackleton S, Baggenstos D, Kawamura K, Severinghaus J 2018. Mean global ocean temperatures during the last glacial transition. Nature 553:39–44
    [Google Scholar]
  8. Bieri RH 1971. Dissolved noble gases in marine waters. Earth Planet. Sci. Lett. 10:329–33
    [Google Scholar]
  9. Bieri RH, Koide M 1972. Dissolved noble gases in the East Equatorial and Southeast Pacific. J. Geophys. Res. 77:1667–76
    [Google Scholar]
  10. Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP et al. 2013. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–45
    [Google Scholar]
  11. Bushinsky SM, Emerson S 2015. Marine biological production from in situ oxygen measurements on a profiling float in the subarctic Pacific Ocean. Glob. Biogeochem. Cycles 29:2050–60
    [Google Scholar]
  12. Carter L, McCave IN, Williams MJM 2008. Circulation and water masses of the Southern Ocean: a review. Antarctic Climate Evolution F Florindo, M Siegert 85–114 Amsterdam: Elsevier
    [Google Scholar]
  13. Cassar N, Barnett BA, Bender ML, Kaiser J, Hamme RC, Tilbrook B 2009. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry. Anal. Chem. 81:1855–64
    [Google Scholar]
  14. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V et al. 2013. Carbon and other biogeochemical cycles. See IPCC 2013 465–570
  15. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T et al. 2013. Long-term climate change: projections, commitments and irreversibility. See IPCC 2013 1029–136
  16. Craig H, Hayward T 1987. Oxygen supersaturation in the ocean: biological versus physical contributions. Science 235:199–202
    [Google Scholar]
  17. Craig H, Weiss RF 1971. Dissolved gas saturation anomalies and excess helium in the ocean. Earth Planet. Sci. Lett. 10:289–96
    [Google Scholar]
  18. Craig H, Weiss RF, Clarke WB 1967. Dissolved gases in the Equatorial and South Pacific Ocean. J. Geophys. Res. 72:6165–81
    [Google Scholar]
  19. Deane GB, Stokes MD 2002. Scale dependence of bubble creation mechanisms in breaking waves. Nature 418:839–44
    [Google Scholar]
  20. DeVries T, Primeau F 2009. Atmospheric pCO2 sensitivity to the solubility pump: role of the low-latitude ocean. Glob. Biogeochem. Cycles 23:GB4020
    [Google Scholar]
  21. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F et al. 2012. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4:11–37
    [Google Scholar]
  22. Emerson S 1987. Seasonal oxygen cycles and biological new production in surface waters of the subarctic Pacific Ocean. J. Geophys. Res. Oceans 92:6535–44
    [Google Scholar]
  23. Emerson S 2014. Annual net community production and the biological carbon flux in the ocean. Glob. Biogeochem. Cycles 28:14–28
    [Google Scholar]
  24. Emerson S, Bushinsky S 2016. The role of bubbles during air-sea gas exchange. J. Geophys. Res. Oceans 121:4360–76
    [Google Scholar]
  25. Emerson S, Ito T, Hamme RC 2012. Argon supersaturation indicates low decadal-scale vertical mixing in the ocean thermocline. Geophys. Res. Lett. 39:L18610
    [Google Scholar]
  26. Emerson S, Quay PD, Stump C, Wilbur D, Schudlich R 1995. Chemical tracers of productivity and respiration in the subtropical Pacific Ocean. J. Geophys. Res. Oceans 100:15873–87
    [Google Scholar]
  27. Emerson S, Stump C, Wilbur D, Quay P 1999. Accurate measurement of O2, N2, and Ar gases in water and the solubility of N2. Mar. Chem. 64:337–47
    [Google Scholar]
  28. Falkowski PG, Barber RT, Smetacek V 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–6
    [Google Scholar]
  29. Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M 2015. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28:862–86
    [Google Scholar]
  30. Fuchs G, Roether W, Schlosser P 1987. Excess 3He in the ocean surface layer. J. Geophys. Res. Oceans 92:6559–68
    [Google Scholar]
  31. Gehrie E, Archer D, Emerson S, Stump C, Henning C 2006. Subsurface ocean argon disequilibrium reveals the equatorial Pacific shadow zone. Geophys. Res. Lett. 33:L18608
    [Google Scholar]
  32. Giesbrecht KE, Hamme RC, Emerson SR 2012. Biological productivity along Line P in the subarctic northeast Pacific: in situ versus incubation-based methods. Glob. Biogeochem. Cycles 26:GB3028
    [Google Scholar]
  33. Glueckauf E 1951. The composition of atmospheric air. Compendium of Meteorology TF Malone 3–10 Boston: Am. Meteorol. Soc
    [Google Scholar]
  34. Gregg MC 1989. Scaling turbulent dissipation in the thermocline. J. Geophys. Res. Oceans 94:9686–98
    [Google Scholar]
  35. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E et al. 2005. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32:L12703
    [Google Scholar]
  36. Gruber N 2011. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. R. Soc. A 369:1980–96
    [Google Scholar]
  37. Gruber N, Sarmiento JL 2002. Large-scale biogeochemical-physical interactions in elemental cycles. The Sea, Vol. 12: Biological-Physical Interactions in the Sea AR Robinson, JJ McCarthy, BJ Rothschild 337–99 New York: Wiley & Sons
    [Google Scholar]
  38. Hamme RC, Emerson SR 2002. Mechanisms controlling the global oceanic distribution of the inert gases argon, nitrogen and neon. Geophys. Res. Lett. 29:2120
    [Google Scholar]
  39. Hamme RC, Emerson SR 2004.a Measurement of dissolved neon by isotope dilution using a quadrupole mass spectrometer. Mar. Chem. 91:53–64
    [Google Scholar]
  40. Hamme RC, Emerson SR 2004.b The solubility of neon, nitrogen and argon in distilled water and seawater. Deep-Sea Res. I 51:1517–28
    [Google Scholar]
  41. Hamme RC, Emerson SR 2006. Constraining bubble dynamics and mixing with dissolved gases: implications for productivity measurements by oxygen mass balance. J. Mar. Res. 64:73–95
    [Google Scholar]
  42. Hamme RC, Emerson SR, Severinghaus JP, Long MC, Yashayaev I 2017. Using noble gas measurements to derive air-sea process information and predict physical gas saturations. Geophys. Res. Lett. 44:9901–9
    [Google Scholar]
  43. Hamme RC, Severinghaus JP 2007. Trace gas disequilibria during deep-water formation. Deep-Sea Res. I 54:939–50
    [Google Scholar]
  44. Haskell WZ II, Prokopenko MG, Hammond DE, Stanley RHR, Berelson WM et al. 2016. An organic carbon budget for coastal Southern California determined by estimates of vertical nutrient flux, net community production and export. Deep-Sea Res. I 116:49–76
    [Google Scholar]
  45. Hayward TL 1987. The nutrient distribution and primary production in the central North Pacific. Deep-Sea Res. A 34:1593–627
    [Google Scholar]
  46. Headly MA, Severinghaus JP 2007. A method to measure Kr/N2 ratios in air bubbles trapped in ice cores and its application in reconstructing past mean ocean temperature. J. Geophys. Res. Atmos. 112:D19105
    [Google Scholar]
  47. Henning CC, Archer D, Fung I 2006. Argon as a tracer of cross-isopyncal mixing in the thermocline. J. Phys. Oceanogr. 36:2090–105
    [Google Scholar]
  48. Henry W 1803. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Philos. Trans. R. Soc. Lond. 93:29–43274–76
    [Google Scholar]
  49. Ho DT, Law CS, Smith MJ, Schlosser P, Harvey M, Hill P 2006. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophys. Res. Lett. 33:L16611
    [Google Scholar]
  50. Hofmann M, Schellnhuber H-J 2009. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. PNAS 106:3017–22
    [Google Scholar]
  51. Hohmann R, Schlosser P, Jacobs S, Ludin A, Weppernig R 2002. Excess helium and neon in the southeast Pacific: tracers for glacial meltwater. J. Geophys. Res. Oceans 107:3198
    [Google Scholar]
  52. Hood EM, Howes BL, Jenkins WJ 1998. Dissolved gas dynamics in perennially ice-covered Lake Fryxell, Antarctica. Limnol. Oceanogr. 43:265–72
    [Google Scholar]
  53. IPCC (Intergov. Panel Clim. Change). 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, GK Plattner, M Tignor, S Allen et al. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  54. Ito T, Deutsch C 2006. Understanding the saturation state of argon in the thermocline: the role of air-sea gas exchange and diapycnal mixing. Glob. Biogeochem. Cycles 20:GB3019
    [Google Scholar]
  55. Ito T, Deutsch C, Emerson S, Hamme RC 2007. Impact of diapycnal mixing on the saturation state of argon in the subtropical North Pacific. Geophys. Res. Lett. 34:L09602
    [Google Scholar]
  56. Ito T, Follows MJ 2003. Upper ocean control on the solubility pump of CO2. J. Mar. Res. 61:465–89
    [Google Scholar]
  57. Ito T, Hamme RC, Emerson S 2011. Temporal and spatial variability of noble gas tracers in the North Pacific. J. Geophys. Res. Oceans 116:C08039
    [Google Scholar]
  58. Jähne B, Münnich KO, Bösinger R, Dutzi A, Huber W, Libner P 1987. On the parameters influencing air-water gas exchange. J. Geophys. Res. Oceans 92:1937–49
    [Google Scholar]
  59. Jenkins WJ 1988. The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation. Philos. Trans. R. Soc. Lond. A 325:43–61
    [Google Scholar]
  60. Jenkins WJ, Lott DE III, German CR, Cahill KL, Goudreau J, Longworth B 2018. The deep distributions of helium isotopes, radiocarbon, and noble gases along the US GEOTRACES East Pacific Zonal Transect (GP16). Mar. Chem. 201:167–82
    [Google Scholar]
  61. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77:437–71
    [Google Scholar]
  62. Keeling R 1993. On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean. J. Mar. Res. 51:237–71
    [Google Scholar]
  63. Khatiwala S 2008. Fast spin up of ocean biogeochemical models using matrix-free Newton-Krylov. Ocean Model 23:121–29
    [Google Scholar]
  64. Khatiwala S, Visbeck M, Cane MA 2005. Accelerated simulation of passive tracers in ocean circulation models. Ocean Model 9:51–69
    [Google Scholar]
  65. Ledwell JR, Watson AJ, Law CS 1993. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364:701–3
    [Google Scholar]
  66. Levich VG 1962. Physicochemical Hydrodynamics Englewood Cliffs, NJ: Prentice Hall
    [Google Scholar]
  67. Liang J-H, Deutsch C, McWilliams JC, Baschek B, Sullivan PP, Chiba D 2013. Parameterizing bubble-mediated air-sea gas exchange and its effect on ocean ventilation. Glob. Biogeochem. Cycles 27:894–905
    [Google Scholar]
  68. Liang J-H, McWilliams JC, Sullivan PP, Baschek B 2011. Modeling bubbles and dissolved gases in the ocean. J. Geophys. Res. Oceans 116:C03015
    [Google Scholar]
  69. Lindsay K 2017. A Newton-Krylov solver for fast spin-up of online ocean tracers. Ocean Model 109:33–43
    [Google Scholar]
  70. Liss PS, Merlivat L 1986. Air-sea gas exchange rates: introduction and synthesis. The Role of Air-Sea Exchange in Geochemical Cycling P Buat-Ménard 113–27 Hingham, MA: Reidel
    [Google Scholar]
  71. Long MC, Deutsch C, Ito T 2016. Finding forced trends in oceanic oxygen. Glob. Biogeochem. Cycles 30:381–97
    [Google Scholar]
  72. Loose B, Jenkins WJ 2014. The five stable noble gases are sensitive unambiguous tracers of glacial meltwater. Geophys. Res. Lett. 41:2835–41
    [Google Scholar]
  73. Loose B, Jenkins WJ, Moriarty R, Brown P, Jullion L et al. 2016. Estimating the recharge properties of the deep ocean using noble gases and helium isotopes. J. Geophys. Res. Oceans 121:5959–79
    [Google Scholar]
  74. Loose B, Schlosser P, Smethie WM, Jacobs S 2009. An optimized estimate of glacial melt from the Ross Ice Shelf using noble gases, stable isotopes, and CFC transient tracers. J. Geophys. Res. Oceans 114:C08007
    [Google Scholar]
  75. Lott DE III 2001. Improvements in noble gas separation methodology: a nude cryogenic trap. Geochem. Geophys. Geosyst. 2:1068
    [Google Scholar]
  76. Lozier MS 2012. Overturning in the North Atlantic. Annu. Rev. Mar. Sci. 4:291–315
    [Google Scholar]
  77. Lupton JE 1983. Terrestrial inert gases: isotope tracer studies and clues to primordial components in the mantle. Annu. Rev. Earth Planet. Sci. 11:371–414
    [Google Scholar]
  78. Manning CC, Stanley RHR, Lott DE III 2016.a Continuous measurements of dissolved Ne, Ar, Kr, and Xe ratios with a field-deployable gas equilibration mass spectrometer. Anal. Chem. 88:3040–48
    [Google Scholar]
  79. Manning CC, Stanley RHR, Nicholson DP, Squibb ME 2016.b Quantifying air-sea gas exchange using noble gases in a coastal upwelling zone. IOP Conf. Ser. Earth Environ. Sci. 35:012017
    [Google Scholar]
  80. Memery L, Merlivat L 1985. Modelling of gas flux through bubbles at the air-water interface. Tellus 37B:272–85
    [Google Scholar]
  81. Myers PG 2005. Impact of freshwater from the Canadian Arctic Archipelago on Labrador Sea Water formation. Geophys. Res. Lett. 32:L06605
    [Google Scholar]
  82. Nicholson DP, Emerson SR, Caillon N, Jouzel J, Hamme RC 2010. Constraining ventilation during deepwater formation using deep ocean measurements of the dissolved gas ratios 40Ar/36Ar, N2/Ar, and Kr/Ar. J. Geophys. Res. Oceans 115:C11015
    [Google Scholar]
  83. Nicholson DP, Emerson SR, Eriksen CC 2008. Net community production in the deep euphotic zone of the subtropical North Pacific gyre from glider surveys. Limnol. Oceanogr. 53:2226–36
    [Google Scholar]
  84. Nicholson DP, Emerson SR, Khatiwala S, Hamme RC 2011. An inverse approach to estimate bubble-mediated air–sea gas flux from inert gas measurements. Gas Transfer at Water Surfaces 2010 S Komori, W McGillis, R Kurose 223–37 Kyoto, Jpn: Kyoto Univ. Press
    [Google Scholar]
  85. Nicholson DP, Feen ML 2017. Air calibration of an oxygen optode on an underwater glider. Limnol. Oceanogr. Methods 15:495–502
    [Google Scholar]
  86. Nicholson DP, Khatiwala S, Heimbach P 2016. Noble gas tracers of ventilation during deep-water formation in the Weddell Sea. IOP Conf. Ser. Earth Environ. Sci. 35:012019
    [Google Scholar]
  87. Parekh P, Dutkiewicz S, Follows MJ, Ito T 2006. Atmospheric carbon dioxide in a less dusty world. Geophys. Res. Lett. 33:L03610
    [Google Scholar]
  88. Pinsonneault AJ, Matthews HD, Galbraith ED, Schmittner A 2012. Calcium carbonate production response to future ocean warming and acidification. Biogeosciences 9:2351–64
    [Google Scholar]
  89. Plant JN, Johnson KS, Sakamoto CM, Jannasch HW, Coletti LJ et al. 2016. Net community production at Ocean Station Papa observed with nitrate and oxygen sensors on profiling floats. Glob. Biogeochem. Cycles 30:859–79
    [Google Scholar]
  90. Postlethwaite CF 2002. Developing a tool for evaluating the role of seasonal sea ice in deep-water formation PhD Thesis, Univ. Southampton Southampton, UK:
    [Google Scholar]
  91. Postlethwaite CF, Rohling EJ, Jenkins WJ, Walker CF 2005. A tracer study of ventilation in the Japan/East Sea. Deep-Sea Res. II 52:1684–704
    [Google Scholar]
  92. Price JF, Weller RA, Pinkel R 1986. Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res. Oceans 91:8411–27
    [Google Scholar]
  93. Reuer MK, Barnett BA, Bender ML, Falkowski PG, Hendricks MB 2007. New estimates of Southern Ocean biological production rates from O2/Ar ratios and the triple isotope composition of O2. Deep-Sea Res. I 54:951–74
    [Google Scholar]
  94. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D et al. 2013. Observations: ocean See IPCC 2013 255–315
  95. Ridgwell A, Zondervan I, Hargreaves JC, Bijma J, Lenton TM 2007. Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback. Biogeosciences 4:481–92
    [Google Scholar]
  96. Riebesell U, Körtzinger A, Oschlies A 2009. Sensitivities of marine carbon fluxes to ocean change. PNAS 106:20602–9
    [Google Scholar]
  97. Ritz SP, Stocker TF, Severinghaus JP 2011. Noble gases as proxies of mean ocean temperature: sensitivity studies using a climate model of reduced complexity. Quat. Sci. Rev. 30:3728–41
    [Google Scholar]
  98. Rodehacke CB, Hellmer HH, Huhn O, Beckmann A 2006. Ocean/ice shelf interaction in the southern Weddell Sea: results of a regional numerical helium/neon simulation. Ocean Dyn 57:1–11
    [Google Scholar]
  99. Roether W, Well R, Putska A, Rüth C 1998. Component separation of oceanic helium. J. Geophys. Res. Oceans 103:27931–46
    [Google Scholar]
  100. Schlosser P 1986. Helium: a new tracer in Antarctic oceanography. Nature 321:233–35
    [Google Scholar]
  101. Schlosser P, Bayer R, Foldvik A, Gammelsrød T, Rohardt G, Münnich KO 1990. Oxygen 18 and helium as tracers of ice shelf water and water/ice interaction in the Weddell Sea. J. Geophys. Res. Oceans 95:3253–63
    [Google Scholar]
  102. Schudlich R, Emerson S 1996. Gas supersaturation in the surface ocean: the role of heat flux, gas exchange and bubbles. Deep-Sea Res. II 43:569–89
    [Google Scholar]
  103. Severinghaus JP, Grachev AM, Luz B, Caillon N 2003. A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica. Geochim. Cosmochim. Acta 67:325–43
    [Google Scholar]
  104. Siegel DA, Buesseler KO, Doney SC, Sailley SF, Behrenfeld MJ, Boyd PW 2014. Global assessment of ocean carbon export by combining satellite observations and food-web models. Glob. Biogeochem. Cycles 28:181–96
    [Google Scholar]
  105. Siegenthaler U, Sarmiento JL 1993. Atmospheric carbon dioxide and the ocean. Nature 365:119–25
    [Google Scholar]
  106. Siegenthaler U, Wenk T 1984. Rapid atmospheric CO2 variations and ocean circulation. Nature 308:624–26
    [Google Scholar]
  107. Spitzer WS, Jenkins WJ 1989. Rates of vertical mixing, gas exchange and new production: estimates from seasonal gas cycles in the upper ocean near Bermuda. J. Mar. Res. 47:169–96
    [Google Scholar]
  108. Stanley RHR, Baschek B, Lott DE III, Jenkins WJ 2009.a A new automated method for measuring noble gases and their isotopic ratios in water samples. Geochem. Geophys. Geosyst. 10:Q05008
    [Google Scholar]
  109. Stanley RHR, Jenkins WJ 2013. Noble gases in seawater as tracers for physical and biogeochemical ocean processes. The Noble Gases as Geochemical Tracers P Burnard 55–79 Berlin: Springer
    [Google Scholar]
  110. Stanley RHR, Jenkins WJ, Doney SC 2006. Quantifying seasonal air-sea gas exchange processes using noble gas time-series: a design experiment. J. Mar. Res. 64:267–95
    [Google Scholar]
  111. Stanley RHR, Jenkins WJ, Lott DE III, Doney SC 2009.b Noble gas constraints on air-sea gas exchange and bubble fluxes. J. Geophys. Res. Oceans 114:C11020
    [Google Scholar]
  112. Stanley RHR, Kirkpatrick JB, Cassar N, Barnett BA, Bender ML 2010. Net community production and gross primary production rates in the western equatorial Pacific. Glob. Biogeochem. Cycles 24:GB4001
    [Google Scholar]
  113. Stute M, Forster M, Frischkorn H, Serejo A, Clark JF et al. 1995. Cooling of tropical Brazil (5°C) during the Last Glacial Maximum. Science 269:379–83
    [Google Scholar]
  114. Stute M, Schlosser P, Clark JF, Broecker WS 1992. Paleotemperatures in the southwestern United States derived from noble gases in ground water. Science 256:1000–3
    [Google Scholar]
  115. Talley LD 1996. North Atlantic circulation and variability, reviewed for the CNLS conference. Physica D 98:625–46
    [Google Scholar]
  116. Toggweiler JR, Gnanadesikan A, Carson S, Murnane R, Sarmiento JL 2003. Representation of the carbon cycle in box models and GCMs: 1. Solubility pump. Glob. Biogeochem. Cycles 17:1026
    [Google Scholar]
  117. Toggweiler JR, Sarmiento JL 1985. Glacial to interglacial changes in atmospheric carbon dioxide: the critical role of ocean surface water in high latitudes. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present ET Sunquist, WS Broecker 163–84 Geophys. Monogr. Ser. 32 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  118. Tortell PD 2005. Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry. Limnol. Oceanogr. Methods 3:24–37
    [Google Scholar]
  119. Volk T, Hoffert MI 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present ET Sundquist, WS Broecker 99–110 Geophys. Monogr. Ser. 32 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  120. Wallace DWR, Wirick CD 1992. Large air-sea gas fluxes associated with breaking waves. Nature 356:694–6
    [Google Scholar]
  121. Wanninkhof R 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. Oceans 97:7373–82
    [Google Scholar]
  122. Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR 2009. Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 1:213–44
    [Google Scholar]
  123. Weiss RF 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res. Oceanogr. Abstr. 17:721–35
    [Google Scholar]
  124. Weiss RF 1971. Solubility of helium and neon in water and seawater. J. Chem. Eng. Data 16:235–41
    [Google Scholar]
  125. Weiss RF, Kyser TK 1978. Solubility of krypton in water and seawater. J. Chem. Eng. Data 23:69–72
    [Google Scholar]
  126. Well R, Lupton J, Roether W 2001. Crustal helium in deep Pacific waters. J. Geophys. Res. Oceans 106:14165–77
    [Google Scholar]
  127. Well R, Roether W 2003. Neon distribution in South Atlantic and South Pacific waters. Deep-Sea Res. I 50:721–35
    [Google Scholar]
  128. Woolf DK 1993. Bubbles and the air-sea transfer velocity of gases. Atmos. Ocean 31:517–40
    [Google Scholar]
  129. Woolf DK 1997. Bubbles and their role in gas exchange. The Sea Surface and Global Change PS Liss, RA Duce 173–206 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  130. Woolf DK, Thorpe SA 1991. Bubbles and the air-sea exchange of gases in near-saturation conditions. J. Mar. Res. 49:435–66
    [Google Scholar]
  131. Yang B, Emerson SR, Bushinsky SM 2017. Annual net community production in the subtropical Pacific Ocean from in situ oxygen measurements on profiling floats. Glob. Biogeochem. Cycles 31:728–44
    [Google Scholar]
  132. Zeebe RE 2012. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu. Rev. Earth Planet. Sci. 40:141–65
    [Google Scholar]
/content/journals/10.1146/annurev-marine-121916-063604
Loading
/content/journals/10.1146/annurev-marine-121916-063604
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error